
A Flexible Dynamic Data Structure
for Scientific Computing

Josef Weinbub, Karl Rupp and Siegfried Selberherr

Abstract We present an approach for a generic, multi-dimensional run-time data
structure suitable for high-performance scientific computing in C++. Our concept for
associating meta-information with the data structure as well as different underlying
datatypes is depicted. High-performance, multi-dimensional data access is realized
by utilizing a heterogenous compile-time container generation function. The gener-
alized data structure implementation is discussed and performance results are given
with respect to reference implementations. We show that our approach is not only
highly flexible but also offers high-performance data access by simultaneously rely-
ing on a small code base.

Keywords C++ · Data structure · Dynamic · Generic programming · Meta
programming · Multi-Dimensional

1 Introduction

The plethora of applications in the field of scientific computing introduces different
requirements for data structures.A matrix for the representation of a linear system
of equations is a prominent example of a two-dimensional datastructure [1]. On the
contrary, an application may require a set of second-order tensors to describe, for
instance, the stresses in the field of continuum mechanics [2]. Typically, the dimen-

J. Weinbub (B) · K. Rupp · S. Selberherr
Institute for Microelectronics, Technische Universität Wien,
Gußhausstraße 27-29, 1040 Wien, Austria
e-mail: weinbub@iue.tuwien.ac.at

K. Rupp
e-mail: rupp@iue.tuwien.ac.at

S. Selberherr
e-mail: selberherr@iue.tuwien.ac.at

G.-C. Yang et al. (eds.), IAENG Transactions on Engineering Technologies, 565
Lecture Notes in Electrical Engineering 229, DOI: 10.1007/978-94-007-6190-2_43,
© Springer Science+Business Media Dordrecht 2013

566 J. Weinbub et al.

sionality is known during compile-time, thus the data structure can be optimized by
the compiler [3]. However, if the dimensionality of the data structure is not known
during compile-time, no presumptions with respect to the storage layout can be made
thus imposing challenges on the data structure implementation. A typical challenge
is to provide a high-performing, dimension agnostic access mechanism, as a uti-
lization of a dynamic container for the index-tuple, which does not result in poor
performance due to run-time overhead.

Such a scenario arises when, for instance, dealing with input routines, where the
data structure dimension depends on the data read from an input stream, inherently
being a run-time process. Another case would be a unified data structure interface,
where unified relates to a single datatype used to reflect data structures of arbitrary
dimensionality. Such can be the case for plugin interfaces within a software compo-
nent framework. Each plugin provides and receives data, though the dimensionality
is not known in advance. Overall, an approach is required to support multiple dimen-
sions during run-time.

An additional challenge arises with respect to the underlying datatype of the data
structure elements. C++, as a statically typed programming language, enables type
checks during compilation. This not only allows for the compiler to optimize code,
but also to detect errors at the earliest possible stage of the development. However,
such a system imposes restrictions in regard to the run-time handling of datatypes. For
example, a floating-point number of type double can only hold a double-precision
value, but not a string object.This limitation is in principle desired, but introduces
challenges for the implementation of a generic data structure, where the type is not
known in advance. Related to the previously introduced examples, the data structure
cannot only vary in its dimension but also in the type it can hold.

The field of scientific computing not only processes sets of values, but typically
also sets of quantities. A quantity is referred to as a value which is associated with
a unit. Supporting or even enforcing units is a vital part for ensuring the correctness
of scientific simulations [4]. However, units may not be the only additional meta-
information. For example, data values can be related to measurements carried out at
a specific temperature. Overall, the need for a flexible property system arises, which
should not only reside in the run-time domain, but also be orthogonal to the data
structure. In this context, orthogonality refers to exchanging the data structure without
influencing the attached meta-information. Such an approach is highly versatile, as
it introduces exchangeability.

The continually growing demand for increased simulation performance introduces
the need to parallelize simulation tools. Ideally, the individual computations should
scale beyond a multi-core processor, namely to a distributed computing environment.
Typically, the Message Passing Interface (MPI) is utilized for communication within
a distributed environment. The data structure should support seamless integration
into such an MPI based environment, to ease the integration process. Therefore a
serialization approach for the data structure should be available, which allows out-
of-the-box transmission by an MPI communication channel.

We present a revision of our previous work, introducing our approach for a flexible
dynamic data structure [5].

A Flexible Dynamic Data Structure for Scientific Computing 567

The data structure handles multiple dimensions, run-time generation, and supports
different underlying datatypes. Additionally, we support direct transmission capa-
bilities over MPI and an orthogonal and flexible coupling of meta-information with
the data structure. We achieve this by utilizing modern programming techniques, in
particular generic [6] and meta-programming [7], and the Boost Libraries [8]. We
show that our approach does not only provide a high degree of flexibility, but also
offers high-performance data access. Additionally, due to the heavy utilization of
libraries in conjunction with the application of modern programming techniques, the
required code base can be kept to a minimum. This fact significantly improves the
maintainability of our implementation.

This work is organized as follows: Sect. 2 puts the work into context. Section 3
introduces our approach in detail and Sect. 4 depicts performance results.

2 Related Work

This section provides a short overview of other approaches for data structure imple-
mentations, each being briefly discussed and differences to our work are outlined.

A flexible run-time data structure for multi-dimensional problems is provided
by Marray [9]. Marray is a C++ header-only library and publicly available under
the MIT License. The library provides not only the generation of multi-dimensional
arrays during run-time, but also views on sub-spaces of the generated data structures.
A C++98 compliant implementation is available as well as a C++11 version, which
utilizes, for example, the variadic template mechanism [10] to provide dimension
independent access to the data structure. Marray is a feature-rich library supporting
the dynamic generation of arrays of arbitrary dimension. However, our performance
evaluations depict that our approach offers a significantly increased access perfor-
mance (Sect. 4).

Several multi-dimensional array libraries are available for the case of fixed
dimensions during run-time. For example, the Boost MultiArray Library [11] and
the Blitz++ Library [12] provide the generation of multi-dimensional arrays during
compile-time. Additionally, views are provided to access a specific subset of the gen-
erated data structures.Superior performance is obtained by these libraries due to the
use of static array dimensions for compile-time optimizations, yet they lack the ability
to change the storage layout during run-time. This fact renders these approaches unfit
for pure run-time problems,as it would require to instantiate the types for all possible
dimensions, which is obviously not realizable within a finite time frame.

However, implementing even the most likely cases not only increases the com-
pilation time as well as the executable size, but is also highly inflexible, as adding
additional dimensions requires source code extensions and therefore recompilation.

568 J. Weinbub et al.

Fig. 1 Our approach is based on a polymorphic datatype which is used by the multi-dimensional
array data structure. Meta-information is orthogonally coupled with the data structure. The overall
approach is serializable,thus any object can be transmitted over an MPI communication channel

3 Our Approach

Our approach focuses on several key-aspects, being:

1. A Polymorphic Datatype
2. Data Structure Generalization
3. Attaching Meta-Information
4. Serialization.

Figure 1 depicts an overview of our approach. First, a polymorphic data-type
supporting different datatypes during run-time is introduced. Note that polymorphy
denotes the ability to represent different datatypes. Second, the polymorphic entries
are embedded in a multi-dimensional run-time array data structure. Third, run-time
meta-information is attached to the data structure. Fourth, our implementation is
serialized to enable convenient transfer by the MPI. Throughout this section we
discuss each of these aspects in detail and provide our implementation approach.

3.1 A Polymorphic Datatype

One of the core aspects of our approach is the ability to support different datatypes
during run-time. The challenge is to provide one datatype which can in fact hold
several different types. This is a peculiar task for statically typed languages, like
C++, as the type system only allows to assign objects of the same or convertible
type. If the types are not the same, cast operations have to be performed. However,
applying casts can result in information loss, for example, when a datatype of higher
precision, like double, is transformed to a datatype with lower precision, like
float.

We utilize the Boost Variant Library (BVL) [13] for supporting different datatypes
during run-time. Informally, a BVL datatype can be seen as an enum for datatypes. A
set of possible, supported datatypes has to be provided during compile-time. During
run-time, the instantiated BVL object can be associated with any of these datatypes.

We identify four different categories of datatypes, which are listed in the following:

A Flexible Dynamic Data Structure for Scientific Computing 569

• signed integer
• unsigned integer
• floating-point
• string.

A meta-function for the generation of the polymorphic datatype based on the intro-
duced four categories is provided. A meta-function is a class or a class template which
provides a nested type typedef [14]. In the following, this mechanism is introduced
in detail. First, the set of supported types is generated by utilizing an associative het-
erogeneous container provided by the Boost Fusion Library (BFL) [15], as depicted
in the following.

1 typedef make_map <
2 Signed , UnSigned , Float , String ,
3 int , unsigned int , double , string
4 >::type Types;

The make_map meta-function is utilized to generate an associative BFL container
(Lines 1–4). Note that the tags in Line 2 represent the individual categories, and
the datatypes in Line 3 relate to the corresponding datatypes. Tags are typically
implemented by so-called empty structures, for example, struct Signed{};.
Generally, in our approach the datatypes can be set non-intrusively, meaning that the
underlying datatypes can be exchanged, thus significantly improving the applica-
bility and extendability of our approach. For example, instead of the floating-point
datatype, a multi-precision datatype provided by the GNU Multiple Precision Arith-
metic Library (GMP) [16] can be used, which would significantly improve the accu-
racy of subsequent floating-point operations.

In the following, the associative Types container is converted into a Boost
Metaprogramming Library (MPL) [14] vector container by the following meta-
function.

1 typedef generate_typeset <Types >:: type TypeSet;

This step is necessary, as the subsequent step of utilizing the BVL is eased, when
the supported datatypes are available as an MPL sequence. A default implementation
is available, which allows convenient generation of this typeset and only relies on
built-in datatypes as shown in the following.

1 typedef generate_typeset <>::type TypeSet;

The typeset is then used to generate the actual polymorphic datatype based on
the BVL. Again a meta-function is used to generate the polymorphic datatype as
depicted in the following.

1 typedef generate_polyvalue <
2 TypeSet >:: type PolyValue;

Internally, the BVL make_variant_over meta-function is utilized to gener-
ate the actual polymorphic datatype.

570 J. Weinbub et al.

Finally, due to the BVL, it is possible to provide a generic way to support different
datatypes during run-time:

1 PolyValue signed_integer =
2 value_at_key <Types , Signed >:: type (4);
3 PolyValue floating_point =
4 value_at_key <Types , Float >:: type (4.0);

A type-safe approach for a signed integer and a floating-point datatype instantia-
tion is implemented by using the BFL meta-function for key-based element access
(value_at_key). Type safety is accomplished in this case, by accessing the actual
type in the previously provided Types container.

3.2 Data Structure Generalization

Based on the previously introduced polymorphic datatype the actual array data struc-
ture can be implemented. The implementation has two goals: First, multiple dimen-
sionality should be supported during run-time. Second, the data access should be
as fast as possible. In this work we do not focus on advanced functionality, as, for
example, provided by the Marray library. Instead, we aim for a straightforward data
structure, coordinate-based access, and a high-performance implementation.

The following code snippet outlines the creation of a two-dimensional data struc-
ture, where the first and second dimension holds three and four elements, respectively.

1 typedef MultiArray <PolyValue > MultiArrayT;
2 MultiArrayT :: dimensions_type dim;
3 dim.push_back (3);
4 dim.push_back (4);
5 MultiArrayT multiarray(dim);

The MultiArray implementation can be configured to hold arbitrary value types.
In this case, the previously introduced polymorphic value type based on the BVL
is used (Line 1). The dimensions are formulated by utilizing a Standard Template
Library (STL) vector container [17], where the type is accessed by the member-
typedimensions_type (Line 2). Each element of the dimensions container holds
the number of elements of the respective dimension (Lines 3–4). The number of
dimensions is therefore inherently provided by the size of the container. A MultiArray
object is instantiated with the dimension configuration (Line 5). Internally, an STL
vector container, which represents a linear memory block, is used. Data Structures
of arbitrary dimensionality are mapped on this linear container, as depicted in Fig. 2
for the two-dimensional case. The individual columns of the respective domains
are stored consecutively. This approach minimizes the allocation time, as only one
memory allocation step is necessary. However, a linear storage approach requires
index handling to map the coordinate index-tuple on the corresponding position
within the linear data structure. This is the performance critical part, as the data
access implementation is likely to be called on a regular basis.

A Flexible Dynamic Data Structure for Scientific Computing 571

Fig. 2 A two-dimensional array is mapped on our internal, one-dimensional data structure

The central challenge of providing coordinate index access is the handling of
data structures of arbitrary dimension, as the number of access-indices corresponds
to the number of dimensions.Typically, the elements of a two dimensional array
are accessed in coordinates, like array(i,j). From the software development
point of view, the challenge is to implement an access mechanism which is both
high-performing and can be used for arbitrary dimensionality.

Several approaches for the access implementation and the related index compu-
tation have been investigated. One approach is based on so-called variadic func-
tions provided by the C programming language [18]. The primary drawback of this
approach is the fact that the number of indices has to be provided explicitly. In addi-
tion, this approach is not type-safe, as it is based on macros. Another approach is
based on utilizing an STL vector for the index container. The number of indices
can easily vary during run-time. However, this approach suffers due to run-time over-
head for the creation and the traversal of the index-vector for each data access. In
the end, a BFL vector sequence is utilized, which offers superior performance due
to the fact that the sequence is a compile-time container. The run-time generation
is performed by a generation function provided by the BFL, like depicted in the
following.

1 multiarray(make_vector (2,3)) = Numeric (3.5);

Note that the BFL generation function make_vector is utilized to generate
the compile-time index container in-place.This can be considered a drawback with
respect to usability, as it requires additional coding. However, convenience special-
izations can be implemented to hide the vector generation step from the user. Due
to restrictions of the C++98/03 standard, these specializations can only be provided
for a finite set of dimensions, thus such an approach cannot be considered truly
multi-dimensional. Internally, the BFL make_vector function relies on a macro,
for the generation of arbitrary dimensional compile-time data structures. However,
we consider this to be an excellent compromise, at least until the C++11 standard
is broadly available. This standard introduces the aforementioned variadic template
mechanism, which is also applied by Marray in its C++11 extension. Our inves-
tigations revealed, that with variadic templates the same performance as with our
current approach can be achieved but simultaneously the required access interface
(multiarray(2,3)) for arbitrary dimensions can be realized.

572 J. Weinbub et al.

Our high-performance index computation is implemented based on the BFL algo-
rithms which allow partial compile-time computation, as depicted in the following.

1 template <typename IndexSequ >
2 Element & operator ()(IndexSequ const & indices) {
3 return container[
4 accumulate(pop_front(indices),at_c <0>(indices),
5 make_index <dimensions_type >(dimensions)
6)]; }

Lines 4–5 compute the actual index, which is then used to access the element
in the linear container in Line 3. The index computation is based on various BFL
mechanisms, like, accumulate. For example, for a two-dimensional problem, the
index is evaluated as follows: i = I0 + I1 · D0, where I0 and I1 refer to the first
and second index, respectively. D0 relates to the number of elements in the first
dimension. This procedure can be extended to arbitrary dimensionality.

The introduced data structure generalization approach can also be applied for the
tensor-valued elements. Therefore, a two-level hierarchy of the proposed MultiArray
data structure supports tensor datasets of arbitrary dimension and varying datatypes.

3.3 Attaching Meta-Information

Scientific computations do not merely process values, but physical quantities. This
is a subtle difference, as the former indicate simple values, like, a double, but the
latter associates the respective value with a unit, promoting the value to a physical
quantity. This is rather important, as scientific computations should not just imply
a unit system, they should enforce it to eliminate unit-related errors [4]. Keeping in
mind that units might not be the only additional property which can be associated
with a dataset, a flexible approach is required to associate additional meta-information
with the data structure.

Another important aspect, however, is to ensure extendability and exchangeabil-
ity. As such, the approach has to support the exchange of the data structure as well
as the meta-information package. For example, it should be possible to exchange
our data structure with the Marray implementation [9], without changing the associ-
ated meta-information package. Such an approach is considered orthogonal, as the
exchange of one part does not influence the behavior of another part. Obviously, the
implementation of the meta-information package has to be non-intrusive with respect
to the data structure. More concretely, the package should not be placed inside the
data structure class, but externally associated with it.

We implement an approach for storing arbitrary meta-information during run-
time, which is straightforwardly based on the STL map container.

1 typedef map <string , string > MetaInformation;
2 MetaInformation minfo;
3 minfo["unit"] = "kg";

A Flexible Dynamic Data Structure for Scientific Computing 573

This approach is very flexible, as arbitrary properties can be added. Most impor-
tantly, though, the implementation effort is kept to a minimum, as already available
functionality is utilized.

Finally, the data structure and the meta-information is coupled by the associative
container of the BFL.

1 typedef make_map <
2 data , metainf ,
3 MultiArrayT , MetaInformation
4 > QuantityDataset;

Note the orthogonal and extendable association of the data with additional proper-
ties. Orthogonality can be identified when, for example, exchangingMultiArrayT
with the corresponding Marray datatype, which neither has an impact on the associ-
ated meta-information package MetaInformation nor on the overall handling of
the QuantityDataset. Extendability refers to the fact, that, by adding additional
tags, further data can be associated with the dataset.

If the availability of a unit should be enforced, then the unit information should
be moved from the minfo container to the QuantityDataset.

By utilizing a new tag and a string value, a QuantityDataset expects the unit
information, like depicted in the following.

1 typedef make_map <
2 data , metainf , unit ,
3 MultiArrayT , MetaInformation , string
4 > QuantityDataset;
5 QuantityDataset quantity_dataset = make_map <
6 data ,metainf ,unit >(multiarray ,minfo ,"kg");

This also outlines the flexibility of our approach, as different setups of the
QuantityDataset can be enforced.

Our approach presumes that the unit applies to the complete dataset. In case
heterogeneous units should be supported, an additional layer has to be introduced
assigning a unit to a specific value.

3.4 Serialization

Serialization refers to the process of storing and retrieving the elements of a data
structure. Typically, input/output mechanisms utilize serialization processes, as, for
example, a matrix is written to a file. This is usually performed by implementing ded-
icated file writer functions. However, a major disadvantage is, that for each new file
format a new writer has to be implemented. One approach to ease the burden of serial-
ization is to introduce an additional layer, which provides a common ground between
the data structure and the target storage format. Thus, it is possible to implement the
serialization mechanism for a data structure once, and then access the already avail-
able functionality based on the additional layer. However, serialization cannot only

574 J. Weinbub et al.

be used for file input/output processes, but also for MPI communication [19]. For
this purpose we utilize the Boost Serialization Library (BSL) [20], which provides a
serialization facility for arbitrary data structures. Based on our previously introduced
quantity dataset, serialization extensions have been implemented.In the following,
Process 0 transmits an available quantity dataset to Process 1.

1 if (world.rank() == 0) {
2 for_each(quantity_dataset , send(comm , 1));
3 }

Process 1 receives the quantity dataset from Process 0:

1 if (world.rank() == 1) {
2 QuantityDataset quantity_dataset;
3 for_each(quantity_dataset , recv(comm , 0));
4 }

Note that the unary auxiliary functor send/recv gets an element of the quantity
dataset, being a BFL pair data structure, and sends/receives the data element of the
respective pair.

The BFL for_each algorithm is utilized to traverse the elements of the quantity
dataset. Finally note, that additional convenience levels can be implemented to further
wrap code away from the user. For example, a generic serialization implementation
can be provided, which is capable of handling arbitrary BFL data structures.

4 Performance

This section presents performance results for our data structure, especially our BFL
based index computation approach. The tests have been carried out on an AMD
Phenom II X4 965 with 8 GB of memory running a 64-Bit Linux distribution.The
GNU GCC compiler in version 4.4.5 has been used with the flags -O2 -DNDEBUG.
Benchmarks have been averaged over five runs to reduce noise. The element access
performance for various problem sizes and different array dimensions is depicted,
based on storing double values. The reference implementation is based on a hier-
archy of STL vectors, as no index computation is required for the element access
procedure. Additionally, we compare our approach with the already mentioned, pub-
licly available Marray library [9]. Furthermore, we investigate the influence of opti-
mal and non-optimal traversal, identified with OPT and NOPT, respectively. In the
optimal case, the element access is as sequential as possible, meaning that the ele-
ments are accessed in the same consecutive manner as they are stored in the mem-
ory. Sequential access is favored by the so-called prefetching mechanism [21]. We
investigate the non-optimal case, by exchanging the traversal loops for the two- and
three-dimensional problems.

Figure 3 depicts the results for a one-dimensional array. Our approach is equally
fast as the reference implementation, and takes around 0.15 s for writing data on

A Flexible Dynamic Data Structure for Scientific Computing 575

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100000 1e+06 1e+07 1e+08

E
xe

c-
T

im
e

[s
]

Elements

1D Datastructure Performance
Reference

Our Approach
Marray

Fig. 3 A one-dimensional array structure is benchmarked. Our approach is equally fast than the
reference implementation, whereas Marray is a factor of 2.9 slower

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100000 1e+06 1e+07 1e+08

E
xe

c-
T

im
e

[s
]

Elements

2D Datastructure Performance
Reference OPT

Our Approach OPT
Marray OPT

Reference NOPT
Our Approach NOPT

Marray NOPT

Fig. 4 A two-dimensional array structure is benchmarked. OPT and NOPT refers to optimal and
non-optimal traversal, respectively. For 108 elements, our approach and Marray is a factor of 1.6
and 6.8, respectively, slower than the reference implementation. All approaches are equally slower
in the non-optimized case, namely around 3.3 s for 108 elements

all 108 elements. The Marray implementation is about a factor of 2.9 slower.The
two-dimensional results are depicted in Fig. 4. For 108 elements and the optimal
traversal case our approach is again equally fast as the reference implementation,
whereas Marray is a factor of 7 slower. In the non-optimal case, all implementations
are significantly slower, and take approximately equally long (around 3.3 s for 108

elements). Figure 5 shows the results for a three-dimensional problem. Our optimal
traversal implementation is a factor of 1.5 faster than the reference. For 108 elements
Marray is a factor of 9.9 slower than our approach. As expected, the non-optimized
traversal implementations are significantly slower, for instance, our optimal traversal
approach is a factor of 48 faster than the non-optimized one.

576 J. Weinbub et al.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100000 1e+06 1e+07 1e+08

E
xe

c-
T

im
e

[s
]

Elements

3D Datastructure Performance
Reference OPT

Our Approach OPT
Marray OPT

Reference NOPT
Our Approach NOPT

Marray NOPT

Fig. 5 A three-dimensional array structure is benchmarked. OPT and NOPT refers to optimal and
non-optimal traversal, respectively. For 108 elements, our approach and Marray is a factor of 1.4
and 6.5, respectively, slower than the reference implementation. Non-optimal traversal significantly
reduces the performance for all implementations

Execution times of our implementation for all presented dimensions are approx-
imately equal, which is not only due to the utilization of a linear storage but also
due to the compile-time based index evaluation algorithm. This fact underlines the
applicability for high-dimensional data storage applications.

5 Conclusion

We have introduced a flexible, multi-dimensional run-time data structure. Our
approach offers high extendability and can be applied in MPI based computing
environments. The presented performance results depict that our access mechanism
offers excellent performance for different dimensions and problem-sizes. The draw-
back of additional coding at the user-level access code will be rendered obsolete
with the availability of variadic templates provided by the C++11 standard. Finally,
our approach offers a small code base, as only around 100 code lines are required to
implement the introduced functionality.

Acknowledgments This work has been supported by the European Research Council through
the grant #247056 MOSILSPIN. Karl Rupp acknowledges support by the Austrian Science Fund
(FWF), grant P23598.

A Flexible Dynamic Data Structure for Scientific Computing 577

References

1. Meyer Carl D (2001) Matrix analysis and applied linear algebra. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, USA

2. Nemat-Nasser S (2004) Plasticity. Cambridge University Press
3. Alexandrescu A (2001) Modern C++ Design. Addison-Wesley Professional, Boston, USA
4. Stroustrup B (2012) Software development for infrastructure. Computer 45(1):47–58
5. Weinbub J, Rupp K, Selberherr S (2012) A generic multi-dimensional run-time data structure for

high-performance scientific computing. In lecture notes in engineering and computer science:
proceedings of the world congress on engineering (2012) WCE 2012 U.K , London, pp 1076–
1081

6. Reis GD et al (2005) What is Generic Programming? In: Proceedings of the first international
workshop on library-centric software design (LCSD), OOPSLA 2005, San Diego, CA, USA,
pp 1–10

7. Abrahams D, Gurtovoy A (2004) C++ Template Metaprogramming. Addison-Wesley Profes-
sional, Boston, USA

8. Boost (2012) The Boost C++ Libraries.http://www.boost.org/
9. Andres B, Köthe U, Kröger T, Hamprecht FA (2010) Runtime-Flexible Multi-dimensional

Arrays and Views for C++98 and C++0x. ArXiv e-prints, Technical Report.http://www.andres.
sc/marray.html

10. Gregor D, Järvi J, Maurer J, Merrill J (2007) Proposed wording for variadic templates. Technical
Report N2152=07-0012, ANSI/ISO C++ Standard Committee

11. Garcia R, Lumsdaine A (2005) MultiArray: A C++ library for generic programming with
arrays. Softw Pract Exper 35(2):159–188

12. Veldhuizen TL (1998) Arrays in Blitz++. In: Proceedings of the second international sympo-
sium on computing in object-oriented parallel environments (ISCOPE), Santa Fe, NM, USA,
pp 223–230

13. Friedmann E, Maman I (2012) The boost variant library.http://www.boost.org/libs/variant/
14. Gurtovoy A (2012) The boost metaprogramming library.http://www.boost.org/libs/mpl/
15. Guzman J, Marsden D, Schwinger T (2012) The boost fusion library.http://www.boost.org/

libs/fusion/
16. GNU (2012) GNU Multiple precision arithmetic library (GMP).http://gmplib.org/
17. Stroustrup B (2000) The C++ programming language. Addison-Wesley, Boston, USA
18. Banahan M, Brady D, Doran M (1991) The C book. Addison Wesley, Boston, USA
19. Gregor D, Troyer M (2012) The boost MPI library.http://www.boost.org/libs/mpi/
20. Ramey R (2012) The boost serialization library.http://www.boost.org/libs/serialization/
21. Drepper U (2007) What every programmer should know about memory. Linux Weekly News

http://www.boost.org/
http://www.andres.sc/marray.html
http://www.andres.sc/marray.html
http://www.boost.org/libs/variant/
http://www.boost.org/libs/mpl/
http://www.boost.org/libs/fusion/
http://www.boost.org/libs/fusion/
http://gmplib.org/
http://www.boost.org/libs/mpi/
http://www.boost.org/libs/serialization/

	43 A Flexible Dynamic Data Structure for Scientific Computing
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 A Polymorphic Datatype
	3.2 Data Structure Generalization
	3.3 Attaching Meta-Information
	3.4 Serialization

	4 Performance
	5 Conclusion
	References

