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We investigate the effect of confinement and orientation on the phonon transport properties of ultra-

thin silicon layers of thicknesses between 1 nm and 16 nm. We employ the modified valence force

field method to model the lattice dynamics and the ballistic Landauer transport formalism to

calculate the thermal conductance. We consider the major thin layer surface orientations {100},

{110}, {111}, and {112}. For every surface orientation, we study thermal conductance as a

function of the transport direction within the corresponding surface plane. We find that the ballistic

thermal conductance in the thin layers is anisotropic, with the f110g=h110i channels exhibiting the

highest and the f112g=h111i channels the lowest thermal conductance with a ratio of about two.

We find that in the case of the {110} and {112} surfaces, different transport orientations can result

in �50% anisotropy in thermal conductance. The thermal conductance of different transport

orientations in the {100} and {111} layers, on the other hand, is mostly isotropic. These

observations are invariant under different temperatures and layer thicknesses. We show that this

behavior originates from the differences in the phonon group velocities, whereas the phonon density

of states is very similar for all the thin layers examined. We finally show how the phonon velocities

can be understood from the phonon spectrum of each channel. Our findings could be useful in the

design of the thermal properties of ultra-thin Si layers for thermoelectric and thermal management

applications. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4808100]

I. INTRODUCTION

The thermal conductivity of Si is dominated by phonon

transport and has a relatively high value of jl ¼ 148 W=mK.

Such high conductivity is beneficial for some applications

such as heat management in electronic devices,1 but unwanted

for other applications such as thermoelectricity. Low dimen-

sional Si materials, such as nanowires (NWs), ultra-thin layers,

and nanoporous Si, on the other hand, have demonstrated re-

cord low thermal conductivities of jl ¼ 1� 2 W=mK, reach-

ing the amorphous limit.2–10 The thermal conductivity in Si is

carried by phonons of a few nanometers to a few micrometers

in wavelength,11 and boundary scattering is very effective in

suppressing the propagation of low frequency (long wave-

length) phonons in Si.12–19

Although the two order of magnitude reduction in the

thermal conductivity is attributed to boundary scattering, an

additional reduction can be achieved from changes in the

phonon mode structure due to geometrical confinement.

Indeed, the phonon mode dispersion undergoes strong modi-

fications in nanostructures.20–23 The thermal conductivity in

bulk Si is isotropic; however, in low-dimensional materials

the choice of geometrical features such as surface orienta-

tion, transport orientation, and confinement length scale (i.e.,

thickness or diameter) can result in different phonon modes.

These differences in the phonon modes affect the phonon

group velocities and the scattering processes, and introduce

variations in the thermal conductance.24,25 The proper choice

of structure geometries can, therefore, lead to different ther-

mal properties and can allow design optimization for the

applications of interest.

Very few studies on the effect of geometrical features

such as the surface orientation, transport orientation, and

layer thickness on the thermal conductivity of ultra-thin-

body layers (UTBs), however, can be found in the literature.

These mostly focus on layers of larger thicknesses of 10 s of

nanometers, or employ bulk Si phonon dispersions, whose

validity could be debatable for layers with thicknesses down

to a few nanometers. Aksamija and Knezevic have theoreti-

cally discussed the effects of confinement and orientation of

thin Si membranes using the bulk phonon dispersion and

Boltzmann transport theory.24 That work elucidated the im-

portance of geometry, and indicated that there can be indeed

a factor of two difference in the thermal conductivity once a

proper channel is chosen (the {110} versus the {100} surfa-

ces in that case). In order to properly understand how modifi-

cations in the phonon mode structure will affect the thermal

transport of ultra-thin layers in the sub-ten nm thickness

scale, however, a model that goes beyond the bulk dispersion

and properly captures the effect of confinement on the pho-

non modes is required. The importance of the complete pho-

non dispersion details in addressing thermal transport in

nanostructures has been stressed in several publications.26,27

Experimental data could only be explained once these details

were taken into consideration.28

In this work, we employ the modified valence force

field (MVFF) method29 to address the effects of structural
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confinement and transport orientations on the phonon dis-

persion, group velocity, and ballistic thermal conductance

of Si thin layers of thickness from 1 nm to 16 nm. For a

complete study, we investigate various surface orientations

and transport orientations. We consider the {100}, {110},

{111} and {112} surface orientations, and for each of these

surfaces we calculate thermal conductance as a function of

the transport orientation. We find that the variation in the

thermal conductance between channels of different geome-

tries can be up to a factor of two. This is true for the choice

of not only different surfaces but also different transport

orientations within the same surface. This observation is

only weakly dependent upon the layer thickness. The

f110g=h110i channel exhibits the highest and the

f112g=h111i channel the lowest thermal conductance,

almost �50% lower. We further show that any variations

observed are a consequence of the phonon group velocities

which are anisotropic, whereas the density of phonon

modes does not show strong anisotropy. We provide

explanations for the group velocity behavior through fea-

tures of the phonon modes.

The paper is organized as follows: In Sec. II, we

describe the MVFF method for the calculation of the phonon

bandstructure and the Landauer method for phonon transport

calculations. In Sec. III we present the results, and in Sec. IV

we provide explanations and discussions. Finally in Sec. V

we conclude.

II. APPROACH

For bulk studies, the most frequent model traditionally

employed for phonon dispersion calculations is the Debye

model, in which the phonon dispersion is described by three

acoustic branches, one longitudinal and two transverse

modes. More sophisticated models that could describe the

full phonon dispersions of bulk as well as nanostructures

are the valence force field method (the Keating model30),

the Tersoff inter-atomic potential model,31 the adiabatic

bond charge model,32 as well as first principle calculations.

In this work, for the calculation of the phononic bandstruc-

ture we employ the modified valence force field method,29

which is an extension of the Keating model. In this method,

the interatomic potential is modeled by the following bond

deformations: bond stretching, bond bending, cross bond

stretching, cross bond bending stretching, and coplanar

bond bending interactions.29 The model accurately captures

the bulk Si phonon spectrum as well as the effects of

confinement.33

In the MVFF method, the total potential energy of the

system is defined as33

U � 1

2

X
i2NA

"X
j2nni

Uij
bs þ

Xj 6¼k

j;k2nni

ðUjik
bb þ Ujik

bs�bs þ Ujik
bs�bbÞ

þ
Xj 6¼k 6¼l

j;k;l2COPi

Ujikl
bb�bb

#
; (1)

where NA, nni, and COPi are the number of atoms in the sys-

tem, the number of the nearest neighbors of a specific atom i,

and the coplanar atom groups for atom i, respectively.

Ubs; Ubb; Ubs�bs; Ubs�bb, and Ubb�bb are the bond stretching,

bond bending, cross bond stretching, cross bond bending

stretching, and coplanar bond bending interactions, respec-

tively. The terms Ubs�bs; Ubs�bb, and Ubb�bb are an addition

to the usual Keating model,30 which can only capture the Si

phononic bandstructure in a limited part of the Brillouin

zone. As indicated in Ref. 33, the introduction of these addi-

tional terms provides a more accurate description of the

entire Brillouin zone.

In this formalism, we assume that the total potential

energy is zero when all the atoms are located in their equilib-

rium positions. Under the harmonic approximation, the

motion of atoms can be described by a dynamic matrix as34

D ¼ ½Dij
3�3� ¼

1ffiffiffiffiffiffiffiffiffiffiffi
MiMj

p �
Dij ; i 6¼ j

�
X
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Dil ; i ¼ j

8><
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where the dynamic matrix component between atoms i and j
is given by33

Dij ¼

Dij
xx Dij

xy Dij
xz

Dij
yz Dij

yy Dij
yz

Dij
zx Dij

zy Dij
zz

2
664

3
775 (3)

and

Dij
mn ¼

@2Uelastic

@ri
m@

j
n

; i; j 2 NA and m; n 2 ½x; y; z� (4)

is the second derivative of the potential energy with respect

to the displacement of atoms i and j along the m-axis and

the n-axis, respectively. Uelastic is the potential associated

with the motion of only two atoms i and j, whereas the

other atoms are considered frozen (unlike U, which is the

potential when all atoms are allowed to move out of their

equilibrium position). To compute this: (1) we start with U
from Eq. (1), (2) we fix the positions of all atoms except

atoms i and j, and (2) we compute the inter-atomic potential

due to all bond deformations that result from interaction

between both of these two atoms, and sum them up to

obtain Uelastic. All other inter-atomic potential terms that

result from interactions due to atom i alone, or atom j alone,

are not considered, since all double derivatives taken with

respect to @2=@ri
m@

j
n give zero.

After setting up the dynamic matrix, the following

eigenvalue problem is solved for the calculation of the pho-

nonic dispersion:

Dþ
X

l

Dl expði~q:D~RlÞ � x2ðqÞI ¼ 0; (5)

where Dl is the dynamic matrix representing the interaction

between the unit cell and its neighboring unit cells separated

by D~Rl.
34 Using the phononic dispersion, the phonon density

of states (DOS) and the ballistic transmission (number of

modes at given energy) are calculated by35
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X

a
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X

a

X
q

d
�
x� xaðqÞ

�
(6)

and

�T phðxÞ ¼ MðxÞ ¼ h

2

X
a;q

d
�
x� xaðqÞ

�
vg;aðqÞjk; (7)

where vg;aðqÞjk is the parallel component of the group veloc-

ity Vg;aðqÞ ¼ @xaðqÞ
@q along the transport orientation. In the

expressions above, at a specific frequency x the sum runs

over all phonon modes (a) and all phonon momenta (q) of

the two-dimensional momentum space.

Once the transmission is obtained, the ballistic lattice

thermal conductance is calculated within the framework of

the Landauer theory as36,37

jl ¼
1

h

ðþ1
0

�TphðxÞ�hx
@nðxÞ
@T

� �
dð�hxÞ; (8)

where nðxÞ ¼ ðe�hx=kBT � 1Þ�1
is the Bose-Einstein distribu-

tion function. Alternatively, the energy integral in Eq. (8)

can be transformed into a summation over q-space where the

thermal conductance is evaluated as

jl ¼
X
a;q

jl;aðqÞ; (9)

where the q- and a-dependent thermal conductance is defined

as

jl;aðqÞ ¼
1

2

2p
Dqk

2p
Dq?

vg;aðqÞ
����
k
�hxaðqÞ

@n
�
xaðqÞ

	
@T

: (10)

In this work, both Eqs. (8) and (9) are employed depending

on whether we compute x- or q-dependent data.

We note that in this work we calculate the ballistic

thermal conductance of the thin layers, not the conductivity
which assumes diffusion of phonons after undergoing all

relevant scattering mechanisms. Our intention in this work

is to specifically investigate the influence of the confined

phonon bandstructure on the anisotropy of the phonon

transport.

III. RESULTS

Figure 1 shows the geometrical cross sections of the thin

layers considered. These are the {100}, {110}, {111}, and

{112} surface orientations. In all cases, we consider the x-axis

to be the h110i orientation, and define the angle h of the trans-

port direction counter-clockwise from the x-axis. Below, we

present a complete analysis by calculating the phononic prop-

erties and thermal conductance as a function of the angle h for

all the surface orientations mentioned. We also vary the layer

thickness H from 1 nm to 16 nm. We calculate the phononic

dispersion, density of states, ballistic transmission, and effec-

tive group velocity of the different structures.

Figure 2 shows the transmission functions for the four

layer surface orientations of interest along two particular

transport orientations for each case, that, as we will show

below, provide the lowest and the highest thermal conduct-

ance for that particular surface. The layer thickness in all

cases is 2 nm. In the case of the thin layer with {100} surface

orientation in Fig. 2(a), we consider the f100g=h110i and the

f100g=h100i transport channels. The transmissions of the

two channels are almost the same, indicating negligible ani-

sotropy. In the case of the thin layer with {111} surface ori-

entation in Fig. 2(c), we consider the f111g=h110i and the

f111g=h112i transport channels. Again in this case, the

transmissions are almost the same.

The transmission function of the thin layers with {110}

and {112} surfaces, on the other hand, is orientation depend-

ent. For the {110} surface thin layers in Fig. 2(b), the

f110g=h110i channel (blue line) shows the highest transmis-

sion function, and the f110g=h100i channel (red-dotted line)

the lowest. An even larger difference is observed in the case

of the {112} surface thin layers in Fig. 2(d). The highest

transmission is observed for the f112g=h110i channel (blue

line), and the lowest for the f112g=h111i channel (red-dotted

line). The difference in the transmission of the channels in

different transport orientations is largest for energies

between 10 and 30 meV for both the {110} and the {112}

thin layers.

Using the transmission functions extracted from the

bandstructures, we calculate the ballistic lattice thermal con-

ductance using the Landauer formula for the thin layers with

the four different surface orientations of interest. We calcu-

late the thermal conductance as a function of the transport

orientation by varying the angle h from 0 to p. The thermal

FIG. 1. The atomistic structure in the

cross sections of the different thin layers

investigated (a) {100}, (b) {110}, (c)

{111}, and (d) {112} surface. In all

cases, the x-axis is along the h110i trans-

port direction. We consider different

transport orientations by varying the

angle h between 0 and p.
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conductances for all cases shown in Fig. 3 are calculated for

room temperature. We calculate the conductance of thin

layers for thicknesses of 1, 2, 4, 8, and 16 nm. With symbols

we denote the high symmetry orientations using the Miller

index notation, i.e., h110i—circle, h111i—star, h112i—tri-

angle, and h100i—square. We mark these orientations on the

16 nm thin layer result in Fig. 3. In all cases, the conductance

increases linearly as the thickness increases because the

thicker layers contain more phonon modes that contribute to

the thermal conductance. With regards to anisotropy, for the

thin layers with {100} surface in Fig. 3(a), the conductance

has a maximum along the h100i direction (square), and a

minimum is along the h110i direction (circle), although the

difference is small (only �5%). Interestingly, this observa-

tion is the same for all thicknesses considered. The

conductance of the channels with {110} surface is shown in

Fig. 3(b). The conductance is highest in the h110i transport

orientation (h ¼ 0, circle), and is lowest for the h100i chan-

nels (h ¼ p=2, square). The variation between the maximum

and the minimum, however, in this case is �30% for the

1 nm thin layer, and decreases to 20% for the 16 nm layer.

The conductance of channels with {111} surface is shown in

Fig. 3(c). The conductance in this case also peaks along the

h110i direction (circle) and it is lowest along the h112i direc-

tion (triangle). The variation of the conductance with trans-

port orientation in this case is negligible for the thinner

layers, but increases to �10% in the 16 nm case. The thermal

conductance for channels with {112} surface is shown in

Fig. 3(d). The maximum and minimum conductances are

observed along h110i (circle) and h111i (star), respectively.

Channels with this surface indicate the largest variation in

thermal conductance compared to other surfaces. The differ-

ence varies from �40% for the 1 nm layers to �30% for the

16 nm layers. Overall, considering all surfaces and transport

orientations, the maximum thermal conductance is observed

for the f110g=h110i channels, and the minimum for the

f112g=h111i channels. Interestingly, however, regardless of

surface orientation, the thermal conductance is high in h110i
direction. This agrees well with previous works on silicon

nanowires, where it is reported that the h110i oriented nano-

wires have the highest thermal conductance.38–40 A similar

conclusion was found for thin layers of larger sizes.24 As we

shall explain below, the phonon dispersions along the h110i
orientations are more dispersive than along other orienta-

tions, which yield higher group velocities and, therefore,

highest thermal conductance.

Figure 4 shows the thermal conductance of the H¼ 2 nm

layers as a function of temperature. For every surface orien-

tation we show two transport orientations, the one with the

maximum and the one with the minimum conductance (as in

Fig. 2). The conductance increases monotonically with tem-

perature as expected from a ballistic quantity, and starts to

saturate around 300 K. The reason is that the thermal con-

ductance in Eq. (8) can be also expressed as

jl ¼
k2

BTp2

3h

ðþ1
0

�TphðxÞWphð�hxÞdð�hxÞ; (11)

where

FIG. 2. Transmission function versus energy for thin layers of thickness

H¼ 2 nm with (a) {100}, (b) {110}, (c) {111}, and (d) {112} surfaces, for

two transport orientations in each case. The different transport orientations

are the ones that yield the highest (blue-solid) and the lowest (red-dashed)

thermal conductance in the corresponding surface orientation.

FIG. 3. Ballistic lattice thermal conduct-

ance for different thin layers with (a)

{100}, (b) {110}, (c) {111}, and (d)

{112} surfaces. The angle h as shown in

Fig. 1 specifies the transport orientation.

Some of the high symmetry orientations

are denoted by symbols. Results for dif-

ferent layers thicknesses are shown.

From bottom to top, the thicknesses are

1, 2, 4, 8, and 16 nm.
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Wph ¼
3

p2

�hx
kBT

� �2 @n

@ð�hxÞ (12)

is the so-called phononic window function.37 The phonon

energy spectrum of Si extends up to �65 meV, and for suffi-

ciently high temperatures the phononic window function is

nearly constant within the entire �65 meV energy range, as

also shown in Ref. 37. This causes the thermal conductance

to saturate. Figure 4 shows that the f110g=h110i channel has

the highest conductance, and the f112g=h111i channel the

lowest in the entire temperature range. The conductances of

the other channels lie in between and do not deviate signifi-

cantly from one another. The same trend is observed for the

H¼ 16 nm channels (inset of Fig. 4), although the spread is

smaller. Below, we provide explanations for this geometry

dependence in terms of the phonon bandstructure, by extract-

ing the phonon density of states and the effective group

velocity.

IV. ANALYSIS

The ballistic thermal conductance in the Landauer for-

malism is determined by the product of the density of states

and the group velocity. In Fig. 5, we plot the density of states

for thin layers of thickness H¼ 2 nm and the four different

surface orientations of interest. Although some differences

are observed for the different surface orientations, especially

in the low frequency range, the overall values and trends are

very similar. The inset of Fig. 5 shows the density of states

for layers of thickness H¼ 16 nm. In this case a much

smaller variation is observed as expected, since the phonon

density of states depends at first order on the number of

atoms, and layers of the same thickness contain a similar

amount of atoms. At smaller thicknesses the different

arrangement of atoms can result in slightly different numbers

of atoms for different surfaces, but as the thickness increases

the crystal becomes more uniform and any variations are

eliminated. In general, of course, the arrangement of atoms,

the coupling between them, and the type of interactions they

have can also influence their density of states. But as we

show in Fig. 5, such effects are only important on the density

of states at very thin sizes, i.e., H¼ 2 nm, and even then,

they are small. We note that also in the case of Si nanowires,

our previous work has demonstrated a similar result, namely

that even for nanowires with cross section sizes down to

H¼ 6 nm, the density of states is orientation independent.40

From this, we conclude that the variation in the thermal con-

ductance and transmission does not originate from the differ-

ence in the density of states.

In Fig. 6 we plot the second quantity that influences the

transmission and conductance, which is related to the veloc-

ity of the phonon states. We define the effective group veloc-

ity at a specific energy E ¼ �hx as the weighted average of

the velocities of the phonon states, with the weighting factor

being the density of states

hhVgðxÞii ¼

X
a;q

vg;aðqÞ
����
k
d
�
x� xaðqÞ

	
X
a;q

d
�
x� xaðqÞ

	 : (13)

The velocity of a phonon is in general a function of the sub-

band index, the frequency, and the wavenumber q. The quan-

tity in Eq. (13) averages over the sub-band index and the

wavenumber and thus provides a quantity that depends only

on frequency (or energy). Similar “effective” quantities have

also been used in thermal conductivity calculations in differ-

ent works as well.26,41,42 However, in our actual calculations

we utilize all the information of the phonon spectrum. This

quantity is orientation-dependent, in contrast to the density

of states, and indicates how dispersive the modes are. The

velocity is calculated along the transport direction. The

FIG. 4. The thermal conductance of thin layers of 2 nm thickness for various

surface and transport orientations, as a function of temperature. The trans-

port orientations are the ones that result in the highest (solid) and lowest

(dashed) thermal conductance for the respective surface. Inset: The same

quantity for thin layers of H¼ 16 nm.

FIG. 5. The density of phonon states for thin layers of thickness H¼ 2 nm

for different surface orientations. Inset: The density of phonon states for

thickness H¼ 16 nm.
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density of states times the effective group velocity is propor-

tional to the transmission function. Therefore, the differences

in the transmission functions should be seen in the effective

group velocities of the channels, since the density of states is

the same for all channels of the same thickness. Figure 6

shows the effective group velocities of the channels consid-

ered. Figures 6(a) and 6(c) show the effective group veloc-

ities of thin layers with {100} and {111} surfaces along the

two different orientations with the lower and highest thermal

conductance for each surface, respectively. The two different

cases for each surface are almost identical, as in the case of

the transmission functions in Figs. 2(a) and 2(c). Figures

6(b) and 6(d) show the effective group velocities for chan-

nels with {110} and {112} surfaces, respectively. A varia-

tion is observed for the different channels, which causes the

difference in the transmission functions shown earlier in

Figs. 2(b) and 2(d).

The anisotropy (or isotropy) of the effective group ve-

locity originates from the phonon bandstructure. In Fig. 7,

we show contour plots of the phonon bandstructure at E ¼ �hx
¼ 10 meV for all eight channels considered in Figs. 2 and 6

for layer thickness H¼ 2 nm. This is an energy value at which

the most significant differences for the channels with {110}

and {112} surfaces appear. It turns out that what we present

for this energy is a good indicator of the anisotropic behavior

of the entire energy spectrum, most of which contributes to

thermal conductance at room temperature. The lines represent

the different modes at that energy, whereas the colormap indi-

cates the contribution of each q-state to the ballistic thermal

conductance at room temperature in the transport orientation

of the specific channel of interest, as indicated by the arrow in

each case. Elongation of contour lines along a specific direc-

tion provides high phonon group velocities in the perpendicu-

lar direction, and consequently high thermal conductance.

This is very similar to the situation of low effective mass and

high velocities of carriers in an ellipsoidal band along the direc-

tion of the short axis in the case of electronic transport. Figures

7(a) and 7(b) show the energy contours for the {100} surface

in the h110i and h100i transport orientations, respectively

(indicated by the arrow). Despite the square shape of the con-

tour, which indicates that there is different symmetry in the

two orientations of interest, the contours are elongated similarly

in both directions, which results in a similar thermal conduct-

ance for both channels. This is the case for almost the entire

energy spectrum (although at higher energies we have many

more modes and more complex contour shapes). In the case of

the {111} surface in Figs. 7(e) and 7(f), a highly symmetric

contour provides very similar transmission functions and ther-

mal conductances along the h110i and h112i directions. The

largest differences in the thermal conductance are observed for

thin layers with {110} and {112} surfaces in Figs. 7(c) and

7(d) and Figs. 7(g) and 7(h), respectively. In both cases, the

FIG. 6. The effective group velocity versus energy for thin layers of thick-

ness H¼ 2 nm for (a) {100}, (b) {110}, (c) {111}, and (d) {112} surfaces,

for two transport orientations in each case. The transport orientations chosen

are the ones that result in the highest (blue-solid) and the lowest (red-

dashed) thermal conductance for the given surface orientation.

FIG. 7. Energy contours at E¼ 10 meV for thin layers of different surface

and transport orientations. (a, b) {100} surface, (c, d) {110} surface, (e, f)

{111} surface, (g, h) {112} surface. The transport orientations chosen are

the ones that result in the highest (left) and the lowest (right) thermal con-

ductance for the given surface. The color indicates the contribution of each

q-state to the thermal conductance at E¼ 10 meV at 300 K along the differ-

ent transport orientations in each thin layer (indicated by the arrow). The red

color shows the highest value and the blue the lowest.
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contours at energy E¼ 10 meV are clearly elongated along

the vertical axis. This results in a larger phonon group veloc-

ity along the horizontal axis, and finally a higher thermal

conductance, as also indicated by the colormap. This is espe-

cially evident for the {112} surface, where the contour of the

h110i channel in Fig. 7(g) is colored much closer to red

(higher conductance value) than the h111i channel in Fig.

7(h), indicating much larger phonon group velocities. This

causes the thermal transmission and conductance of the

f112g=h110i channel to be higher than that of the

f112g=h111i channel shown in Figs. 2(d) and 3(d).

Figure 7 explains the origin of anisotropy in the ballistic

thermal conductance of thin layers with 2 nm thickness. We

point out, however, that such effects also hold for all the

thicknesses we examine, e.g., up to H¼ 16 nm. The aniso-

tropic behavior depends weakly on the layer thickness. The

ballistic conductance increases linearly as the layer thickness

increases due to the increased number of atoms which results

in a larger number of phonon modes, but the anisotropy does

not change significantly. This is illustrated in Fig. 8(a) which

shows the ballistic thermal conductance for each of the four

surface orientations examined, normalized by the thickness

of the layer. For each surface, we only consider the direction

showing the maximum conductance. We observe that in all

cases the normalized conductance is constant, even down to

a thickness of H � 5 nm. Below H � 5 nm, variations of the

order of �10%�20% are observed for all channels. From

this, it follows that other than the reduction in the size of the

phonon spectrum with thickness scaling, no significant

changes in the shape of the phonon structure are observed, at

least not significant to introduce changes in the thermal con-

ductance. This is also supported by Fig. 8(b), which depicts

the ratio of the maximum to the minimum thermal conduct-

ance that can be achieved for each surface. Similarly to Fig.

8(a), the anisotropy does not change with layer thickness

even down to H � 5 nm. Again, below H � 5 nm, differen-

ces of the order of 10%–20% can be observed.

This anisotropy observed is a function of not only thick-

ness but also temperature. Figure 9 shows the ratio of the

maximum to the minimum ballistic thermal conductance for

the four surface orientations of interest, again by choosing

the appropriate transport orientations. Figures 9(a) and 9(b)

show results for H¼ 2 nm and H¼ 16 nm, respectively. The

maximum anisotropy (up to 60%) is observed for the {112}

surface, followed by the {110} surface (up to 30%), whereas

the {111} and {100} surfaces are more or less isotropic (the

ratio stays �1). This holds for most of the temperature range

we examine, even down to 100 K. Below 100 K, the ratio

approaches unity in all cases, because at this temperature the

main contribution to thermal conductance comes from the

acoustic branches at low energy, which are more isotropic.

This is clearly observed in the low energy range of the trans-

missions in Fig. 2, in which the thermal conductivity is

isotropic.

Finally, we need to mention that this work focused on

the influence of bandstructure on the anisotropic behavior of

the thermal transport properties of ultra-thin Si layers. Thus,

we employed accurate phonon bandstructures, but utilized a

rather simplified ballistic transport formalism, which ignores

the effects of phonon scattering. Our intent is to provide a

FIG. 8. (a) The maximum value of the conductance in thin layers of differ-

ent surface orientations at 300 K normalized by the thickness, versus layer

thickness. (b) The ratio of the maximum to the minimum thermal conduct-

ance for different surface orientations, versus their thickness at 300 K. For

each surface, the transport orientations with the maximum and minimum

conductance values are chosen.

FIG. 9. The ratio of maximum to minimum thermal conductance of thin

layers for different surfaces versus temperature. For each surface, the trans-

port orientation with the maximum and minimum conductance values is cho-

sen. Thicknesses are (a) H¼ 2 nm and (b) H¼ 16 nm.
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qualitative indication of the anisotropic behavior of phonon

transport in thin layers. Employing atomistic phonon band-

structures and a fully diffusive transport formalism that

accounts of the energy, momentum, and bandstructure de-

pendence of each scattering event would be computationally

very expensive, and will be the topic of subsequent studies.

Our results, however, point out that a factor of two variation

in phonon transport can be achieved once the channel geom-

etry is optimized. These findings agree qualitatively well

with diffusive phonon transport calculations that indicate the

superiority of the thermal conductivity of the f110g=h110i
channel over other geometries, and the low thermal conduct-

ance for the f111g=h110i and f112g=h111i channels.24 They

also agree with calculations for Si NWs, which indicate the

beneficial h110i transport orientation to heat transport, com-

pared to other orientations.38–40 When it comes to comparing

to experimental results, however, unfortunately we could not

identify any works in the literature that perform systematic

thermal conductivity measurements in such ultra-thin layers

(H < 16 nm) and in various confinement and transport orien-

tations. Most experimental works on thermal conductivity

consider relatively thick layers of thicknesses in the order of

10s-100s of nanometers and primarily on {100} layers. In

thicker layers, the phonon modes are almost bulk-like and

one cannot observe the anisotropic phonon confinement

effects that lead to bandstructure modifications and conduct-

ance variations. In addition, the influence of various scatter-

ing mechanisms makes the thermal conductivity of thicker

layers more isotropic and hides the results of bandstructure

anisotropy (that ballistic simulations fully capture).

Our findings, however, are useful in understanding pho-

non transport in ultra-thin Si layers, and with regards to

applications, could provide guidance in either maximizing

heat transport as in the case of thermal management or mini-

mizing heat transport as in the case of thermoelectrics. For

example, for electronic applications, we mention that for

p-type nanoelectronic channels, transport in the f110g=h110i
orientation is beneficial compared to other orientations.43,44

This is also the case for the power factor in the case of

thermoelectric devices.45 In the former case, however, for

electronic devices large thermal conductivity is necessary in

order to remove the heat from the device; otherwise, the

mobility is degraded. The large thermal conductivity of the

f110g=h110i channel, therefore, could be advantageous

for p-type electronic devices. In the latter case, for thermo-

electric devices channels with low thermal conductivity are

needed in order to reduce losses and increase thermoelec-

tric efficiency. The large thermal conductivity of the

f110g=h110i channel, therefore, could counteract the bene-

fit of its larger power factor, and this channel might not be

the optimal for thermoelectric p-type Si devices.

V. CONCLUSIONS

The ballistic thermal conductance and its dependence on

surface and transport orientations in ultra-thin silicon layers

from 1 nm to 16 nm in thickness are investigated using the

modified valence force field method and the Landauer for-

malism. The ballistic conductance of thin layers with {100}

and {111} surface orientations is almost isotropic for all

transport orientations. An anisotropy in the transport orienta-

tion of the order of 60% and 40% is observed for {112} and

{110} channels, respectively, due to the asymmetry in their

phonon mode structure. In terms of absolute values, the

f110g=h110i channel has the highest thermal conductance,

and the f112g=h111i channel the lowest (almost 50% lower).

Interestingly, for all surfaces, the h110i transport orientation

shows the highest conductance. We finally show that these

observations are layer thickness-independent, as well as

temperature-independent. This anisotropy of transport for

each surface is observed for temperatures above 100 K,

whereas for lower temperatures the anisotropy is reduced.

Our results can be useful in understanding the contribution

of the phonon dispersion in the thermal conductivity of ultra-

thin Si layers, as well as in the design of efficient thermal

management and thermoelectric devices.
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