A Discussion of Selected Vienna-Libraries for
Computational Science

Karl Rupp
MCS Division
Argonne National Laboratory
Bld. 240
Argonne IL, 60439, USA

rupp@mcs.anl.gov

ABSTRACT

We address the low popularity of C++ in computational
science by introducing a set of orthogonal libraries: The
CUDA-, OpenCL-, and OpenMP-enabled linear algebra li-
brary ViennaCL, the mesh datastructure library Vienna-
Grid, a data storage facility named ViennaData, and the
symbolic math kernel ViennaMath. Finally, we discuss how
these orthogonal components interact within the finite ele-
ment package ViennaFEM. The main focus of the discussion
is on the various programming techniques applied and on
how C++4 can be improved to better fulfill the demands of
computational science.

1. INTRODUCTION

While C++ is evolving and the new features of the C++11
standard make their way into recent compilers, large parts
of the computational science community in general and the
high-performance-computing community in particular still
hesitate to move from C or Fortran to C++. Among the
many different reasons [3], the broad range of scientific soft-
ware providing C or Fortran interfaces is certainly one with
the highest weight. Also, a lower level of abstraction is of-
ten preferred over the higher complexity of C4++ and its
associated pitfalls when used in a naive way, for example
the creation of expensive temporaries when implementing
operator overloads carelessly. Furthermore, current paral-
lelization and vectorization frameworks such as Cilk [9] or
OpenMP [25] prefer low-level code with index-based loops
rather than high-level code with iterator-based loops [14].

On the other hand, scripting languages such as Python,
MATLARB, or Julia are preferred for prototyping purposes.
Again, a far larger amount of libraries and tools such as
IPython [16] or SciPy [27] is available in such frameworks,
while the C++ ecosystem including the Boost libraries [5]
does not provide a similar set of functionality even though
it could in many aspects combine the best of both worlds.
We present and discuss selected free open-source libraries

Florian Rudolf
Institute for Microelectronics
Technische Universitat Wien
GuRRhausstrafie 27-29/E360

A-1040 Wien, Austria
rudolf@iue.tuwien.ac.at

Josef Weinbub
Institute for Microelectronics
Technische Universitat Wien
GuRhausstrafle 27-29/E360

~A-1040 Wien, Austria
weinbub@iue.tuwien.ac.at

(termed Vienna-libraries in the following), which extend
the set of available C++ libraries for scientific software en-
gineers. They are a subset of orthogonal tools primarily
developed at the Vienna University of Technology and ei-
ther provide orthogonal functionality or are by themselves
composed of orthogonal components. This is in contrast to
many application-oriented libraries or frameworks in com-
putational science, where a-priori independent functionality
has grown to an application-specific — yet inseparable — alloy
over time. Consequently, special attention will be attributed
to the way orthogonality is preserved and which C++ tech-
niques are used to achieve this. In the order of discus-
sion, the dependency-free, header-only and multi-platform
libraries presented in this work are the following;:

e ViennaCL [33]. A linear algebra library using CUDA
[24], OpenCL [17], or OpenMP while providing an
application programming interface (API) compatible
with Boost.uBLAS.

e ViennaGrid [36]. A library providing highly versatile
datastructures for the management of meshes in arbi-
trary geometrical and topological dimension. It can be
seen as enriching Boost.Geometry by topology.

e ViennaData [34]. An abstract library for storing data
for objects in a non-intrusive manner. The motivations
are similar to that of Boost.PropertyMap, yet it satis-
fies additional requirements of computational science.

e ViennaMath [37]. A symbolic math kernel with a ho-
mogeneous interface for compile time and run time ma-
nipulations and evaluations. One way to think of it is
to specialize Boost.Proto for computer algebra and to
add a run time layer to circumvent certain disadvan-
tages of evaluations at compile time.

e ViennaFEM [35]. A library combining the function-
ality offered by ViennaCL, ViennaGrid, ViennaData,
and ViennaMath in order to offer a high-level API
for the finite element method, which is very close to
the mathematical formulation. In simple terms, Vi-
ennaFEM can be seen as one possible extension of
Boost.odeint from ordinary differential equations to
partial differential equations.

These libraries supplement material presented at C++Now
2012, where implementations aspects of the task execution
framework ViennaX [38] have already been discussed [39].

2. VIENNACL

A good linear algebra library is indispensable for the compu-
tational scientist, because its performance is in many cases
the main factor for the total execution time. This is reflected
in several ways: For a single workstation, vendor-tuned li-
braries for central processing units (CPUs) and accelerators
such as graphics processing units (GPUs) are available [2,
15, 23]. On a large scale, the benchmark used for the Top500
list of supercomputers [29] uses a dense matrix operation as
a single criterion for assessing computational performance.
Despite being a questionable metric, it is still the main met-
ric in high performance computing [18]. For these reasons,
one may assume Boost.uBLAS to be the ideal solution in a
C++ environment.

2.1 Deficiencies of Boost.uBLAS

While Boost.uBLAS has certainly been a good step forward
when it was included into Boost around the year 2000, it has
not received the necessary attention to keep track of recent
developments in computing hardware. Recent and not-so-
recent developments such as multi-core CPUs, vector exten-
sions such as MMX, SSE, or AVX, as well as GPU comput-
ing are not natively supported. Even though Boost.uBLAS
does not claim to be a high-performance library, it should
not ignore this major user requirement.

The Boost Numeric Bindings project [6] is an attempt to
mitigate some of its deficiencies by making external algo-
rithms available for Boost.uBLAS objects. Still, concerns
have been expressed by several users about the lack of in-
trinsic support for novel computing hardware as well as ad-
vanced algorithms [7]. Also, colleagues expressed concerns
in personal communication about Boost.uBLAS being too
tightly integrated into the whole collection of Boost libraries,
impeding the convenient and quick migration of their other-
wise lightweight codes between computing clusters.

2.2 Interface Similarity

The approach taken by ViennaCL is to provide a user API
as close to Boost.uBLAS as possible, yet to make use of the
computing power of accelerators and multiple cores. While

all computations in ViennaCL were formerly based on OpenCL,

CUDA and OpenMP computing backends were introduced
with ViennaCL 1.4.0. As a short example, the following
code snippet depicts simple vector operations:

1 using namespace boost::numeric::ublas;

2

3 std::size_t size = 1000;

14 vector <T> b4 = zero_vector <T>(size);

5 vector <T> y = scalar_vector <T>(size, 42);
6

7y =x + y; // vector addition

8 y = element_prod(x, y); // elementwise product

where T is usually of type double when used by a compu-
tational scientist. Clearly, such a high-level representation
is desirable irrespective of the underlying computing hard-
ware. The same code is valid with ViennaCL after replacing
line 1 by

where the first line makes the primitive objects (such as
vector) and the second line all the linear algebra functions
available. Thus, ViennaCL provides all the basic types from
Boost.uBLAS such as vector, matrix, or compressed_matrix.
By appropriate compile-time switches one enables the dif-
ferent computing backends available on the machine.

The use of accelerators has a detrimental effect to the per-
formance of single element access. For example, the initial-
ization code

1 std::fill(x.begin(), x.end(), rand_functor());

for filling a vector x with random numbers will perform well
if x is from Boost.uBLAS. However, doing the same with Vi-
ennaCL, the code will be orders of magnitude slower when
using CUDA or OpenCL, because each element access trig-
gers a write operation via the PCI-Express interface. Even
if OpenCL for the CPU is used, the management overhead
of the OpenCL backend gives poor performance. As a rem-
edy, ViennaCL provides a copy () routine, which is interface-
compatible to std::copy(). It collects the data and then
uses a single PCI-Express transfer, reducing overhead con-
siderably. Moreover, it allows to manipulate only parts of a
vector rather than the vector as a whole:

//batched copy from Boost.uBLAS to ViennaCL:
viennacl::copy(ublas_x.begin(),
ublas_x.end (),
viennacl_x .begin();

//batched copy from ViennaCL to Boost.uBLAS:

viennacl::copy(viennacl_x .begin(),
viennacl_x .begin() + 100,
ublas_x.begin();

© 0 N oo W N =

Here, the contents of a Boost.uBLAS vector ublas_x is first
transferred to a ViennaCL vector viennacl_x, which may re-
side on a GPU. Then, the first 100 entries are copied back.
In this way, the latency of PCI-Express is avoided to the ex-
tent possible and data initialization is comparable in speed
to Boost.uBLAS. However, this example shows one impor-
tant aspect: Iterators cannot be applied to accelerators di-
rectly because of latency problems.

Elementary operations on matrices are dealt with in the
same manner as for vectors. The interface for triangular
solvers are also interface compatible:

1 // upper triangular solver for Ax = b:
2 vector<T> x = solve(A, b, upper_tag());

and similarly for the lower triangular solver as well as those
with unit diagonal. However, ViennaCL not only provides
dense triangular solvers, but also iterative solvers such as a
conjugate gradient or a generalized minimum residual solver
[26]. This additional functionality is available via an exten-
sion of the existing generic interface for the triangular solvers
based on tag dispatching by providing a tag cg_tag() for the
conjugate gradient solver and correspondingly for the other
solvers:

1 using namespace viennacl;
2 using namespace viennacl::linalg;

1 // conjugate gradient solver for Ax = b:
2 vector<T> x = solve(A, b, cg_tag());

(User AP
Backend Dispatcher
[OpenMP] [OpenCL] [CUDA

Figure 1: Architecture of ViennaCL. The user-API
is compatible with Boost.uBLAS, while the dis-
patcher translates the respective computing kernels
into calls to the respective computing backend.

CPU MIC

where A is a sparse matrix and b is a dense vector. Thanks
to the interface compatibility, the solver implementation ac-
cepts both Boost.uBLAS and ViennaCL objects and thus
allows for code reuse beyond different computing architec-
tures. Similarly, the generic interface accepts objects from
the Eigen library [11] and MTL 4 [21]. Generic wrappers for
directly passing containers from the C++ standard template
library as well as VexCL [32] types are in preparation.

2.3 Selected Internals

Whenever an elementary operation such as y = x + y is en-
countered, both Boost.uBLAS and ViennaCL use the ex-
pression template technique [30, 31] to avoid spurious tem-
poraries. While Boost.uBLAS can handle an arbitrary num-
ber of operands without introducing temporaries, ViennaCL
needs to map the expression to a predefined set of comput-
ing kernels. Currently, up to two vector operands, possibly
scaled by scalars, can be handled on the right hand side
without introducing a temporary. Albeit this appears to
be a rather small number, experience has shown that this
handles most cases in linear algebra.

The operations defined in the computing backends are typ-
ically not called directly, but rather an intermediate dis-
patcher is called, cf. Fig. 1. This dispatcher inspects the
memory handles holding the data for each of the objects
such as the vectors x and y. Depending on the location of the
data (main memory, CUDA memory, or OpenCL memory),
the call is translated into calls of the respective computing
backend. Currently there is mostly a one-to-one mapping
between the functionality offered by the dispatcher back-
end and the operations defined for each backend. For the
future we expect that the dispatcher layer offers a much
larger set of operations than defined in the individual com-
puting backends and translates the required operation into
the respective calls to the kernels defined in each computing
backend.

The generic implementation of algorithms in ViennaCL also
requires another level of indirection. While functions in
Boost.uBLAS such as prod() or inner_prod () only return the
respective expression templates, ViennaCL overloads these
functions for the various types in other libraries as well. Ini-
tially, interfaces based on the enable_if<> technique using
SFINAE [30] have been used, e.g.

oA W N R

N o

50 CG lIterations, Boost.uBLAS vs. ViennaCL Backends

10
100 P, /f
X"
o lO’l e VAR VAR VAN S SRS SV L
g X
c 2 —% ¥
- 10 =
=) */H
g 10° ")(//
| Intel Xeon X5550, uBLAS —>—
- Intel Xeon X5550, OpenMP —>—
104 / NVIDIA GTX 285, CUDA —»— A
>(NVIDIA GTX 285, OpenCL —>—
s , AMD Raqeon HD 79.70’ OpenCIl_ - K-
10°

10t 102 10° 10* 10° 108 107
Matrix Rows/Columns

Figure 2: Performance comparison of Boost.uBLAS
for 50 iterations of a conjugate gradient solver
for a system of equations derived from the two-
dimensional discretization of the Poisson equation
on the unit square using finite differences.

template< typename MatrixT, typename VectorT >
typename enable_if< is_eigen<MatrixT>,
VectorT >:: type
prod(MatrixT const& A, VectorT const& x)
{
return A * x;

}

to obtain a unified interface for the matrix-vector product
A * x in Eigen and prod (4, x) from Boost.uBLAS. Due to in-
sufficient compiler support, a direct, albeit repetitive, func-
tion overloading is used. The decltype operator in C++11
helps when it comes to the automatic deduction of the return
type of these generic overloads (note that the above snippet
can be improved by returning the appropriate expression
template), yet its adaption in ViennaCL is hindered by the
small availability compilers for C++11.

2.4 Performance

We consider the linear system of equations obtained from the
discretization of the Poisson equation on the unit square us-
ing finite differences. A comparison of execution times for a
fixed number of 50 iterations of a conjugate gradient solver
without preconditioner is given in Fig. 2. The optimized
sparse matrix-vector multiplication function axpy_prod () has
been used for Boost.uBLAS, even though the less optimized
function prod() would presumably be used by a less experi-
enced user.

At large problem sizes, the GPU backends of ViennaCL are
by about an order of magnitude faster than Boost.uBLAS.
For system sizes below 10* unknowns, the PCI-Express la-
tency as well as OpenCL and CUDA overheads of the GPU
backends are clearly visible, leading to constant execution
times. Still, in such case the OpenMP backend of Vien-
naCL outperforms Boost.uBLAS for problem sizes down to
100 x 100 by about a factor of two. Only for very small oper-
ations, the rigorous use of expression templates gives better
performance of Boost.uBLAS over ViennaCL.

2.5 Conclusions

ViennaCL readily shows that many of the deficiencies of
Boost.uBLAS in terms of performance can be overcome with-
out changing the API significantly. Thus, the same high
level of abstraction is possible even if accelerators are used.
However, current and future heterogeneous computing envi-
ronments do not allow for a neat abstraction of linear algebra
operations using iterators, but instead require the use of a
reasonable set of well-tuned computing kernels operating on
memory buffers directly.

3. VIENNAGRID

In order to set up the discrete system of equations as in
Sec. 2.4, a discrete representation of the computational do-
main is required and central to areas such as fluid dynamics
or mechanical engineering. This is achieved by representing
the computational domain by a set of points, which in addi-
tion to their geometric location have a topological structure
imposed on them. A set of vertices makes up a cell, typi-
cally given by simple shapes such as tetrahedra or hexahedra
in three dimensions. The union of all the cells, which are
allowed to touch, but not to overlap, represents the com-
putational domain. For a more stringent definition of these
topological concepts we refer to the literature [19].

Boost.Geometry is able to deal well with the geometric part
of meshes, i.e. points, by providing a wrapper for containers,
various coordinate systems, and algorithms defined therein.
Only a few C++ libraries dealing with the topological aspect
are available, of which we mention CGAL [§8] and DUNE
[10]. CGAL’s focus, however, is on geometrical algorithms
and uses topological information only as a means to serve the
needs of its many geometric algorithms. DUNE, on the other
hand, explicitly aims at numerical application and allows
for dimension-independent programming thanks to a heavy
use of templates. However, a design decision of DUNE is
that the internal datastructure is not flexible, i.e. the user
has no control over which topological information is stored
internally, and thus inefficient for certain problems.

Our approach to mesh handling is ViennaGrid, which pro-
vides a very flexible, highly configurable and dimension-
independent datastructure. It also supports advanced fea-
tures such as uniform and non-uniform mesh refinement and
the computation of Voronoi quantities. Cell types are re-
stricted to be homogeneous over the whole mesh in the cur-
rent release 1.0.1. Even though this is usually the case in
practice, support for hybrid meshes is currently under devel-
opment, but not further discussed in this work for the sake
of clarity.

3.1 Main Entities

A domain is the main container for the mesh and holds
the global representation of all elements. Vertices are zero-
dimensional topological elements and refer to a geometric
point inside the computational domain. An edge is a one-
dimensional topological element and connects two vertices.
Conversely, a cell is a topological element of maximum di-
mension, say N. For example, a triangle in a triangular
hull mesh in a three-dimensional Euclidean space is of topo-
logical dimension two. A facet is a topological element of
dimension N — 1, i.e. a triangle in a tetrahedral mesh, or

2
" _e3 7 _93 3
-~ -7 4
e e TN
- 1 2 1 _ 2 f
4 4 /;’:. o
k=1 J/.l 2\1//’/’// 2/ ’4\30
° . 2 [3

k=0 °1 °2 °3 *4

Figure 3: Illustration of the boundary k-cells of a
tetrahedron (3-simplex).

a quadrilateral in a hexahedral mesh. Because of this pa-
rameterization, it is convenient to use the notion of n-cells,
where n is the topological dimension. Consequently, we refer
to vertices are O-cells, to edges as 1-cells, and so on.

The domain is implemented via a class domain<Config>, where
the template argument Config specifies the properties of the
domain as well as its datastructure. Only three type defini-
tions are required:

e numeric_type: Numeric type used for the coordinates
of the geometric space, usually double.

e coordinate_system_tag: One out of several tags for dif-
ferent coordinate systems available, e.g. cartesian_cs<2>
for a two-dimensional Cartesian coordinate system.

e cell_tag: A tag for the cell type within the mesh,
e.g. tetrahedron_tag for tetrahedral meshes.

Note that due to the use of homogeneous meshes in Vi-
ennaGrid 1.0.1, the n-cell type for each topological dimen-
sion n can be obtained directly by the specification of the
cell type only. The individual n-cells are instances of type
element_t<Config, Tag>, where Config is again the domain
configuration type, and Tag is a suitable element tag. Two
different families of element tags are supported: Simplex ele-
ments of dimension k are obtained from simplex_tag<k>, and
hypercubes of dimension k& from hypercube_tag<k>. For ex-
ample, simplex_tag<2> refers to triangles and simplex_tag<3>
refers to tetrahedra, while hypercube_tag<2> denotes quadri-
laterals and hypercube_tag<3> hexahedra. Because of this pa-
rameterization of the element tag, template metaprogram-
ming can be applied to compose the required datastructures
at compile time.

3.2 Configurable Datastructure

An n-cell consists of k-cells with 0 < k& < n at its bound-
ary, cf. Fig. 3, to which we refer to as boundary k-cells in
the following. An algorithm might need to operate on each
k-cell in the mesh, but also on each boundary k-cells of an
n-cell. Let us first consider a datastructure where all bound-
ary k-cells in a mesh are available both locally for each cell
and globally within the domain. In such case, each instance
of an n-cell carries references or pointers to each of its k-
cells. For example, a tetrahedron holds references to its

element_t

bnd_layer<n-1> id

bnd_layer<n-2>

bnd_layer<0>

Figure 4: Illustration of recursive inheritance for
the n-cell class element_t. An optional identification
variable (id) can be attached to element_t.

Amount | Bytes/Object | Total Memory
Vertices 4913 24 115 KB
Edges 31024 16 485 KB
Facets 50688 48 2376 KB
Cells 24576 112 2688 KB
Total 5664 KB

Table 1: Minimum memory consumption for a tetra-
hedral mesh where all n-cells are stored explicitly
and boundary information on each n-cell is stored.
Vertices use double-precision coordinates and ele-
ments are linked with 64-bit-pointers.

four facets, its six edges, and its four vertices, leading to a
total number of 14 references to boundary k-cells. These ref-
erences are obtained by element_t inheriting from a helper
class bnd_layer<k>, which has the sole purpose of holding ref-
erences and providing access to the boundary k-cells. With
an identification class id being either empty or holding a nu-
merical identifier, the implementation of element_t becomes

1 template <typename ConfigT,

2 typename Tag>

3 class element_t :

4 public bnd_layer<ConfigT , Tag,
5 public id<ConfigT, Tag> { ... }

Tag::dim-1>,

Here, bnd_layer<Config, Tag, k> inherits recursively from
bnd_layer<ConfigT, Tag, k-1> until £ = 0, cf. Fig. 4. Since
the number of boundary k-cells for each k is known at com-
pile time, a static array can be used for the references, al-
lowing the compiler to unroll loops.

If only a minimal topological information is required by a
particular algorithm, for example when implementing lowest-
order finite element methods, a tetrahedron needs to hold
references to its vertices only, thus only 4 instead of 14 ref-
erences are required. In ViennaGrid, this setting is enabled
by providing specializations of bnd_layer<ConfigT, Tag, k>
depending on ConfigT, Tag, and k, for which a metafunction
bnd_handling is overloaded suitably. For example, to selec-
tively disable the storage of boundary triangles for tetrahe-
dra, the necessary overload is obtained via the convenience
macro

1 VIENNAGRID_DISABLE_BOUNDARY_NCELL (
2 MyConfig, viennagrid::tetrahedron_tag, 2)

Similarly, the storage of boundary k-cells within the domain
can be enabled or disabled, allowing the library user to tune
the datastructure to a particular application.

1
2
3
4
5
6

7
8
9
10

1
2

Amount | Bytes/Object | Total Memory
Vertices 4913 24 115 KB
Edges 0 - 0 KB
Facets 0 - 0 KB
Cells 24576 32 768 KB
Total 883 KB

Table 2: Minimum memory consumption for a tetra-
hedral mesh where only 0-cells and 3-cells are stored
explicitly. Vertices use double-precision coordinates
and elements are linked with 64-bit-pointers.

Tab. 1 and Tab. 2 compare the memory requirements of a
tetrahedral domain on a 64-bit system, where references to
all boundary k-cells are kept, with a domain where only the
vertices of each cell are referenced. The first datastructure
is commonly provided statically in higher-order finite ele-
ment packages, while the latter datastructure is found in
lowest-order finite element implementations. The dynamic
datastructure in ViennaGrid allows an efficient datastruc-
ture for both scenarios, leading to a difference in memory
footprint of more than a factor of six.

3.3 lterations

So far only the internal configurable datastructure of Vi-
ennaGrid has been discussed. Let us now consider the it-
eration over k-cells, for which the concept of ranges as in
Boost.Range is adapted. Thus, iterators are instantiated
from a dedicated and light-weight range object, which is de-
rived from the domain or the respective n-cell holding the
boundary k-cells. A sample code snippet for iteration over
all edges (1-cells) in the domain is as follows:

typedef result_of ::ncell_range <DomainType,
1>::type EdgeRange;
typedef result_of ::iterator<EdgeRange>::type
EdgeIterator;

EdgeRange edges = ncells<1>(domain);
for (Edgelterator eit = edges.begin();
eit != edges.end();
++eit)
{ /* do something with xeit */ }

First, the range type is retrieved by passing the domain type
(DomainType) and the topological dimension (1 for edges) to
the metafunction ncell_range. Then, the iterator type is ob-
tained and the range instantiated using the function ncells
by passing the topological dimension as template parameter.
Finally, iteration over all edges in the domain is carried out
and each edge can be obtained by dereferencing the iterator
as usual.

Iterating over boundary k-cells of an n-cell is provided by
the same generic interface, where the n-cell is used instead
of the domain. Since the resulting for-loops are short (for
example, a tetrahedron is known to have six edges only),
index-based iteration is supported as well in order to assist
the compiler in detecting unrollable loops:

ncells<1>(cell);
++1i)

EdgeOnCellRange edges =
for (std::size_t i=0; i<edges.size();
{ /* do something with edges[i] */ }

1

1
2

Here, cell is the n-cell over whose edges to iterate, and
the type EdgeOnCellRange is obtained using the metafunction
ncell_range again. edges.size() returns a value known at
compile time.

Coboundary-iteration, i.e. iteration over n-cells sharing a
certain k-cell, £ < n, is achieved using the same interface.
An example for coboundary-iteration is the traversal of all
tetrahedra sharing a common edge. However, the range re-
trieval function ncells() needs to be supplied with the en-
closing cell complex as second parameter in such case. This
can either be the full domain, or only a view of the do-
main, called segment in ViennaGrid. Also, boundary and
co-boundary iterations can be nested arbitrarily or com-
bined with STL algorithms such as for_each(), leading to
dimension-independent and highly expressive code.

3.4 Conclusions

ViennaGrid applies generic programming and metaprogram-
ming techniques for handling meshes with a datastructure
adjustable at compile time. It naturally extends the ideas of
Boost.Geometry from geometry to topology and decouples
the two. Its generic iterator-interface is designed with high
usability in mind and leads to very expressive code.

4. VIENNADATA

Many algorithms acting on the n-cells of ViennaGrid need
to store and access data on some or all of the elements. For
example, an application may store a vector field on each
vertex or on each cell of a mesh. The typical approach us-
ing object-oriented programming is to add data members
to the respective classes such as element_t in ViennaGrid.
However, such an intrusive approach, albeit often encoun-
tered in practice, would restrict the reusability of a generic
mesh datastructure to a particular use-case. The approach
taken by DUNE is to defer all data handling to the user and
only provide numerical identifiers for each object. From the
usability point of view, this is not a satisfactory approach
either, because in this case the challenge of storing data
on the mesh is only deferred to the library user. The ratio-
nale behind ViennaData is to provide an orthogonal, generic
storage layer for ViennaGrid, DUNE and all other scenarios
where many object of the same type are encountered.

4.1 Attaching Data to Objects

Without further knowledge about the internals of an arbi-
trary object obj of arbitrary type ObjectType, one way to
store data (of type DataType) for obj is to use a map such as

std::map<0bjectType *, DataType> data;

Since different data of the same type might be stored for
obj, one may use different keys (of type KeyType) in order
to organize the data. Because the number of different keys
used within a large application might be unknown at compile
time and difficult to determine in advance at run time, one
could use

std::map<0ObjectType *,

std::map<KeyType , DataType> > data;

The complexity of inserts as well as accesses is logarithmic
in the number of keys and the number of objects, which can
already be acceptable for a number of applications. What re-
mains is to provide an interface which releases the user from
the burden of instantiating and passing the data contain-
ers for all combinations of ObjectType, KeyType, and DataType
around. By using Meyer’s Singletons [20] for the data con-
tainers and a number of proxy-classes for wrapping the ac-
cess accordingly, one ultimately obtains the interface used
by ViennaData:

1 viennadata::access <KeyType ,DataType>(key) (obj);

where key is an object of type KeyType used for accessing
the data for obj. The two template arguments are inten-
tionally in the same order as in std: :map<KeyType, DataType>
and mandatory. Thus, in order to store and access data of
type long using a key of type std::string, one can simply
write (namespace viennadata omitted)

1 access<std::string,
2 long data
3 = access<std::string,

long>("my_key") (obj) = 42;

long>("my_key") (obj);

and by default the data is accessed by internally using the
datastructure of two nested maps as shown above.

4.2 A Limitation of C++

A call to access for key type KeyType, data type DataType, and
object type ObjectType internally forwards the call to a class
container<KeyType, DataType, ObjectType>, for which func-
tions such as reserve and erase are defined. For example,
to erase data of type double stored for an object obj using a
key of type long, one writes

1 erase<KeyType , DataType>(key) (obj);

However, if an object is destroyed, data for the object stored
in any instance of container<> needs to be erased. If key is
omitted, all data of type DataType stored for obj using any
keys of type KeyType is erased. Thus, a library user would
have to keep track of all key types and data types used for
each object type and call erase for each triple before the
object is destroyed. Since this is highly error prone, Vienna-
Data internally tracks all instances of container<> using type
erasure [1]. On first access to a new instance of container<>,
a reference is added to a type tracker at run time. A special
type viennadata::all indicates that an operation should act
on all matching instances of container<>, so that a user can
simply call

1 erase<viennadata::all,
2 viennadata::all>() (obj);

Internally, the container of type-erased references identify-
ing the various instances of container<> is traversed and
erase(obj) is called on each matching container, erasing the
data stored for obj. If a large number of different key types,
data types and object types is involved, this workaround can
become very costly. Note that if the call to erase is placed
within the destructor of the objects for which data is stored,

the data is automatically deleted at the end of the object’s
lifetime.

A more efficient implementation would be possible if C4++
provided a traversal mechanism for types. In pseudo-code
this would read for an object obj of type ObjectType:

1 for_each [T, U] in container<T, U,
2 { container<T, U,

ObjectType >
ObjectType >::erase(obj); }

Such a functionality could be provided without significant
additional compiler implementation effort, because a com-
piler internally needs to keep track of all instantiations of
template classes anyway.

4.3 Fast Data Access

Thinking of large meshes with millions of n-cells, logarith-
mic access complexity in the number of keys and the number
of objects implies considerable overheads, particularly when
compared to a direct index-based access. In terms of datas-
tructure, it is desirable to use faster datastructures than

1 std::map<0ObjectType *,

2 std::map<KeyType , DataType> >

First, instead of dispatching data of the same type for differ-
ent key objects at run time, the dispatch can be transferred
to compile time based on the key type only:

1 struct FastKeyType {};

2 VIENNADATA_ENABLE_TYPE_BASED_KEY_DISPATCH (
3 FastKeyType);

4 access<FastKeyType,

long>() (obj) = 42;

Here, a dedicated key type is defined first. Then, a con-
venience macro provides the respective template specializa-
tions in order to enable type-based dispatch for FastKeyType.
Finally, data is written using the function access. Note that
no key object is required and hence the first pair of paren-
theses can be left empty. With this type-based key dispatch,
the internal datastructure is effectively reduced to

1 std::map<0ObjectType *, DataType>

and thus eliminates the access overhead with respect to the
key dispatch at run time.

In order to eliminate the logarithmic access times with re-
spect to the number of objects for which data is attached,
one needs to provide a mechanism to extract an index such
that one can directly access an array. Suitable identification
integers are available in ViennaGrid and DUNE, but this
may not be the case in general. To make the identification
mechanism for objects of type ObjectType known to Vienna-
Data, a template specialization for class object_identifier
in namespace viennadata::config is required, e.g.

1template <>

2struct object_identifier <ObjectType> {
3 typedef object_provided_id tag;

4 typedef long id_type;

5 static id_type get(ObjectType
6 { return obj.id();

7};

const & obj)

1
2

1

1

Lo S

The first typedef is used to indicate that the object provides
integers for identification. The second typedef specifies the
integer type, and finally get () provides the generic wrapper
for extracting the identifier from the object. With the object
identification in place, the convenience macro

VIENNADATA_ENABLE_DENSE_DATA_STORAGE_FOR_OBJECT
(ObjectType)

then applies the necessary template specializations in order
to use an internal datastructure of type

std::vector <DataType>

when using a type-based key dispatch, and

std::vector<std::map<KeyType, DataType> >

otherwise. Note that the object identifier and the dense data
storage are two distinct concepts: On the one hand one may
want to provide an object identification mechanism for all
data stored for the object, but on the other hand store data
using a certain key type for a few objects only. One example
is the storage of data only for vertices on the boundary of a
mesh, in which case a map is a better choice than a vector.

4.4 Benchmarks

Object identifiers and type-based key dispatch allow to re-
duce the logarithmic access complexity to constant access
complexity. In order to quantify the overhead of ViennaData
with respect to direct class member access, we compare data
access for data attached to a lightweight class LightWeight
with data attached to classes holding many members:

struct LightWeight
{ std::size_t id; };

template <std::size_t s>
struct FatClass
{ std::size_t id;

char payload[s]; double d; };

Table 3 compares the execution times obtained on a Linux
machine equipped with and AMD Athlon IT X2 255 running
a 64-bit Ubuntu 10.10. While direct member access is by
a factor of about two faster for small payload in FatClass
and 10® objects, ViennaData used for LightWeight is com-
parable or even faster than direct member access for 10°
objects. This is because the larger payload for FatClass con-
gests caches, while ViennaData intrinsically groups data of
the same kind in memory, allowing for better cache reuse
and a more efficient use of memory bandwidth.

10° Objects (us) | 10° Objects (ms)
LightWeight 4 5
FatClass<10> 1.3 4
FatClass<100> 2.1 11
FatClass<1000> 2.5 11

Table 3: Comparison of execution time for summing
up one double value from each object using Vienna-
Data on objects of type LightWeight and direct mem-
ber access to objects of type FatClass.

4.5 Conclusions

ViennaData provides a generic and unified interface for at-
taching data to objects in a non-intrusive manner and pro-
vides fine-grained control of the internal storage schemes.
This allows for tailoring the data structure to application-
specific requirements on the manipulated data in a trans-
parent way. We also highlighted a shortcoming of C++, for
which a remedy using type-erasure is provided.

5. VIENNAMATH

Quantity distributions over a mesh are commonly modeled
by a discrete space using spline interpolations or approxi-
mations. Since splines are piecewise polynomials, we draw
our attention to the symbolic handling of polynomials and
mathematical expressions within C4++.

For evaluations at run time, GiNaC [13] provides the basic
functionality of computer algebra systems directly within
C++ [4]. On the other hand, expression templates have
been shown to allow for certain mathematical manipulations
at compile time, e.g. [22], using either Boost.Proto or custom
implementations. With ViennaMath we provide both a sym-
bolic math kernel for evaluations using traditional run time
polymorphism, as well as compile time evaluations based on
metaprogramming techniques such as expression templates
using a unified interface. A full discussion of the all features
of ViennaMath such as the transformation of mathematical
expression in C++ to BIEX code, however, is beyond the
scope of this work.

5.1 Basic Types

ViennaMath provides two families of types, one for the rep-
resentation of mathematical expressions at run time, and one
for the representation at compile time. Compile time rep-
resentations can be converted to run time representations,
while the converse is obviously not possible.

The following snippet shows an exemplary use of the run
time system:

constant pi = 3.1415;
variable x(0);
variable y(1);

expr p = x * (y + pi);

N N I

First, a constant pi is defined. Then, objects x and y rep-
resenting mathematical variables = and y are defined. The
constructor argument denotes the (zero-based) index when
evaluating an expression for a tuple of numbers, which is
termed wvector in the following. Finally, the polynomial
p(x,y,...) = x(y +) is defined and the result stored in
an object of type expr, which allows to capture all mathe-
matical expression using a common type at run time. To
evaluate the polynomial, one can simply write

1 p(make_vector (1, 2));

to obtain the result 5.1415. make_vector is a convenience
routine for creating a vector in-place and returns a vector
of static size. The function name is chosen in similarity to
various functions available in e.g. Boost.Fusion. As an al-
ternative, objects of type std::vector<T> can be passed to

the functor interface, with T being the underlying numer-
ical type (double by default). ViennaMath also provides
vector-valued expressions and overloads for common unary
functions such as expr () or sqrt () for use within its symbolic
math engine.

The available types for compile time manipulations are sim-
ilar to their run time equivalents and prefixed with ct_:

1 ct_constant <2> c2;
2 ct_variable<0> x;

The constant 2 is encoded as template argument, where due
to restrictions in the C++ type system only integers are
allowed. Floating point template arguments would be ex-
tremely helpful in this context, yet we understand the tech-
nical difficulties in providing such a feature. Similarly, a
compile time variable is obtained by providing the construc-
tor argument from the run time case as a template argument
for the compile time case. To assign the operation x + c2 to
an object, one either needs to encode the expression explic-
itly in the type, or use the auto-keyword from C+411:

1 auto p = x + c2;

Evaluation of the compile time expression is again possible
via the parentheses operator just as for run time evaluations:

1 p(C c2);

A mechanism for making the more intuitive

1 pC 2);

available for explicit compile time evaluations is, however,
not yet available in C++4, thus one has to rely on compiler
optimizations. Moreover, there is no way to make

1 auto p = x + 2;

accessible for subsequent compile time manipulation, be-
cause the integer constant enforces a run time type for p.

5.2 Expression Manipulation

ViennaMath not only provides expressions formed by using
unary and binary operator overloads, but also symbolic ma-
nipulations. Besides the evaluation of expressions, the most
commonly used functions are:

substitute (x, y, £);
expand (c2*(x+y));
simplify(x + 1.0 * y - 0);
diff(x + y, x);

[I

In the first line, the variable x is substituted for y in the
expression f£. The second lines expands the supplied expres-
sion to c2*x + c2*y. The third line simplifies the provided
expression to x + y, while the last line differentiates x+y with
respect to x, resulting in the constant 1. If all terms passed
to the manipulation functions are compile time evaluable,
then they are actually manipulated at compile time and only
the result is considered in the final executable.

1
2

ViennaFEM
(ViennaCLIViennaDat%/iennaGridI/iennaMat@

Figure 5: ViennaFEM is composed of four orthogo-
nal libraries.

ViennaMath also provides support for integrations, which
makes it very attractive for the use within finite element or
finite volume methods. Evaluation of the integral

1
/ 2% dx
0

can be performed at compile time via

integrate (make_interval(cO, cl),

X * X, X);

provided that c0, c1 are compile time representation of 0 and
1 and that x is of type ct_variable<0>. Integrals can also be
nested and evaluated at run time using numerical integration
routines by feeding the integral expression to either one of
the quadrature rules provided by ViennaMath, or a user-
defined quadrature rule.

5.3 Conclusions

ViennaMath provides a symbolic engine for the evaluation
and manipulation of mathematical expression both at run
time and at compile time. This is achieved by blending
well-established expression template techniques with tradi-
tional dynamic polymorphism in order to give the user the
ability to balance run time efficiency with compilation times.
Moreover, with just-in-time compilers becoming more popu-
lar, ViennaMath provides an ideal intermediate mathemat-
ical layer for code generation.

6. VIENNAFEM

The last library discussed in this work, ViennaFEM, com-
bines functionality offered by the previous libraries to a more
application-oriented finite element library. This design is in
contrast to other modern C++ libraries for the finite ele-
ment method such as Feel++ [12] or Sundance [28], where
functionality is not separated as explicitly and cleanly as in
ViennaFEM.

Due to the mathematical complexity of the underlying math-
ematical algorithms, we refrain from an in-depth discussion
and merely focus on the interaction of the libraries Vien-
naFEM is based on. Thanks to the combination of Vienna-
Data and ViennaGrid, the implementation of ViennaFEM
mostly deals with the manipulation of the weak form of the
underlying mathematical problem based on the features pro-
vided by ViennaMath. Once the system of equations is as-
sembled, a GPU-accelerated solution is provided by Vien-
naCL.

6.1 Execution Flow

To see how the various libraries interact within ViennaFEM,
a discussion of the numerical solution of the Poisson equation

Au =1 (1)

1
2

on a computational domain 2 with Dirichlet boundary con-
ditions is given. Using ViennaMath, the problem description
transferred to code reads

function_symbol u(0, unknown_tag<>());

equation eq = make_equation(laplace(u), -1);

u represents a symbolic function, while eq encodes the Pois-
son equation (1). Since overloading operator= to behave like
a mathematical equality leads to collisions with the assign-
ments to objects in C++, a generator function make_equation
is used instead for setting up the equation.

First, the mesh is imported in ViennaGrid. Depending on
the spatial dimension and the finite element method used,
certain k-cells can be disabled by the user for memory effi-
ciency.

Next, the location and the value of the boundary conditions
are written to the ViennaGrid domain using ViennaData.
This is either achieved by reusing data read from file via
the mesh file reader, or by iterating over the n-cells on the
boundary of the mesh and storing boundary conditions ex-
plicitly.

Then, an equation assembler object is instantiated and the
equation is passed to the functor interface:

pde_assembler fem_assembler;

fem_assembler(make_linear_pde_system(eq, u),
my_domain,
my_matrix, my_load_vector);

where my_domain is the ViennaGrid domain, and my_matrix
and my_load_vector are generic matrix and vector objects of-
fering parenthesis access. The assembler object fem_assembler
then deals with all the details such as the enumeration of
unknowns and the transformation of the strong form to the
weak form. In addition to the equation eq and the unknown
u, a configuration object can be supplied as third argument
to make_linear_pde_system, customizing details such as the
finite element spaces. Further arguments to fem_assembler
even allow for coupled systems of partial differential equa-
tions. Note that this is a generic, dimension-independent
interface, since the mathematical formulation is only inter-
nally mapped to the spatial dimension of the mesh supplied
with my_domain.

Finally, a solver from ViennaCL solves the resulting system
of equations. If desired, the solution is written to files for
visualization using the IO functionality of ViennaGrid.

6.2 Conclusions

Thanks to the rigorous composition of ViennaFEM from
orthogonal libraries, the core implementation is extremely
lightweight and far easier to maintain than other mono-
lithic finite element libraries. In particular, contributions
to e.g. ViennaGrid will automatically be available in Vi-
ennaFEM, even if the contributor does not know anything
about the finite element method. This is particularly im-
portant for the high complexity of research code, where the
overall mathematical complexity is effectively split into units
of smaller complexity.

7. SUMMARY

An overview of selected Vienna-Libraries has been given.
Each of the libraries focuses on a particular task, aiming
at providing functionality for a broad range of applications.
ViennaCL has shown that the API of Boost.uBLAS can be
used for accelerator and multi-core architectures. Vienna-
Grid offers a highly flexible mesh datastructure with a con-
venient interface, which enables dimension-independent pro-
gramming and high computational efficiency. ViennaData
allows for attaching data to arbitrary objects in a generic,
non-intrusive way. We have also discussed its application
for ViennaGrid in order to select the best data storage for
the particular needs of different mesh algorithm. The sym-
bolic math kernel library ViennaMath provides the ability
to manipulate mathematical expressions either at run time
or at compile time by means of a unified interface. Finally,
ViennaFEM combines the orthogonal functionalities of Vi-
ennaCL, ViennaGrid, ViennaData, and ViennaMath to a
modern, high-level finite element library.

Most importantly, we showed that the rigorous application
of orthogonal software and library design is also well appli-
cable to the domain of computational science, particularly
the numerical solution of partial differential equations. The
benefit of such a decomposition is exchangeability, a reduc-
tion of complexity into smaller, independent units, and thus
increased maintainability. This might ultimately lead to a
broader acceptance of C++ in this community.

8. ACKNOWLEDGMENTS

This work has been supported by the European Research
Council (ERC) through the grant #247056 MOSILSPIN,
the Austrian Science Fund (FWF) through the grant P23598,
the Graduate School PDETech at the TU Wien, the Depart-
ment of Energy ASCR SciDAC project FASTMath, Google
via the Google Summer of Code 2011 and the Google Sum-
mer of Code 2012, as well as NVIDIA and AMD through
hardware donations.

9. REFERENCES

[1] A. Alexandrescu. Modern C++ design: generic
programming and design patterns applied.
Addison-Wesley, 2001.

[2] AMD Accelerated Parallel Processing Math Libraries.
URL: http://developer.amd.com/tools/.

[3] V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein,
J. K. Hollingsworth, F. Shull, and M. V. Zelkowitz.
Understanding the high-performance-computing
community: A software engineer’s perspective. IEEE
Software, 25(4):29-36, 2008.

[4] C. Bauer, A. Frink, and R. Kreckel. Introduction to
the ginac framework for symbolic computation within
the c++ programming language. Journal of Symbolic
Computations, 33(1):1-12, 2002.

[6] Boost C++ Libraries. URL: http://www.boost.org/.

[6] Boost Numeric Bindings. URL:

http://mathema.tician.de/software/boost-
numeric-bindings.

Boost.uBLAS Mailing list: Anybody still there?,
February 2012. URL:
http://boost.2283326.n4.nabble. com/Anybody-
still-there-td4348187.html.

[7

[8] CGAL. URL: http://www.cgal.org/.
[9] Cilk. URL: http://supertech.csail.mit.edu/cilk/.
10] DUNE. URL: http://www.dune-project.org/.

13] GiNaC. URL: http://wuw.ginac.de/.

14] G. Hager and G. Wellein. Introduction to High
Performance Computing for Scientists and Engineers.
CRC Press, Inc., 1st edition, 2010.

[15] Intel Math Kernel Library. URL:
http://software.intel.com/en-us/intel-mkl.

[16] IPython. URL: http://ipython.org/.

[17] Khronos Group. OpenCL. URL:
http://www.khronos.org/opencl/.

[18] W. T. Kramer. Top500 versus sustained performance:
the top problems with the top500 list - and what to do
about them. In Proceedings of the 21st international
conference on Parallel architectures and compilation
techniques, PACT ’12, pages 223-230, New York, NY,
USA, 2012. ACM.

[19] A. Logg. Efficient representation of computational
meshes. International Journal of Computational
Science and Engineering, (4):283-295, 2009.

[20] S. Meyers. Effective C++: 55 Specific Ways to
Improve Your Programs and Designs (3rd Edition).
Addison-Wesley, 2005.

1] MTL 4. URL: http://wuw.mt14.org/.

E. Niebler. Expressive C++: Expression Optimization.

3] NVIDIA CUBLAS. URL:
https://developer.nvidia.com/cublas.

4] NVIDIA CUDA. URL: http://www.nvidia.com/.

[25] OpenMP. URL: http://openmp.org/.

[26] Y. Saad. Iterative Methods for Sparse Linear Systems,
2nd edition. STAM, 2003.

[27] SciPy. URL: http://scipy.org/.

[28] Sundance. URL:
http://www.math.ttu.edu/ kelong/Sundance/html/.

[29] Top500 Supercomputing Sites. URL:
http://top500.org/.

[30] D. Vandevoorde and N. Josuttis. C++ Templates.
Addison-Wesley, 2002.

[31] T. Veldhuizen. Expression Templates. C++ Report,
7(5):26-31, 1995.

[32] VexCL. URL: https://github.com/ddemidov/vexcl/.

[33] ViennaCL. URL:
http://viennacl.sourceforge.net/.

[34] ViennaData. URL:
http://viennadata.sourceforge.net/.

[35] ViennaFEM. URL:
http://viennafem.sourceforge.net/.

[36] ViennaGrid. URL:
http://viennagrid.sourceforge.net/.

[37] ViennaMath. URL:
http://viennamath.sourceforge.net/.

[38] ViennaX. URL: http://viennax.sourceforge.net/.

[39] J. Weinbub, K. Rupp, and S. Selberherr. Utilizing
Modern Programming Techniques and the Boost
Libraries for Scientific Software Development. In
Proceedings of C++Now 2012, 2012.

]
]
(10]
[11] Eigen. URL: http://eigen.tuxfamily.org/.
[12] Feel++. URL: http://code.google.com/p/feelpp/.
(13]
[14]

)
N

)

S

