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Abstract—A new theoretical approach for the determination of
the electric field distribution in the ferroelectric/dielectric system
with the presence of the SPM tip is presented. For the analytical
solution of the problem some simplifications are introduced
(initial model statement has only a numerical solution). Namely,
the smallness of the domain wall thickness in the comparison
with a domain size and high value of the ferroelectric dielectric
permittivity are used. The developed approach allows us to obtain
explicit formulas for the polarization and electric field intensity.
The calculation and analysis of the tip capacitance as a function of
the distance from the ferroelectric interface demonstrate that the
presence of charges at the domain wall results in the difference
in obtained values of 30% in comparison with the widely used
dielectric model [1].

Index Terms—ferroelectric domain, domain wall, dead layer,
electrostatic field, SPM tip.

I. INTRODUCTION

The employment of the ferroelectric domain structures in
memory and optical devices requires to calculate accurate
electric field distribution. In literature it is possible to find
a number of papers focused on the solution of this problem
[2]-[4]. However, there is no explicit formulas describing a
full physical picture. At the present moment, the most widely
used approach for the Scanning Probe Microscope (SPM) tip-
induced field is based on the consideration of the point source
at the interface of two dielectrics [5], [6]. Such a model obvi-
ously does not account for physical features of the ferroelectric
materials. For a proper description of the electric field distri-
bution it is necessary to take into consideration the following
factors: (i) non-spherical form of the tip, (ii) the presence
of a “dead” or passive layer at the ferroelectric/dielectric
interface, (iii) the presence of the domain wall, and finally
(iv) finite thickness of the ferroelectric layer and influence of
the substrate. The form of the domain is considered as semi-
ellipsoid [7]. In this work, we have investigated the impact
of the aforementioned factors on the modeling of the electric
field distribution. The pure electrostatic model is presented,
i.e. the influence of elastic stresses is not considered (in spite
of the necessity to examine this effect as was reported in [2]—
[5]) The model generalization accounting for the piezoelectric
effect will be published soon.
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II. THE APPROACH

The theoretical description of the electric field distribution
in the transition layer (to which domain wall and “dead” layers
can be related) is quite complicated and no known complete
solution exists. It is worth mentioned that the additional
complexity arises due to the absence of any established theory
of charge distribution in this kind of layers. For a solution of
this problem we introduce approximate boundary conditions.
The main quantities describing the electric field are electric
potential U, electric field intensity E = VU , polarization
P and electric displacement D= EQE + ]3, where ¢q is the
vacuum permittivity.

A. One-dimensional case

As a starting point, let us consider the simplest one-
dimensional problem (i.e. we deal with scalar quantities).
Assume that the transition layer lies in the interval [—1/2,1/2].
For any dependence between the polarization and the electric
field intensity the last one should follow Poisson’s equation

dE(z) 7dP(z) ol2), 0

T T dz
where p(z) is the unknown volume charge charge density
(p(z) = 0 outside the layer). After integration of both sides
of (1) over z in the range from —I/2 to /2 we can write

€O(E+ — E,) = 0.
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Here and below indexes + and - relate to corresponding
quantities specified at z = £[/2. It is worth mentioned that in
(2) a transition from the volume charge density to an effective
surface charge density o is performed
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o= / p(z)zdz + P_ — Py. 3)
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At the same time, if we preliminary multiply (1) by 2z and
then integrate over the transition layer, it is possible to derive
following expression for the potential

eo(U(+0) = U(-0)) =, 4

where
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Fig. 1.  Schematic representation of the SPM tip/dead layer/ferroelectric

film/substrate or/ bottom electrode configuration. The arrows inside the
structure indicate the spontaneous polarization directions.

The boundary conditions (2-5) are precisely defined and al-
low significantly simplify the mathematical problem statement.
That is, instead of finding the unknown functions P(z) and
p(z) we suggest to define two phenomenological constants —
the effective surface charge density o and the potential shift
7. The potentials obtained by means of P(z),p(z) and o,7
are identical with a proper choice of these constants. In other
words, application of the boundary conditions (2-5) do not
result in the sacrifice of accuracy.

B. Account of the high dielectric constant of ferroelectrics

Having obtained information about the general structure
of the considered layer boundary conditions, we pass to
the description of the system dielectric/ferroelectric with the
interface at z = 0 (see Fig. 1). As an example of the model
applicability, the tip end is represented by a sphere with radius
ro. The dielectric film of thickness H having an underlying
conducting substrate. The tip end is away from the ferroelectric
interface by the distance h. Quantities related to dielectric and
ferroelectric have index d and f, respectively. In this notation
the boundary conditions at z = 0 can be written as

Us(r, z)|z=0 = Ua(r, 2)| =0,

OUs(r, z) AU4(r, 2) (6)
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We introduce a small parameter s = £4/c. For conven-
tional ferroelectric materials this parameter varies in the range
of 1074+1072 [8]. According to [9] the electric field potential

can be expressed by the following power series over s

Usgay(r, 2) = Z Utgay,i(r, 2)s'. @)
i=0

The substitution of (7) in (6) and equalization of the coef-
ficients with the same power of s leads to the system of
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Fig. 2. The dependence of the dimensionless coordinate on the ratio between
the electric field absolute value obtained with the precise boundary conditions
(6) |E| and that defined by the developed approach |FEs|. The calculation is
performed for z = rq /2. Inset: the relative difference between obtained results
using a new approach and dielectric model [1] in the case of the ferroelectric
spontaneous polarization vector pointing up.

equation. From this system, we can define Upy = 0 and
boundary conditions for the first nonzero terms of the series

6Uf,1(7',2) . 8Ud0
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Ua,o(7, 2)|2=0,
z=0

From (8) follows that for small s the electric field distributions
in the dielectric and ferroelectric can be considered indepen-
dently from each other. This fact significantly simplifies the
calculations. To be more precisely, from the first of conditions
(8) the electric field in the dielectric is found. Further, the
electric field in the ferroelectric film is defined by using the
known value of the electric field intensity at the interface.
The comparison of the electric field absolute value for precise
model |E| (i.e. based on (6)) and that obtained by the
suggested scheme | E| is demonstrated in Fig. 2. One can see
a perfect agreement between the aforementioned approaches,
i.e. precise model can be reproduced by the simplified theory
with enough accuracy.

C. Mathematical statement of the problem

The described simplifications allow us to formulate the
statement of the problem for electric field distribution deter-
mination in the system depicted in Fig. 1. The dielectric and
ferroelctric potentials should obey Laplace equation

AUs(r,z) =0, AUq4(r,z) =0, )

and the boundary conditions
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Here T is the tip surface area, V' the tip-surface potential, W
the domain wall, and n normal to WW. Symbols [A]w mean
discontinuity of a quantity A while approaching W by normal
from different sides [10]. Effective surface charge density at
the dielectric/ferroelctric interface i, (1) as well as for the
“dead” layer op(r) can be defined by (3).

D. Solution of the problem

At first we consider the case when substrate is excluded
from a consideration, i.e. the ferroelectric layer is assumed
infinite. In this case the potential of the system can be written
as

1)

where Urrp is the potential contribution of the SPM tip, Uw

potential of domain wall, and Up dead layer contribution.
For a finding of the explicit expressions for potentials in

the case of the sphere-shape tip, let us introduce bispherical

coordinates («, 3) by the use of the chain of relations

csinh 8
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* cosh 3 — cos (12)

UBULK(Ta Z) =Urrp (T, Z) + Uw(’/’, Z) + UD(T, Z),
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where c is the scaling multiplier. In this notations the influence
of the SPM tip on dielectric and ferroelectric layers is
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(13)
where Vipn = V\/2(cosh[3 —cosa) and P, are Legendre’s
polynomials of n-th order [6], [9]. Ferroelectric/dielectric
interface z = 0 in bispherical-coordinate system is defined
as 8 = 0. The tip surface is determine by 5 = [y with

X

Py(cos ),

exp P, (cosa)

h
Bo = arcosh (—) , h=ccothfy, ro (14)

To - sinh [‘30.

It should be noted that the developed approach is applicable
for a hyperbolic-shape tip [10], but this is out of the scope
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Fig. 3. The dimensionless capacitance (rq is the SPM-tip radius) as a function
of the distance from the ferroelectric interface h. The signs of Cp (4}
correspond to the ferroelectric spontaneous polarization direction.

of this work. Corresponding contribution of the “dead” layer
potential in dielectric and ferroelectric is given by
o P
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where the coefficient p; depends on the direction of sponta-
neous polarization in ferroelectric layer and domain size.

Based on the derived expressions (13),(15) we undertook
a comparison of the SPM tip capacitance with and without
account of “dead” layer contribution (Upgq) to Upurk. The
calculation results are demonstrated in Fig. 3. Due to the
difference in obtained results of ~ 30% (see Fig. 2, inset) it is
become obvious that the account of the “dead” layer influence
on the total electric field of the system is extremely significant.

For the ferroelectric layer with a finite thickness using the
mirror-image method [6] we obtain

UroraL(r, z) = UsuLk(r, 2) + Z UpurLk(r, z — 4Hi)+
i=1
+ UBULK(n —2z — 4HZ) — UBULK(T, z+2H — 4Hi)—
— UpuLk(r,—z + 2H + 4H3i).
(16)

Equation (16) is much more simple than the one obtained in
[3]-[5] by employing the Fourier transformation.

In order to describe the domain wall induced field and the



electric field of hyperbolic-shape tip, the degenerate ellipsoidal
coordinate system is employed [6]. As an example of this coor-
dinate system application we consider only the determination
of electric field distribution induced by the hyperbolic-shape
SPM tip. The degenerate ellipsoidal coordinate system (&, 7)
for a prolate ellipsoid of rotation is given by

r =asinhésingn, 2z = acosh cosn, 17)

where a is the scaling multiplier. The surface of the tip is de-
fined by hyperboloid 7 = 71y. Parameter a has a sense of focal
distance of considered hyperboloid. After simple calculations
we obtain expression for the electric field distribution in the
dielectric medium
Ui—V Qo(n) '
Qo(mo)
Here Qo(n) is the zeroth-order Legendre function of the
second-kind. A thorough analysis of (13) and (18) allows us to
conclude that the potential of the hyperbolic-shape tip exceed
the sphere-shape tip potential for any point for any point of
the system being investigated (Fig. 1).

(18)

III. CONCLUSION

We have suggested a new approach for the determination
of the electric field distribution in the ferroelectric/dielectric
system with the presence of the SPM tip. The electric field
in the dielectric can be obtained assuming the absence of the
interface potential. Meanwhile, the distribution of the electric
field in the ferroelectric layer is possible to derive using the
normal component of the field intensity at the interface. The
calculation error of the described approach is O(eq4/e¢). On the
base of the proposed model we have made several important
conclusions. Namely, the contributions of the domain wall and
“dead” layer the total electric field of the system are significant
(~ 30%) and should be taken into consideration. The influence
of the substrate on the potential distribution is decreased as
~ 1/(2H)? with growing ferroelectric layer thickness. In other
words, by means of our model the position where the substrate
contribution is negligible can be defined.
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