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Chapter 7

Monte Carlo Simulation of Electron Transport
in Quantum Cascade Lasers

Oskar Baumgartner, Zlatan Stanojević, and Hans Kosina

Abstract. A transport model for quantum cascade lasers based on the Pauli master equation
is presented. An efficient Monte Carlo solver has been developed. The numerical methods
to reduce the computational cost are discussed in detail. Finally, the simulator is used to ob-
tain current-voltage characteristics as well as microscopic quantities of a mid-infrared QCL
structure.
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7.1 Introduction

Quantum cascade lasers (QCLs) offer a wide range of advantages which make them a
popular choice for coherent light sources [5]. Their light emission is based on intersub-
band transitions. Due to the periodic nature of QCLs, a single electron will repeatedly
contribute to the photon emission. The properties of the laser are mainly determined
by the designer’s choice of material and quantum well geometry.

For this purpose, simulation is a useful tool for tuning the QCL design to the desired
optical and electrical characteristics. A requirement for such a simulator as design tool
is a good balance between computational speed and physical accuracy. To describe the
electronic properties of the laser, a quantum mechanical transport model is necessary.
Previously the nonequilibrium Green’s function formalism (NEGF) has been used as a
rigorous approach to capture the QCL’s physics [10,11]. Unfortunately the inherently
high computational costs of the NEGF formalism render it unfeasible as a design tool.

7.2 QCL Transport Model

In our approach we use the Pauli master equation (PME) [4] to model current trans-
port through the QCL’s semiconductor heterostructure. Based on the experiences of a
MATLAB prototype presented in [14], an optimized Monte Carlo (MC) simulator has
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been implemented in C++ within the Vienna–Schrödinger–Poisson (VSP) simulation
framework [9].

7.2.1 Pauli Master Equation

Theoretical studies showed that in many practical cases the steady state transport in
QCLs is incoherent such that a semiclassical description can be employed [7, 8]. Fol-
lowing this approach, we developed a transport simulator for quantum cascade lasers
based on the Pauli master equation [14]. The transport is described via scattering tran-
sitions among quasistationary basis states which are determined by numerically solv-
ing the Schrödinger equation. The Hamiltonian includes the band edge formed by the
heterostructure. In this way, tunneling is accounted for through the delocalized eigen-
states.

The transport equations are derived from the Liouville–von Neumann equation in
the Markov limit in combination with the diagonal approximation. This means that
the off-diagonal elements of the density matrix are neglected and one arrives at the
Boltzmann-like Pauli master equation [6]
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Here, m and n denote the subband indices, and k and k0 the in-plane wave vectors.
The transition rate from state jk0; mi to state jk; ni for an interactionHint follows from
Fermi’s golden rule
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We make use of the translational invariancy of the QCL structure and simulate the
electron transport over a single stage only. The wave function overlap between the
central stage and spatially remote stages is small. It is therefore assumed that interstage
scattering is limited only to the nearest neighbor stages and that interactions between
basis states of remote stages can be safely neglected.

The states of the whole QCL device structure are assumed to be a periodic repetition
of the states of a central stage. This approach ensures charge conservation and allows
imposing periodic boundary conditions on the Pauli master equation.

Since transport is simulated over a central stage only, every time a carrier under-
goes an interstage scattering process the electron is reinjected into the central stage
with an energy changed by the voltage drop over a single period. The total current is
determined by the net number of interstage transitions.

The transport equations can be solved using a Monte Carlo approach. We developed
an algorithm and devised several new numerical methods to reduce the computational
cost of the simulation. The implementation details will be discussed in Section 7.2.3.



Chapter 7 Monte Carlo Simulation of Electron Transport in QCLs 61

7.2.2 Calculation of Basis States

The task at hand can be divided into two parts. First, the basis states need to be deter-
mined. Second, the states have to be assigned to a stage according to their periodicity.
For this purpose the equation definition and solver facilities of the VSP were used
beneficially.

Since it is essential to consider band nonparabolicity for QCLs, the user can choose
one of several models for the Hamiltonian of the Schrödinger equation. For this pur-
pose, in addition to the single band effective mass model, an effective two-band k	p
model [16] or a three-band k	p model are available.

To describe the openness of the quantum system we make use of the perfectly
matched layer (PML) boundary conditions for the Schrödinger equation [15]. Perfectly
matched layers were originally used as boundary conditions for electromagnetic and
waveguide problems [1]. The PML boundary conditions give rise to a complex eigen-
value problem. It is solved by means of Arnoldi iteration and the ARPACK [12] library
linked to VSP. The calculated eigenvectors correspond to the complex wavefunctions.
The real part of the eigenvalue is the eigenenergy of the quasibound state, whereas the
imaginary part is related to its finite lifetime due to the openness of the system. This
allows us to estimate the tunneling current using the following relation [2]:
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As long as the hereby calculated tunneling current is small compared to the incoherent
current, the semiclassical approach of the PME remains valid.

We calculated the eigenstates for an In0:53Ga0:47As / GaAs0:51Sb0:49 mid infrared
(MIR) quantum cascade laser reported in [3]. The barrier thicknesses (in bold) and the
well thicknesses of one period in nanometer are 7.5/2.9/1.5/6.5/ 1.8/5.9/5.5/5.6/2.6/
5.1/2.0/5.2/4.0/4.2/2.9/4.4. The underlined layer is doped to a concentration of 4 �
1017cm�3. We will use this device as a benchmark throughout this chapter. The cal-
culated wavefunctions for a two-band k	pHamiltonian with PML boundary conditions
are shown in Figure 7.1.

To use the eigenvectors as basis states in the MC routine we need to consider
the periodicity of the device and automatically select the field-periodic states of a
single stage. For that purpose we calculate the crosscorrelation and autocorrelation
Cij .x/ D ‰i .x/?‰j .x/ of all subbands. We make use of the relation F ¹‰i ?‰j º D
F ¹‰iº� 	 F ¹‰j º and the Fast Fourier Transform to quickly obtain the correlations,
i. e., Cij .x/ D F �1¹F ¹‰iº� 	 F ¹‰j ºº. Then the positions xij;max of the maxima of
the correlations Cij .x/ are determined for all the subbands. If xij;max lies at the geo-
metric period length L of the QCL structure, the two states i and j are considered
field-periodic and given an appropriate stage index. As an example the field-periodic
states of the InGaAs/GaAsSb QCL are given in Figure 7.2.
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Figure 7.1. Multiple cascades of a QCL need to be considered om order to obtain suitable
basis states for the PME Monte Carlo solver.

Figure 7.2. Application of our subband selection routine which automatically assigns the field-
periodic wavefunctions to a stage of the QCL (only the states of two stages are shown).

7.2.3 Monte Carlo Solver

The wavefunctions provided by the routines discussed above are processed to initialize
the MC code. After calculating the scattering rates using functor classes and filling
the data structures, the initial valley, subband, and energy of the carrier are randomly
selected. In the MC loop the precalculated possible scattering processes are looked
up for the actual electron state. A random number r is determined using a uniform
distribution in the interval Œ0; Pn� where Pn D Pn

j D1 �j is the total scattering rate.
The scattering process i is selected from the table such that the relationPi�1 < r � Pi
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Figure 7.3. Data structures for the selection of a scattering process. Valleys and subbands
are accessed by index. Each subband uses its own energy grid. For a fast lookup the grid is
implemented as a C++ standard template library (STL) map with the energy as key value.
Similarly, scattering processes are stored in a map where the partial sums of their transition
rates are used as key. The selected scattering process instance contains all essential information
to update the statistics and the state variable.

holds, where the Pi are the partial sums of the scattering rates. The data structure for
the selection method is given in Figure 7.3. As shown, the C++ standard template
library containers are used with regard to minimizing the lookup time.

The actual state and the chosen scattering process are used to update the statistical
quantities such as subband population, energy distribution, and current. Afterwards
the state variable is set to its new value given by the scattering event. The MC loop is
terminated when the given number of events is reached.

To account for the periodic structure of the device, the subbands of three stages are
included. Whenever the electron scatters from the central to the left or the right stage
it is reinjected into the corresponding state of the central stage, and the estimator for
the electrical current is updated.

We identified the calculation of the polar-optical phonon scattering rate as one of
the major contributions to the simulation run time. Therefore, we optimized the cal-
culation of the scattering rate for this process by exchanging the order of the multiple
integrations. An analytic integration over the final states is carried out first. The inte-
gration related to the matrix element is carried out last. The remaining integration is
in momentum space and has the form
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where k2
f D k2

k C 2m�

„2 .Em � En ˙ „!PO/ has to be positive in order to satisfy en-
ergy conservation. This allows us to use a Fast Fourier Transform (FFT) to calculate
the overlap integralsb�mn.qz/ D F ¹�mn.z/º, where �mn.z/ D  �

m.z/ n.z/, which
reduces the calculation time of the PO scattering rate by three to four orders of mag-
nitude.

Currently, acoustic and optical deformation potential and polar optical electron-
phonon scattering as well as alloy, intervalley, and interface roughness scattering are
included. The object-oriented implementation allows for simple inclusion of addi-
tional physics for further investigation of QCL devices such as electron–electron and
electron–photon interaction.

7.3 Results and Discussion

We used the implemented transport model to simulate the InGaAs/GaAsSb mid in-
frared (MIR) quantum cascade laser reported in [3]. The current density as a function
of the electric field at 90 Kelvin is shown in Figure 7.4. The simulation result is in
reasonable agreement with the experiment. The maximum in the current around the
laser’s designed optimum field strength can be attributed to a PO phonon resonance of
the lower and ground laser level. The resonance causes a fast depletion of the lower
laser level and aids the population inversion. The decrease in current above the thresh-
old is due to increasing coherent tunneling to the continuum as well as the electron-
photon interaction, which is not yet included in the model. At low fields the current is
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Figure 7.4. Current density vs. applied elec-
tric field of the MIR QCL. The simulation
shows that the inclusion of the X valley has
only a small influence on the characteristics
around the laser threshold.

Figure 7.5. Calculated scattering rates with the
lower laser level as initial subband. At energies
near the subband minimum the polar optical
emission is the dominant process. This ensures
fast depopulation of the lower laser level.
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Figure 7.6. Conduction band edge and carrier density spectrum obtained by the Pauli master
equation solver at an electric field strength of 40 kV/cm. The occupation of the upper laser
state is clearly visible.

underestimated due to the dominant coherent transport through the barriers [13]. The
characteristics show that transport in the X valley contributes only marginally to the
total current near the laser threshold. This is also indicated by the scattering rates for
the lower laser level (Figure 7.5), where PO emission is also shown to be dominant.

The calculation of a single operating point typically takes a few minutes, depending
on number of valleys, subbands, and energy grid resolution. This is orders of magni-
tude faster than a full quantum treatment using nonequilibrium Green’s functions, but
still gives insight to microscopic quantities such as the carrier density spectrum shown
in Figure 7.6.

7.4 Conclusion

We have presented a semiclassical transport model for quantum cascade lasers based
on the Pauli master equation. We devised new numerical methods to reduce the com-
putational demand and realized an efficient Monte Carlo simulator implemented in
C++. The model was applied to a mid infrared QCL. It gives insight to macro- and
microscopic quantities such as current-voltage characteristics, scattering rates, carrier
density spectrum, subband population, and optical gain.
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