é Highly Productive Application Development
with ViennaCL for Accelerators

Argonne

=/iennaCL

K. Rupp!, J. Weinbub?, and F. Rudolf?

LABORATORY

! Mathematics and Computer Science Division, Argonne National Laboratory
2 |nstitute for Microelectronics, Technische Universitit Wien
rupp@mcs.anl.gov, {weinbub|rudolf}®@iue.tuwien.ac.at

http:/ /viennacl.sourceforge.net/

B

IuE

Pttt

HEH
ARRARARRAA

Motivation

e Common linear algebra operations appear naturally in geophysics.
e Both dense linear algebra and sparse linear algebra operations required.

e |arge sparse linear equation systems are solved by iterative methods, which
require preconditioners to obtain good convergence rates.

e Novel computing hardware is no longer single-threaded, but requires fine-
grained parallelism in order to be used efficiently.

e Various programming models for parallelism: MPI, OpenMP, OpenCL,
CUDA, etc.

e Library-centric software development required in order to cope with the
increased programming complexity.

About ViennaCL

e Scientific computing library written in C++ (header-only).

e Multiple computing backends: Host-based, OpenCL, and CUDA.
e High-level programming interface, compatible with Boost.uBLAS.
e Focus on iterative solvers: CG, BiCGStab, GMRES.

e Various preconditioners: Jacobi, ICHOL, ILUO, ILUT, AMG, SPAI.
e BLAS level 1, 2, and 3 operations for dense linear algebra.

e MIT (X11) free open-source license.

API ViennaCL Core

Backend

Host-based

Code Example

e With Boost.uBLAS: High-level code with syntactic sugar. Single-threaded.

using namespace boost::numeric::ublas;

1
2
8
4+ matrix<double> A(1000, 1000);

5 vector <double> x(1000), y(1000);
6

7

8

9

/* Fill A, x, y here */
double val = inner_prod(x, y);
0y += 2.0 *x x;

u A += val * outer_prod(x, y);

13 // Upper triangular solver: Ax = y
1 x = solve(A, y, upper_tag());

e With ViennaCL: Only a change of namespaces required. GPU-accelerated.

1 using namespace viennacl;

2 using namespace viennacl::linalg;
3

matrix<double> A(1000, 1000);
vector<double> x(1000), y(1000);

/* Fill A, x, y here */

© ®© N o a &

double val = inner_prod(x, y);

0y += 2.0 *x x;

n A += val * outer_prod(x, y);

12

13 // Upper triangular solver: Ax = y
1 x = solve(A, y, upper_tag());

15

16 std::cout << " 2-norm: " << norm_2(x) << std::endl; 16 std::cout << " 2-norm: " << norm_2(x) << std::endl;
17 std::cout << "sup-norm: " << norm_inf (x) << std::endl; 17 std::cout << "sup-norm: " << norm_inf (x) << std::endl;
Benchmark Results Acknowledgments

Out-of-the-box performance gain of high-level implementation by up to a
factor three over LAPACK for QR factorizations.

Up to 500 GFLOPs for single-precision matrix-matrix-multiplications on
NVIDIA GTX 580.

Up to ten-fold performance gain for iterative solvers.

Memory-bandwidth is the limiting factor for iterative solvers.

"

10° F ]
—~ 1 1
8 10° F -
8 ]
P |
E 10° F =
'_ L
5 |
5 10t} -
(] o
(0]
102 k LAPACK Reference, Intel i7 960 —— 3
Boost.uBLAS, Intel i7 960 —a&—
e Vienna(IZL, NVIDIA GTX 580 —&—
10
10? 103 10*

Matrix Rows/Columns

Fig. 1: Comparison of execution times of QR factorizations.

e Hardware: NVIDIA for providing a Tesla 2050.

e Students: Google for providing students slots within the Google Summer
of Code 2011 and 2012.

e Funding: Austrian Science Fund; European Research Council; Department
of Energy ASCR SciDAC Project — Frameworks, Algorithms, and Scalable
Technologies (FASTMath).

=
o
o

=
S
5N

=
S
N

Execution Time (sec)
(=Y
S
w

j Intel Xeon X5550, CPU backend —¢—
. NVIDIA GTX 285, CUDA backend —— -3
; NVIDIA GTX 285, OpenCL backend —»—
AMD Ra}deon HD 797|0’ OpenCL bgckend —)&I

[any
S
IN

[any
S
()]

102 108 10* 10° 108
Matrix Rows/Columns

Fig. 2: Comparison of execution times for 50 CG iterations.

AGU Fall Meeting 2012

San Francisco, USA

December 3-7, 2012




