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In the context of quantum cascade (QC) structure design the analysis of (quasi-)bound states
and their corresponding energies is an important tool. The analysis is done by numerically
solving the Schrödinger equation based on an effective k ·p Hamiltonian. The common mate-
rials used for QC structures in infra-red applications (AlGaAs, InGaSb, . . . ) can be described
by an eight band Hamiltonian, which for layered structures reduces to three bands for k‖ ≈ 0
approximation. The three bands can further be approximated by two bands, if one is interested
in the conduction band only[1].

The problem with this kind of Hamiltonian is that it contains terms only up to first order in
momentum, pz. A discretization scheme based on central differences fails to give any results
for this coupled first-order problem. A one-sided differencing scheme was already proposed by
Stier et al.[2]. The method is numerically stable and preserves the Hermiticity of the Hamilto-
nian, but requires a fine spatial grid and can give significant deviations at domain boundaries
and interfaces where material properties change abruptly.

It can be shown that the Schrödinger equation containing the effective Hamiltonian is struc-
turally similar to the Dirac equation known from relativistic quantum mechanics. This similar-
ity is also responsible for peculiarities found in the wavefunctions (cusps at heterointerfaces,
non-zero values at boundaries)[3]. The Dirac equation is the “square root” of the Klein-Gordon
equation, which is of second order. Our approach exploits this property and uses a similarity
transform on the Hamiltonian. The similarity transform ensures that the Hamiltonian’s spec-
trum (i.e. its eigenvalues) is preserved. It converts the first-order terms to zeroth and second
order, thereby eliminating the stability problem. This comes at the cost of losing the Hermitic-
ity of the Hamiltonian, which somewhat limits the choice of the eigenvalue solver but poses no
further problem. In fact, the approximate eigenstates of the untransformed Hamiltonian can be
extracted from the ones computed for the transformed one in a post-processing step.
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The usability of this method extends beyond the two-band Hamiltonian by Sirtori et al. The
same k ·p Hamiltonian structure can be also found in narrow-gap materials such as lead-salts[4]
and graphene[5]. Numerical results for example QC structures will be discussed.
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