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Abstract. The continually growing demand for increased simulation
complexity introduces the need for scientific software frameworks to par-
allelize simulation tasks. We present our approach for a task graph sched-
uler based on modern programming techniques. The scheduler utilizes the
Message Passing Interface to distribute the tasks among distributed com-
puting nodes. We show that our approach does not only offer a concise
user-level code but also provides a high degree of scalability.

1 Introduction

The ever-growing demand of increased simulation complexity to better model
physical phenomena requires, among other things, the combination of different
simulation components [11]. This combination can be, for example, realized, by
using the output of one tool as an input for another one. From a software point
of view, this problem can be modelled as a task graph [10], which is governed by
a software framework [5]. The individual simulation tools can be seen as vertices
of the task graph, which are therefore executed based on the individual task de-
pendencies. To improve the efficiency and therefore reduce the overall run-time
of the framework, a parallelized approach for the task execution is required. A
high-degree of flexibility is provided by a distributed approach based on the Mes-
sage Passing Interface (MPI), as the execution can be spread among the nodes
of a large-scale cluster environment as well as on the cores of a single worksta-
tion. In general, the distribution of parallelizable tasks among distributed [7] and
shared computing [4] resources is a typical way to improve the overall run-time
performance of a task graph. In this work we investigate a lightweight approach
to implement a scheduler based on modern programming techniques, in partic-
ular, generic [12] and functional [8] programming in C++. By utilizing these
techniques and external libraries we are able to achieve a highly concise user-
level code, by simultaneously obtaining excellent scalability with regard to the
execution performance.

This work is organized as follows: Section 2 introduces our approach and
Section 3 validates the work by depicting performance results.
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2 Our Approach

Our approach for distributing tasks on distributed computing nodes can be split
into three parts. The first part is the mapping of the tasks and the corresponding
dependencies on a graph datastructure; the second, the priorization based on
the task dependences by utilizing a graph algorithm; and the third, the parallel
and distributed execution on the computing nodes by using the Boost MPI
Library [2]. Figure 1 depicts the principle of generating a task-graph and the
parallel execution.
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Fig. 1. Tasks are associated with vertices (left) and dependencies are related to edges
(middle) in the graph. The tasks are executed on distributed processes according to
their dependencies (right). For example, task B and task C are only executed, when
task A is finished.

We utilize the Boost Graph Library (BGL) for the graph datastructure and
the graph algorithms [1]. Each task is associated with a vertex in the graph,
whereas the dependencies are mapped to edges connecting the respective ver-
tices. Our implementation is based on the list scheduling technique, which re-
quires a sequential list of prioritized tasks [9]. This priorization is computed by
the BGL implementation of the topological sort graph algorithm [6]. Accord-
ing to the list scheduling approach, this prioritized list is traversed and every
task is checked, whether it can be executed. This traversal is repeated until all
tasks have been processed. In general, we utilize the generic and functional pro-
gramming techniques. The generic programming paradigm is used to achieve a
highly versatile and extendable implementation. The functional style allows to
provide an intuitive user-level code and is applied by utilizing the Boost Phoenix
Library (BPL) [3]. The utilization ot these programming paradigms enables to
implement the following concise user-level code, which depicts the scheduling
traversal of the prioritized tasks.

1 std::for_each (prioritized .begin(), prioritized .end(),

2 if_(is_executable )[ execute(arg1 ,ref(process_manager ))]);

The set of prioritized tasks (prioritized) is traversed. if (is executable)[..]

checks if a task is ready for execution, which is done by testing the state of the
immediate predecessors. If so, execute(..) tries to assign the task to a process
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Fig. 2. An exemplary task graph is shown containing a maximum of 11 parallelizable
tasks (task 2-12).
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(a) Task-Graph with Dependencies
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(b) Task-Graph without Dependencies

Fig. 3. Left: The scaling for different task problem sizes is depicted based on a task
graph with dependencies. The scaling efficiency for 10 cores is improved from 68% for
a problem size of 700 to 80% for a problem size of 1000. Right: The scaling for a task
problem size of 850 is shown based on a task graph without dependencies. A scaling
efficiency of 91% is achieved for 60 cores.

by utilizing a process manager facility. Note that arg1 and ref(..) are BPL
expressions which enable access to the traversal object and the reference to an
existing object, respectively.

3 Performance

In this section we present the scalability of our approach. Each task computes
the dense matrix-matrix product for different problem sizes to model a compu-
tational load. Note that in this work we do not investigate the data transfer
between the individual tasks, as we solely focus on the scheduling and the exe-
cution of the tasks. Our approach is evaluated based on two different test cases.
First, we evaluate the speedup of a task graph with various dependencies. For
this investigation we basically use the same graph layout as depicted in Figure 2.
However, instead of a maximum number of 11 tasks on the second level of the
graph, we use a problem offering a maximum number of 100 parallelizable tasks.
Furthermore, we investigate different problem sizes with respect to the dense
matrix-matrix product. The scalability is investigated for up to 10 cores. The
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hardware environment for this investigation consists of three workstations, two
AMD Phenom II X4 965 with 8 GB of memory, and one INTEL i7 960 with
12 GB of memory, connected by a gigabit Ethernet network. Figure 3a depicts
the gained performance results. A scaling efficiency of 68% for a problem size
of 700 is improved to 80% for a problem size of 1000. Second, we investigate
the speedup for 600 tasks without task dependencies, to investigate the optimal
parallelization capabilities. This hardware environment is based on our comput-
ing cluster, where the nodes offer four six-core AMD Opteron 8435, 128 GB of
system memory, and an Infiniband DDR network connection each. Figure 3b
shows the speedup for this test. A scaling efficiency of around 91% for 60 cores
is achieved.

4 Conclusion

Our approach based on modern programming techniques provides not only con-
cise user-level code but also offers excellent scalability for up to 60 cores. Fur-
thermore, the scalability improves for larger problems, which underlines the suit-
ability of our scheduling approach for large-scale simulations.
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