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Properties of semiconductors provided by the
spin are of broad interest, because they have a
potential for future spin-based microelectronic de-
vices. Silicon is the main element of modern charge-
based electronics. Understanding the details of
the spin propagation in silicon structures is key
for novel spin-based device application. However,
large experimentally observed spin relaxation in
electrically-gated lateral-channel silicon structures
might become an obstacle for realizing spin driven
devices [1], and a deeper understanding of funda-
mental spin relaxation mechanisms in silicon is ur-
gently needed [3].

We investigate the surface roughness induced
electron spin relaxation and the valley splitting in
square silicon wells. To accurately describe the
band structure in the presence of the intrinsic spin-
orbit interaction a k · p Hamiltonian has been gen-
eralized to include the spin degree of freedom. The
Hamiltonian is written in the vicinity of the X
point along the kz axis in the Brillouin zone. The
spin-orbit term τy⊗(kxσx−kyσy) couples the states
with the opposite spin projections from the oppo-
site valleys [2].

We solve the Hamiltonian numerically assuming
that the spin is injected along the X-axis. In the
presence of confinement the four-fold degeneracy of
the lowest subband is partly lifted, however, the de-
generacy of the eigenstates with the opposite spin
projections, ⇑〉 and ⇓〉, is preserved. The degen-
erate states are chosen to satisfy 〈⇑ |σx| ⇓〉 = 0.
Shear strain makes the kz band dispersion non-
parabolic which leads to the energy splitting δE
between the otherwise degenerate unprimed sub-
bands.

Fig. 1 demonstrates the valley splitting as a func-
tion of the angle between the incident and the re-
flected wave. The shear strain lifts the degeneracy
and makes the dependence on the angle less pro-
nounced.

The spin relaxation matrix element mixing the
up- and down-spin states from the two opposite val-
leys is shown in Fig. 2. In the absence of strain a
sharp increase in the value of the matrix element at
the angles ±π/2 is observed. The position of these
peaks correlates with the minimum of the valley
splitting. While shear strain is increased the de-
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Figure 1: Dependence of the valley splitting on the

angle between the incident and the reflected wave

vector for different values of the shear strain.
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Figure 2: The relaxation matrix element for differ-

ent values of the shear strain.

pendence of the relaxation matrix element on the
angle becomes smoother. Importantly, the value
of the spin relaxation matrix element is rapidly re-
duced with strain. Thus, applying uniaxial [110]
stress suppresses spin relaxation and can be used
to boost both mobility and the spin lifetime.
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