
A Flexible Execution Framework

for High-Performance TCAD Applications

J. Weinbub∗, K. Rupp∗†, and S. Selberherr∗

∗Institute for Microelectronics, TU Wien, Gußhausstraße 27–29/E360, A-1040 Wien, Austria
† Institute for Analysis and Scientific Computing, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria

Email: {weinbub|rupp|selberherr}@iue.tuwien.ac.at

Abstract—We present our approach for a flexible execution
framework, ViennaX, in the field of Technology Computer Aided
Design (TCAD). Our modular concept enables not only the
decoupling of simulation tools, resulting in an increased level
of reusability, but also in a combination of various simulation
components for the specification of multiphysics simulation flows.
Such combinations allow for intricate simulation setups, as,
for example, the investigation of a physical phenomena can
be improved by coupling different simulators. We introduce
ViennaX to utilize and combine available simulation components
by a plugin approach. Plugin data dependencies can be defined,
which is the basis for the task execution based on a task graph
approach. We depict the versatility and the performance of our
approach, by discussing a typical application in the field of
TCAD.

I. INTRODUCTION

The field of TCAD is based on modeling various aspects of

semiconductor device fabrication and operation. A promising

approach to improve the quality of the modeling of physical

phenomena is to combine highly specialized simulation tools,

as is also common practice in other fields, like computational

fluid dynamics [1]. For example, a stochastic simulation might

be performed to compute the mobility of the carriers in a

complex device and materials arrangement accurately, which

is then used in a simpler transport model of a classical,

deterministic device simulator. In short, important tasks are

to couple simulations modeling relevant phenomena on a

different physical level, thus performing multiphysics com-

putations. To minimize the development effort for such appli-

cation scenarios, a flexible execution framework is required,

which enables the combination and utilization of already

available tools. In addition to the heterogeneous setting of

TCAD tools, the individual tasks become more and more

computationally intensive, as the complexity and/or accuracy

of the modeling of physical phenomena continually increases.

Furthermore, the field of TCAD offers several typical appli-

cation scenarios with coarse-level parallelism, for instance,

current/capacitance-voltage characteristics dependent on ran-

dom dopant simulations [2]. Such fields of application are of

high interest with respect to process variability, which has an

increasing influence on device characteristics due to scaling.

This fact introduces the need to distribute parallelizable simu-

lation tasks on different computing units, ultimately reducing

the overall computation time. Such an approach becomes more

and more important, due to the broad availability of multi-core

CPUs by simultaneously stagnating clock frequencies. Another

important aspect is to introduce a higher level of reusability

in the simulation tools. A conventional example is the im-

plementation of a deterministic simulator. Typically, such a

tool is composed of core parts, e.g., an initial guess module,

a Finite Element assembler, or a linear solver. A common

task is to exchange specific modules in order to investigate

alternative approaches provided by different tools. For exam-

ple, a different linear solver might yield improved convergence

behavior. This introduces the dire need for orthogonality in the

simulator’s code base, as switching of a module must not affect

other components by, for example, introducing an altered

interface which no longer fits to the remaining parts. Finally,

the field of TCAD offers a plethora of publicly available

simulation tools [3], [4]. However, only a small fraction of the

tools is available under a free open source license, also referred

to as free software [5]. This impedes the progress of research

in academia, as researchers are unable to access and extend

the code base of previously implemented software. In such

a case, simulation tools must eventually be re-implemented.

Clearly, this introduces additional development overhead with

a negative impact on the actual net research time. Therefore,

the field of semiconductor process and device simulation in

academia can greatly benefit from free open source soft-

ware packages. These facts have already been established

by various software developments, such as the Archimedes

project [5]. Other fields, such as computational fluid dynamics

(CFD), show that this concept works by providing multi-

purpose simulation frameworks, similar to the COOLFluiD

framework [6]. In this work we depict the applicability of

parallelized task execution for the field of TCAD, based on our

extendible component framework ViennaX [7]. The framework

is coded in the C++ programming language and relies on

already available functionality, such as the Boost libraries [8].

Additionally, the implementation of the framework utilizes

modern programming techniques, like generic programming

[9], to realize a maintainable and extendible implementation

by simultaneously upholding a small code base. As an example

we discuss a simple, yet representative application scenario,

being the generation of a set of current-voltage characteristics

in dependence on doping levels. We show the applicability of

our approach by utilizing an already available implementation

of a classical device simulation implementation. The genera-

tion of the characteristics is highly accelerated by parallelizing

the individual device simulations appropriately.

SISPAD 2012, September 5-7, 2012, Denver, CO, USA

SISPAD 2012 - http://www.sispad.org

400

ViennaX
Configuration

Assembler

Solver

Conventional
Simulator <plugins>

 <plugin>
 <id>0</id>
 <key>Assembler</key>
 </plugin>
 <plugin>
 <id>1</id>
 <key>Solver</key>
 </plugin>
</plugins>

ViennaX
Framework

Assembler

Solver

ViennaX
Plugins

Assembler

Solver

ViennaX
Task Graph

1.

2.

3.

4.

Fig. 1: The proposed decoupling of simulation tools is depicted

by utilizing ViennaX. Step 1: A conventional simulation tool is

described by a configuration file. Step 2: The configuration file

is loaded. Step 3: The required plugins are loaded, according

to the configuration data. Step 4: The task graph is generated

based on the dependencies, and ultimately executed. The

final simulation flow follows the initial one. However, the

modularity, hence the flexibility, is increased substantially, as

plugins can be easily exchanged.

II. RELATED WORK

The Intel Threading Building Blocks (Intel TBB) li-

brary [10] is a free open source library licensed under the

GPLv2. The library provides mechanisms to express paral-

lelism based on a shared-memory approach to C++ implemen-

tations. One of the core features is the so-called flow graph.

A flow graph can be used to send messages, representing

arbitrary data, between components. Our approach is similar to

the one of Intel’s TBB library. The primary difference, though,

is the fact, that the TBB library is based solely on a shared-

memory approach. Therefore, it does not scale beyond one

computing node.

The COOLFluiD project [1], [6] enables CFD-oriented

multiphysics simulations based on a component framework.

The core is a flexible plugin system, coupled with a data

communication layer based on so-called data sockets. Each

plugin can set up data sockets which are in turn used to

generate a dependence hierarchy. This dependence information

is used to drive the overall execution. The source code is

available under the LGPLv3 license. The significance of

the COOLFluiD framework with respect to our approach is

twofold. First, we adopted the plugin system, enabling us to

conveniently reuse already available functionality.

Second, the communication layer based on data sockets is the

basis for our implementation. However, our approach differs

significantly. COOLFluiD performs an automatic partitioning

and distribution of the data structures via the Message Passing

Interface (MPI), whereas we follow the approach, that distribu-

tion should be performed on the user’s intent within plugins,

not automatically. In contrast to COOLFluiD, our approach

enables a more general way to model processes, like the Intel

TBB library, which ultimately supports utilization in a much

broader field of scientific computing.

III. THE FRAMEWORK

We focus on the decoupling of simulation flows according

to their inherent functional blocks, as depicted in Fig. 1.

This modularization is implemented by utilizing our ViennaX

framework, which provides a plugin system, configuration

mechanisms, and execution schedulers. A serial and a parallel

MPI-based scheduler are available. While the serial scheduler

solely utilizes a single CPU core for executing tasks, the

parallel MPI-based scheduler distributes plugins to different

available cores, as long as the plugins can be executed con-

currently (Fig. 2). The plugin system is powered by a so-

called self-registering technique [11]. This plugin approach

introduces a high level of reusability by wrapping already

available functionality into components with a specific, unified

interface. The plugins can contain core parts of simulations,

such as a linear solver implementation, but also full-fledged

simulators in their own right. This approach is highly flexible;

for example, simulation tools may be combined to form

multiphysics simulation flows, but they may also be decom-

posed into smaller components, enabling specific exchanges

of functionality by switching the respective plugins.

PluginA PluginB

PluginC

PluginD

PluginA PluginB PluginC PluginDProcess 1

PluginA PluginC PluginDProcess 1

PluginBProcess 2

Fig. 2: The plugin execution is handled by the scheduler. If

the plugins are parallelizable and there are free processes, the

MPI-based scheduler distributes the task executions. Dots refer

to outgoing data dependencies, and circles to incoming.

Empty Plugin

ViennaCL::
Linear Solver

A b

x

Solve Ax=b

ViennaCL::
Linear Solver

Available
external Tool

Utilize external Tool
in Plugin

Use Linear Solver
Plugin

Trilinos::
Linear Solver

A b

x

Solve Ax=b

Interchangeable

Fig. 3: A plugin can be used to wrap available functionality.

Due to the abstraction mechanism provided by the socket

input/output dependencies, plugins can be exchanged by other

plugins.

401

Fig. 3 depicts the setup and exchange of a plugin. If the

process of interchanging plugins is compared to the one of

conventional simulation tools, it is clear that the conventional

approach would require actual coding, and as such requires in-

depth knowledge of the implementation at hand. For obvious

reasons, this fact impedes the implementation of changing

functionality. With our plugin-based approach, the exchange

can be realized conveniently, by adjusting the input configu-

ration data accordingly.

A core part of a task graph execution framework is the

communication layer. As already mentioned, we adopted the

data socket approach of the COOLFluiD project [6]. Essen-

tially, each plugin can define input and output data sockets,

called sink and source, respectively. These data sockets can

be used to send data to and from plugins. Sockets are defined

before the execution of the overall task graph, and can be

based on parameters provided by the input configuration data.

Fig. 4 depicts our approach for defining a plugin’s data

sockets. Arbitrary data types can be associated with each

data socket, which are additionally identified with a unique

identification string. The connection of the data sockets, which

relates to generating the underlying task graph, is carried

out automatically by the framework. The unique identification

string as well as the associated data type of each data socket is

used to automatically connect the corresponding counterparts.

To ascertain the validity of the input data, units of physical

quantities can be attached to the identification string of the

sockets. As the socket connection algorithm checks against

this information, sockets with data of different units cannot

be connected. This is an important aspect, as it automatically

catches one of the fundamental sources of error in scientific

computing.

PluginA PluginB

PluginC

PluginD

PluginCConfig

PluginC

Fig. 4: The data sockets of a plugin are created based on

the configuration during run-time. The sockets can be used to

exchange data with other plugins.

A typical simulation task is implementing optimization pro-

cesses. ViennaX enables this type of simulations by supporting

loops in the task graphs, as depicted in Fig. 5. This loop

mechanism can be used to, for example, implement automatic

mesh generation based on convergence to an optimal set of

parameters driven by a specific metric, such as the quality of

the generated mesh elements.

IV. REUSABILITY

One of the major tasks is to utilize already available func-

tionality in order to reduce the overall implementation time.

For simulation components, like linear solvers, this task is

typically straightforward, as the implementations are typically

PluginA

PluginB

PluginC

init

PluginD

temp

update

Loop-Exit Plugin

Loop-Entry Plugin

Fig. 5: An archetypal loop execution is depicted. PluginB and

PluginC handle the loop logic. The loop is only exited, if the

internal logic of the loop-exit plugin, PluginC in this case,

decides so.

provided by a library [12], [13], which provides an application

programming interface (API) and therefore can be directly

utilised from within an implementation, like a ViennaX plugin.

However, in the case of implementing a plugin wrapping

standalone simulation tools, the situation changes consider-

ably. The availability of an API destined to work for external

access cannot be expected, as the implementation of the sim-

ulation application does not require such a convenience layer.

In the field of TCAD, standalone simulation applications typ-

ically process an input configuration file used for driving the

overall simulation, for instance, the Archimedes project [5].

The implementation of the application can be typically directly

transferred to a ViennaX plugin. However, the challenge is

to handle the configuration of the simulator. A feasible, non-

intrusive approach is to implement an additional ViennaX

plugin which generates the configuration file based on certain

parameters for the external simulation plugin (Fig. 6). A

template configuration is stored as a string datatype, where

certain parameters are replaced to alter the configuration of

the simulation tool. We consider the overhead of generating

and processing the simulation file as negligible, as the process

has to be performed only once per execution and, above all,

the computationally expensive part is the actual simulation.

This approach depicts the versatility of our plugin system,

as available standalone simulation tools can be utilized with

a minimum of effort by simultaneously enabling to actively

adjust simulation parameters during the course of the overall

ViennaX execution.

Sim

Conventional ViennaX

ConfigFile

Sim

SimConfig

filename ConfigFile

Fig. 6: A standalone simulation application driven by an input

configuration file can be utilized by ViennaX by introducing

an additional plugin for generating the configuration file.

402

V. RESULTS

We depict the applicability of our approach for the field of

TCAD based on the simulation of current-voltage character-

istics of a two-dimensional pn-junction diode, however, any

other device can be handled in the same manner. The influ-

ence of different doping levels is investigated. An available

device simulation implementation is utilized by wrapping it

as a plugin. The plugin instances compute the current for a

specific voltage and forward it to a dedicated current-voltage

characteristics plugin, post-processing the results (Fig. 7).

DD DD DD

IV

Fig. 7: 200 instances of the Drift-Diffusion (DD) based classi-

cal device simulation plugin are used to compute the currents

for given contact voltages. The individual results are collected

by a current-voltage characteristics plugin (IV).

We evaluate the current for 200 contact voltage levels

for one doping setup, thus requiring 200 executions of the

device simulation plugin. ViennaX is able to parallelize these

plugins efficiently without any user interaction, as there are

no input dependencies. The simulations are carried out on

three quad-core consumer-level workstations running a 64-

Bit Linux and sharing a Gigabit network connection. Fig. 8

depicts the scaling behavior of the simulation setup. As the

communication is limited to a single data tuple for each device

simulation, there is no significant communication overhead,

thus linear scaling is achieved. Fig. 9 shows the current-voltage

characteristics for different doping levels. As can be seen from

our results, perfect scalability is achieved.

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 3 4 5 6 7 8 9 10 11

S
pe

ed
up

Cores

Scaling

Ideal
Our Approach

Fig. 8: The scaling behavior of the parallelized execution is

shown. Due to negligible communication, the scaling is linear.

10-14
10-12
10-10
10-8
10-6
10-4
10-2
100
102
104

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
ur

re
nt

 [A
/m

]

Voltage [V]

IV-Characteristics

Doping 1014 cm-3

Doping 1015 cm-3

Doping 1016 cm-3

Doping 1017 cm-3

Fig. 9: The current-voltage characteristics of a two-

dimensional pn-junction diode for different doping levels are

shown.

VI. SUMMARY

We have discussed the challenges of combining high-

performance TCAD applications and introduced our approach

to tackle them by the means of ViennaX. Our framework is

capable of executing arbitrary available simulation tools, with

different parameters, in a sequential and loop-wise manner.

Our MPI-based execution model offers excellent scalability,

as has been shown by a representative simulation result.

ACKNOWLEDGMENTS

This work has been supported by the European Research

Council through the grant #247056 MOSILSPIN. Karl Rupp

acknowledges support by the Austrian Science Fund (FWF),

grant P23598.

REFERENCES

[1] T. Quintino, “A component environment for high-performance
scientific computing,” Ph.D. thesis, Katholieke Universiteit Leuven,
2008.

[2] D. Reid, C. Millar, G. Roy, S. Roy, and A. Asenov, “Analysis of
threshold voltage distribution due to random dopants,” IEEE
Transactions on Electron Devices, vol. 56, no. 10, pp. 2255–2263,
2009.

[3] “nanoHUB.” [Online]. Available: http://nanohub.org/
[4] “tiberCAD.” [Online]. Available: http://www.tibercad.org/
[5] “Archimedes.” [Online]. Available:
http://www.gnu.org/software/archimedes/

[6] “COOLFluiD.” [Online]. Available: http://coolfluid.github.com/
[7] “ViennaX.” [Online]. Available: http://viennax.sourceforge.net/
[8] “Boost.” [Online]. Available: http://www.boost.org/
[9] G. D. Reis and J. Järvi, “What is generic programming?” in

Proceedings of the 1st International Workshop on Library-Centric
Software Design (LCSD), 2005.

[10] “The Intel Threading Building Blocks.” [Online]. Available:
http://threadingbuildingblocks.org/

[11] D. Kharrat and S. Quadri, “Self-registering plug-ins: An architecture
for extensible software,” in Canadian Conference on Electrical and
Computer Engineering (CCECE), 2005, pp. 1324 –1327.

[12] “ViennaCL.” [Online]. Available: http://viennacl.sourceforge.net/
[13] “Trilinos.” [Online]. Available: http://trilinos.sandia.gov/

403

