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Transient simulations of a resonant tunneling diode oscillator are presented. The semicon-
ductor model for the diode consists of a set of time-dependent Schrödinger equations
coupled to the Poisson equation for the electric potential. The one-dimensional Schröding-
er equations are discretized by the finite-difference Crank–Nicolson scheme using
memory-type transparent boundary conditions which model the injection of electrons
from the reservoirs. This scheme is unconditionally stable and reflection-free at the bound-
ary. An efficient recursive algorithm due to Arnold, Ehrhardt, and Sofronov is used to
implement the transparent boundary conditions, enabling simulations which involve a
very large number of time steps. Special care has been taken to provide a discretization
of the boundary data which is completely compatible with the underlying finite-difference
scheme. The transient regime between two stationary states and the self-oscillatory
behavior of an oscillator circuit, containing a resonant tunneling diode, is simulated for
the first time.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The resonant tunneling diode has a wide variety of applications as a high-frequency and low-consumption oscillator or
switch. The resonant tunneling structure is usually treated as an open quantum system with two large reservoirs and an
active region containing a double-barrier heterostructure. Accurate time-dependent simulations are of great importance
to develop efficient and reliable quantum devices and to reduce their development time and cost. There exist several
approaches in the literature to model a resonant tunneling diode. The simplest approach is to replace the diode by an
equivalent circuit containing nonlinear current–voltage characteristics [28]. Another approximation is to employ the
Wannier envelope function development [29]. Other physics-based approaches rely on the Wigner equation [12,27], the
nonequilibrium Green’s function theory [15,26], quantum hydrodynamic models [19,21,24], and the Schrödinger equation
[11,13,31,32].

In this paper, we adopt the latter approach and simulate the time-dependent behavior of a resonant tunneling diode using
the Schrödinger–Poisson system in one space dimension. In this setting, the electrons are assumed to be in a mixed state
with Fermi–Dirac statistics and the electrostatic interaction is taken into account at the Hartree level. Each state is deter-
mined as the solution of the transient Schrödinger equation with nonhomogeneous transparent boundary conditions. The
Schrödinger equations are discretized by the Crank–Nicolson finite-difference scheme and coupled self-consistently to the
Poisson equation. The main originality of this paper is the adaption (and slight improvement) of existing numerical
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techniques from, e.g., [1,6,31], to a long-time simulation of a high-frequency oscillator circuit containing a resonant tunnel-
ing diode. Our changes in the techniques are necessary to achieve simulations without spurious oscillations in the numerical
transient solution. In the following, we detail the techniques used as well as the novel features.

First, we consider the one-dimensional stationary problem, since it builds the basis for the transient simulations. The sta-
tionary transparent boundary conditions are discretized in such a way that their discrete version is compatible with the
underlying finite difference discretization, as proposed in [4]. Thereby, any (numerical) spurious oscillation is eliminated,
which would otherwise propagate in the transient simulations. In the literature [10,31], a modified version of the potential
energy is used to overcome problems of numerical convergence. Physically interpreted, this model introduces artificial
surface charge densities at the junction interfaces of the tunneling diode. We are able to solve the original problem. This
represents an improvement compared to the simulations in [31], where the modified model is also employed for the
time-dependent case.

Second, the time-dependent Schrödinger–Poisson system with transparent boundary conditions is approximated. Since
these boundary conditions are of memory type [4,8], their numerical implementation requires to store (and to use) the
boundary data for all the past history. For this reason, simulations involving longer time scales are extremely costly. This
explains why simulations in the literature [10,13,31] have been restricted to some picoseconds only. We solve this problem
by using a fast evaluation of the discrete convolution kernel of sum-of-exponentials, which has been presented in [6] and
employed in [5] on circular domains. To our knowledge, this rather new numerical technique has not been applied to real-
istic device simulations so far.

A challenge in the transient simulations results from the large number of wave functions which need to be propagated,
accounting for the energy distribution of the incoming electrons. Each state is provided with transparent boundary condi-
tions, which raises the computational cost sharply. To cope with a large number of Schrödinger equations to be solved,
we developed a parallel version of our solver utilizing multiple cores on shared memory processors. This enables us to pres-
ent, for the first time, simulations to the Schrödinger–Poisson system for large times up to 100 ps (ps = picosecond) with rea-
sonable computational effort (compared to 5 ps in [31], 6 ps in [13], and 8 ps in [10]).

Another novelty in this paper concerns the discretization of nonhomogeneous discrete transparent boundary conditions
which describe continuously varying applied potentials (as in an oscillator circuit). It is well known that, using a suitable
gauge change, one can get rid of the transient potential [2]. Corresponding nonhomogeneous transparent boundary condi-
tions can be found in [10]. In numerical simulations, however, we observed that these boundary conditions may lead to
unphysical distortions in the conduction current density. The reason is that the considered discretization of the gauge change
is not compatible with the underlying finite-difference scheme. Therefore, we suggest a new discretization which is derived
from the Crank–Nicolson time integration scheme. Our approach completely removes these numerical artifacts, and we
show that the total current density is now perfectly conserved. We stress the fact that our discretization is completely con-
sistent with the underlying Crank–Nicolson scheme inheriting its conservation and stability properties.

Third, the numerical results allow us to identify plasma oscillations in a certain time regime of the resonant tunneling
diode and to estimate the life time of the resonant state. We present, for the first time, simulations of a high-frequency oscil-
lator circuit containing a resonant tunneling diode, based on a full Schrödinger–Poisson solver with transparent boundary
conditions. Simplified tunneling diode oscillators have been considered in [28–30]. Our approach enables us to observe
the complex spatio-temporal behavior of macroscopic quantities inside the resonant tunneling diode in an unprecedented
way.

The paper is organized as follows. In Section 2, we detail the algorithm of the stationary problem. The transient algorithm
is described in Section 3. In Section 4 we consider numerical experiments for constant applied voltage and time-dependent
applied voltage. Furthermore, the numerical convergence related to the approximation of the discrete convolution kernel by
sum-of-exponentials is investigated. Finally, we present high-frequency oscillator circuit simulations in Section 5.
2. Stationary simulations

The steady state is the basis for the transient simulations. Therefore, we discuss first the stationary regime.

2.1. Schrödinger–Poisson model

We assume that the one-dimensional device in ð0; LÞ is connected to the semi-infinite leads ð�1;0� and ½L;1Þ. The leads
are assumed to be in thermal equilibrium and at constant potential. At the contacts, electrons are injected with some given
profile. We suppose that the charge transport is ballistic and that the electron wave functions evolve independently from
each other. The one-dimensional device consists of three regions: two highly doped regions, ½0; a1� and ½a6; L�, with the doping
concentration n1

D and a lowly doped region, ½a1; a6�, with the doping density n2
D (see Fig. 1). The middle interval contains a

double barrier, described by the barrier potential
VbarrðxÞ ¼
V0 for x 2 ½a2; a3� [ ½a4; a5�;
0 else:

�



Fig. 1. Barrier potential and doping profile of a double-barrier heterostructure.
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The doping profile nD is defined by
nDðxÞ ¼
n1

D for x 2 ½0; a1� [ ½a6; L�;
n2

D else:

(

The parameters are taken from [10,31]:
a1 ¼ 50 nm; a2 ¼ 60 nm; a3 ¼ 65 nm;

a4 ¼ 70 nm; a5 ¼ 75 nm; a6 ¼ 85 nm;

L ¼ 135 nm; n1
D ¼ 1024 m�3; n2

D ¼ 5 � 1021 m�3;
and the barrier height is V0 ¼ 0:3 eV.
The Coulomb interaction is taken into account at the Hartree level, i.e. by an infinite number of Schrödinger equations
� �h2

2m
d2/k

dx2 ðxÞ þ VðxÞ/kðxÞ ¼ EðkÞ/kðxÞ; x 2 R; ð1Þ
self-consistently coupled to the Poisson equation,
� d2V self

dx2 ¼ e2

e
ðn½V self � � nDÞ; x 2 ð0; LÞ;

V selfð0Þ ¼ 0; V selfðLÞ ¼ �eU; ð2Þ
where V ¼ Vbarr þ V self is the potential energy. The physical parameters are the reduced Planck constant �h, the effective elec-
tron mass m, the elementary charge e, and the permittivity e ¼ ere0, being the product of the relative permittivity er and the
electric constant e0. Furthermore, U P 0 denotes the applied voltage, and the electron density is defined by
n½V self �ðxÞ ¼
Z

R

gðkÞj/kðxÞj
2dk: ð3Þ
The injection profile gðkÞ is given according to Fermi–Dirac statistics by
gðkÞ ¼ mkBT0

2p2�h2 ln 1þ exp
EF � �h2k2

=ð2mÞ
kBT0

 ! !
; ð4Þ
where kB is the Boltzmann constant, T0 the temperature of the semiconductor and EF the Fermi energy (relative to the con-
duction band edge). In all subsequent simulations, we use, as in [31], er ¼ 11:44; T0 ¼ 300 K, EF ¼ 6:7097 � 10�21 J, and the
effective mass of Gallium arsenide, m ¼ 0:067me, with me being the electron mass at rest.

In order to define the total electron energy EðkÞ depending on the wave number k 2 R, we need to distinguish the cases
k > 0 and k < 0. For k > 0, the electrons enter from the left, and we have EðkÞ ¼ �h2k2

=ð2mÞ. The wave function in the leads is
given by
/kðxÞ ¼ eikx þ rðkÞe�ikx; x < 0;

/kðxÞ ¼ tðkÞ exp i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEðkÞ � VðLÞÞ=�h2

q
x

� �
; x > L:
Eliminating the transmission and reflection coefficients tðkÞ and rðkÞ, respectively, the boundary conditions
/0kð0Þ þ ik/kð0Þ ¼ 2ik; /0kðLÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEðkÞ � VðLÞÞ=�h2

q
/kðLÞ ð5Þ
follow. For k < 0, the electrons enter from the right. The total energy is given by EðkÞ ¼ �h2k2
=ð2mÞ � eU, and the wave func-

tion in the leads reads as
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/kðxÞ ¼ tðkÞ exp �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEðkÞ=�h2

q
x

� �
; x < 0;

/kðxÞ ¼ eikx þ rðkÞe�ikx; x > L:
This yields the boundary conditions
/0kð0Þ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEðkÞ=�h2

q
/kð0Þ; /0kðLÞ þ ik/kðLÞ ¼ 2ikeikL

: ð6Þ
Summarizing, the stationary problem consists in the Schrödinger Eq. (1) with the transparent boundary conditions (5)
and (6) coupled to the Poisson Eq. (2) via the electron density (3). We remark that the existence and uniqueness of solutions
to a Schrödinger–Poisson boundary-value problem similar to (1)–(6) has been shown in [9].

2.2. Discrete transparent boundary conditions

We recall the finite-difference discretization of the stationary Schrödinger equation with transparent boundary condi-
tions [4]. Using standard second-order finite differences on the equidistant grid xj ¼ jDx, j 2 f0; . . . ; Jg, with xJ ¼ L and
Dx > 0, we find for the grid points located in the computational domain,
/jþ1 � 2/j þ /j�1 þ
2mðDxÞ2

�h2 ðEðkÞ � VjÞ/j ¼ 0: ð7Þ
It is well known that a standard centered finite-difference discretization of the boundary conditions (5) and (6) may lead
to spurious oscillations in the numerical solution [4]. In principle, the numerical errors can be made as small as desired by
choosing Dx sufficiently small. However, since the stationary solutions will serve as initial states in our transient simulations,
we need to avoid any spurious oscillation, which would otherwise be propagated with every time step.

For this, we apply (stationary) discrete transparent boundary conditions compatible with the finite-difference discretiza-
tion (7) as proposed in [4]. For the sake of completeness, we review the derivation. Note that the final discretization is equiv-
alent to the discretization (7) extended to the whole space, i.e. for j 2 Z.

In the semi-infinite leads j 6 0 and j P J, the potential energy is assumed to be constant,
Vj ¼
V0 ¼ 0 for j 6 0;
VJ ¼ �eU for j P J:

�

Then (7) reduces to a difference equation with constant coefficients which admits two solutions of the form /j ¼ ða�0;JÞ

j,
where
a�0;J ¼ 1�mðEðkÞ � V0;JÞðDxÞ2

�h2 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEðkÞ � V0;JÞðDxÞ2

�h2 �m2ðEðkÞ � V0;JÞ2ðDxÞ4

�h4

s
:

Here, EðkÞ � V0;J corresponds to the kinetic energy Ekin
0;J ðkÞ in the left or right lead. In case Ekin

0;J ðkÞ > 0, the solution is a discrete
plane wave and ðDxÞ2 < 2�h2

=ðmðEðkÞ � V0;JÞÞ is needed to ensure ja0;Jj ¼ 1, which in practice is not a restriction. In case
Ekin

0;J ðkÞ ¼ 0, the solution is constant. Depending on the applied voltage, Ekin
0;J ðkÞ might also become negative. In that case,

the solution is decaying or growing exponentially fast and we select the decaying solution as it is the only physically rea-
sonable solution.

In practice, we start with the calculation of the total energy EðkÞ ¼ Ekin
0;J ðkÞ þ V0;J . For electrons coming from the left contact

we have EðkÞ ¼ Ekin
0 ðkÞ. As the incoming electron is represented by a discrete plane wave, Ekin

0 ðkÞ is positive but, depending on
the applied voltage, Ekin

J ðkÞ might be positive, zero or negative. For electrons coming from the right contact, we have
EðkÞ ¼ Ekin

J ðkÞ � eU. Again, the incoming wave function is a discrete plane wave, i.e., Ekin
J ðkÞ > 0 but nothing is said about

Ekin
0 ðkÞ. At this point it should be noted that the kinetic energy of the incoming electron needs to be computed according

to the discrete dispersion relation
EkinðkÞ ¼ �h2

mðDxÞ2
ð1� cosðkDxÞÞ;
which follows after solving the centered finite-difference discretization of the free Schrödinger equation
� �h2

2m
d2

dx2 eikx ¼ EkinðkÞeikx:
In the limit Dx! 0, we recover the continuous dispersion relation EkinðkÞ ¼ �h2k2
=ð2mÞ.

Let us consider a wave function entering the device from the left contact (k > 0). For j 6 0, the solution to (7) is a super-
position of an incoming and a reflected discrete plane wave, /j ¼ bj þ Bb�j, where b ¼ a0. We eliminate B from
/�1 ¼ b�1 þ Bb; /0 ¼ 1þ B to find the discrete transparent boundary condition at x0:
�b�1/�1 þ /0 ¼ 1� b�2:
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For j P J, the solution to (7) is given by /j ¼ Ccj with c ¼ aJ . This means that /Jþ1 ¼ CcJþ1 ¼ c/J , and the boundary condition
at xJ becomes
/J � c�1/Jþ1 ¼ 0:
Summarizing, we obtain the linear system A/ ¼ b with the tridiagonal matrix A consisting of the main diagonal
ð�b�1;�2þ 2mðDxÞ2ðEðkÞ � V0Þ=�h2

; . . . ;�2þ 2mðDxÞ2ðEðkÞ � VJÞ=�h2
;�c�1Þ and the first off diagonals ð1; . . . ;1Þ. The vector

of the unknowns is given by / ¼ ð/�1; . . . ;/Jþ1Þ
T and b represents the right-hand side b ¼ ð1� b�2;0; . . . ;0ÞT.

The case of a wave function entering from the right contact (k < 0) works analogously.

2.3. Solution of the Schrödinger–Poisson system

We explain our strategy to solve the coupled Schrödinger–Poisson system. To this end, we introduce the equidistant en-
ergy grid
K ¼ f�kM;�kM þ Dk; . . . ;�Dk;þDk; . . . ; kM � Dk; kMg; K :¼ jKj: ð8Þ
The electron density (3) is approximated by
ndisc½V self �ðxÞ ¼ Dk
X
k2K

gðkÞj/kðxÞj
2
;

where the Fermi–Dirac statistics gðkÞ is defined in (4) and the functions /k are the scattering states, i.e., the solutions to the
discretized stationary Schrödinger Eq. (7) with discrete transparent boundary conditions as described in Section 2.2. This
approximation is reasonable if Dk is sufficiently small and kM is sufficiently large. In the numerical simulations below, we
choose K ¼ 3000 and, as in [[10] Section 5], kM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEF þ 7kBT0Þ

p
=�h, recalling that EF ¼ 6:7097 � 10�21 J and T0 ¼ 300 K.

The discrete Schrödinger–Poisson system is iteratively solved as follows. We set V ¼ Vbarr þ V ðpÞself ;U , where V ðpÞself ;U is the pth
iteration of V self for the applied voltage U. Given V, we compute a set of quasi eigenstates f/ðpÞk gk2K. This defines the discrete
electron density
ndisc½V ðpÞself;U � ¼ Dk
X
k2K

gðkÞj/ðpÞk ðxÞj
2
:

The Poisson equation is solved by employing a Gummel-type method [20]:
� d2

dx2 V ðpþ1Þ
self;U ¼

e2

e
n½V ðpÞself;U � exp

V ðpÞself ;U � V ðpþ1Þ
self;U

V ref
self

 !
� nD

 !
;

V ðpþ1Þ
self;Uð0Þ ¼ 0; V ðpþ1Þ

self;UðLÞ ¼ �eU:
The idea of the Gummel method is to decouple the Schrödinger and Poisson equations but to formulate the Poisson equation
in a nonlinear way, using the relation between the electron density and electric potential in thermal equilibrium. The param-
eter V ref

self can be tuned to reduce the number of iterations; we found empirically that the choice V ref
self ¼ 0:04 eV minimizes the

iteration number. If the relative error in the ‘2-norm is smaller than a fixed tolerance,
V ðpþ1Þ
self ;U � V ðpÞself;U

V ðpþ1Þ
self;U

�����
�����

2

6 d; ð9Þ
we accept V self :¼ V ðpþ1Þ
self ;U and f/ðpþ1Þ

k gk2K as the approximate self-consistent solution. Otherwise, we proceed with the iteration
pþ 1! pþ 2 and compute a new set of scattering states. The procedure is repeated until (9) is fulfilled. We have chosen the
tolerance d ¼ 10�6.

For zero applied voltage we use V ð0Þself ;0 mV ¼ 0 mV to start the iteration. Only seven iterations are needed until criterion (9)
is fulfilled. As a result we obtain V ð7Þself ;0 mV, which is depicted in Fig. 2(a) (solid line).

Numerical problems arise when non-equilibrium solutions are computed. As an example we consider the case of a small
applied voltage U ¼ 1 mV. To start the iteration process we use the previously computed solution, i.e., we set
V ð0Þself;1 mV :¼ V ð7Þself ;0 mV. The next iterations are illustrated in Fig. 2(a) (dashed lines). Obviously they do not converge and are
physically not realistic. This phenomenon is a well-known in the literature [17,18] and is believed to be related to the ab-
sence of inelastic processes in the Schrödinger–Poisson equations.

In the literature [10,31], a modified version of the Schrödinger–Poisson equations is employed to overcome this problem.
The modification concerns the description of the potential energy in the Poisson equation. For this, we write the Poisson Eq.
(2) as follows:
� d2V0

dx2 ¼ 0 in ð0; LÞ; V0ð0Þ ¼ 0; V0ðLÞ ¼ �eU;

� d2V1

dx2 ¼
e2

e
ðn� nDÞ in ð0; LÞ; V1ð0Þ ¼ 0; V1ðLÞ ¼ 0;



(a) (b)
Fig. 2. (a) Solid line: self-consistent solution V self for U ¼ 0 mV, found after seven iterations. Dashed lines: divergent approximations for U ¼ 1 mV. Dotted
line: barrier potential. (b) Solid line: self-consistent solution V1 for U ¼ 250 mV according to approximation (10). Dotted line: sum of the barrier potential
and a ramp-like potential.
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i.e., the self-consistent potential is V self ¼ V0 þ V1. The first boundary-value problem can be solved explicitly:
V0ðxÞ ¼ �eUx=L; x 2 ½0; L�. In [10,31], the linearly decreasing potential V0 has been replaced by the ramp-like potential
eV 0ðxÞ ¼ �B0
x� a1

a6 � a1
1½a1 ;a6Þ þ 1½a6 ;1Þ

� �
; x 2 ½0; L�; ð10Þ
where 1I is the characteristic function on the interval I � R (see Fig. 1 for the definition of a1 and a6). The function eV 0 þ Vbarr

is illustrated in Fig. 2(b) (dotted line). The potential energy is then given by V ¼ eV 0 þ V1 þ Vbarr. Using this modified physical
model, the above Gummel iteration scheme for the Poisson equation for V1 converges without any problems, see Fig. 2(b)
(solid line), even for large applied voltages. However, we will see below that the results from the modified model differ con-
siderably from the results obtained by the original Schrödinger–Poisson model. Furthermore, the potential energy is no long-
er differentiable at a1 and a6. This may be interpreted as a model of surface charge densities at the interfaces which, however,
are not intended in the model.

In fact, we are able to solve numerically the original Schrödinger–Poisson problem. To this end, the applied voltage needs
to be increased in small steps. We found that the starting potential in each step needs to be initialized carefully. More pre-
cisely, given the self-consistent solution V self ;U for the applied voltage U, we wish to compute a self-consistent solution with
the applied voltage U þ DU. In each step we choose
V ð0Þself;UþDUðxÞ :¼ V self;UðxÞ � DU
2x� L

L
1½L=2;L� ð11Þ
to start the iteration. For U ¼ 0 mV and DU ¼ 25 mV, the Gummel scheme converges to a physically reasonable solution after
seven iterations (i.e., (9) is fulfilled). Some iterations are shown in Fig. 3. We observed that a voltage step DU < 30 mV leads
to convergent solutions also for large applied voltages.
Fig. 3. Some iterations computed according to (11).



Fig. 4. Current–voltage characteristics. The solid line corresponds to our solution of the original stationary Schrödinger–Poisson system. The dashed line is
obtained with the modified model using approximation (10).
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In order to compare the original Schrödinger–Poisson model with the model using approximation (10), we computed the
current–voltage characteristics shown in Fig. 4. Here, the (conduction) current density
Jcond ¼
e�h
m

Z
R

gðkÞIm /�k
d/k

dx

� �
dk ð12Þ
is approximated by a simple quadrature formula using symmetric finite differences to compute d/k=dx. Fig. 4 shows that the
results differ considerably, i.e., the choice (10) leads to different results than those computed from the original model. There-
fore, we employ the original description of the potential energy in the transient simulations of the next sections.

3. Transient simulations

In this section, we detail the numerical discretization of the transient Schrödinger equations
i�h
@wk

@t
¼ � �h2

2m
@2wk

@x2 þ Vð�; tÞwk; wkð�;0Þ ¼ /k; x 2 ½0; L�; t > 0; k 2 K; ð13Þ
with discrete transparent boundary conditions, where K is defined in (8). To simplify the presentation, we skip in this section
the index k.

3.1. Nonhomogeneous discrete transparent boundary conditions

The transient Schrödinger Eq. (13) is discretized by the commonly used Crank–Nicolson scheme:
wðnþ1Þ
j�1 þ iR� 2þwV ðnþ1=2Þ

j

� �
wðnþ1Þ

j þ wðnþ1Þ
jþ1 ¼ �wðnÞj�1 þ iRþ 2�wV ðnþ1=2Þ

j

� �
wðnÞj � wðnÞjþ1; ð14Þ
where wðnÞj approximates wðxj; tnÞ with xj ¼ jDx and tn ¼ nDt (j 2 Z; n 2 N0), V ðnþ1=2Þ
j approximates VðjDx; ðnþ 1=2ÞDtÞ, and

R ¼ 4mðDxÞ2=ð�hDtÞ;w ¼ �2mðDxÞ2=�h2. Under the assumptions that the initial wave function is compactly supported in
ð0; LÞ and that the applied voltage vanishes, Vðx; tÞ ¼ 0 for x 6 0 and x P L, t P 0, it is well known (see, e.g., [4,8]) that trans-
parent boundary conditions for the Schrödinger Eq. (13) read as
@w
@x
ð0; tÞ ¼

ffiffiffiffiffiffiffi
2m
p�h

r
e�ip=4 d

dt

Z t

0

wð0; sÞffiffiffiffiffiffiffiffiffiffiffi
t � s
p ds; ð15aÞ

@w
@x
ðL; tÞ ¼ �

ffiffiffiffiffiffiffi
2m
p�h

r
e�ip=4 d

dt

Z t

0

wðL; sÞffiffiffiffiffiffiffiffiffiffiffi
t � s
p ds: ð15bÞ
The (homogeneous) discrete transparent boundary conditions, based on the above Crank–Nicolson scheme, are given as fol-
lows (see [3] for the derivation):
wðnþ1Þ
1 � sð0Þwðnþ1Þ

0 ¼
Xn

‘¼1

sðnþ1�‘Þwð‘Þ0 � wðnÞ1 ; n P 0; ð16aÞ

wðnþ1Þ
J�1 � sð0Þwðnþ1Þ

J ¼
Xn

‘¼1

sðnþ1�‘Þwð‘ÞJ � wðnÞJ�1; n P 0; ð16bÞ
with the convolution coefficients
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sðnÞ ¼ 1� i
R
2

� �
dn;0 þ 1þ i

R
2

� �
dn;1 þ ae�inu PnðlÞ � Pn�2ðlÞ

2n� 1
ð17Þ
and the abbreviations
u ¼ arctan
4
R
; l ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ 16
p ; a ¼ i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðR2 þ 16Þ4

q
eiu=2:
Here, Pn denotes the nth-degree Legendre polynomial (P�1 ¼ P�2 ¼ 0), and dn;j is the Kronecker symbol. In practice, the coef-
ficients defined in (17) are computed with an efficient three-term recursion, relying on the three-term recursion of the
Legendre polynomials [16]. The Crank–Nicolson scheme along with these discrete boundary conditions yields an uncondi-
tionally stable discretization which is perfectly reflection-free [3,4].

Next, let the initial wave function be a solution to the stationary Schrödinger equation with energy E and let the exterior
potential at the right contact be given by a time-dependent function, Vðx; tÞ ¼ �eUðtÞ for x P L; t P 0. This leads to nonho-
mogeneous transparent boundary conditions [1]. We describe our strategy to discretize these boundary conditions. Our ap-
proach is motivated by that presented in [[10], Appendix B], but we suggest, similarly as in [4], a discretization of the gauge
change which is compatible with the underlying finite-difference scheme. Additionally, our approach requires only a single
set of convolution coefficients instead of two.

First, we derive a nonhomogeneous discrete transparent boundary condition at xj ¼ L. To this end, we consider the dif-
ference between the unknown wave function w and the time evolution of the scattering state, /ðxÞ expðiEt=�hÞ, in the right
lead ½L;1Þ. We employ a gauge change to get rid of the time-dependent potential VLðtÞ ¼ �eUðtÞ. As a consequence, the func-
tion wðx; tÞ expði

R t
0 VLðsÞds=�hÞ solves the free transient Schrödinger equation in ½L;1Þ. Using a similar gauge change, a

straightforward computation shows that /ðxÞ expð�iðE� VLð0ÞÞt=�hÞ solves the free Schrödinger equation in ½L;1Þ as well.
Hence,
uðx; tÞ :¼ wðx; tÞ exp
i
�h

Z t

0
VLðsÞds

� �
� /ðxÞ exp � i

�h
ðE� VLð0ÞÞt

� �
ð18Þ
for x 2 ½L;1Þ solves the free transient Schrödinger equation. Furthermore, uðx;0Þ ¼ 0 for all x 2 ½L;1Þ. Therefore, we could
apply (15b) to derive a nonhomogeneous transparent boundary condition at the right contact. Instead we replace uðx; tÞ by
some approximation uðnÞj and subsequently apply (16b) to derive a discrete boundary condition compatible with the
Crank–Nicolson scheme. The question is how to approximate the quantities expði

R t
0 VLðsÞds=�hÞ and expð�iðE� VLð0ÞÞt=�hÞ.

Indeed, the ad hoc discretization for t ¼ nDt,
exp
i
�h

Z t

0
VLðsÞds

� �
� exp

i
�h

Xn�1

‘¼0

V ð‘þ1=2Þ
L Dt

 !
; exp � i

�h
ðE� VLð0ÞÞt

� �
¼ exp � i

�h
ðE� V ð0ÞL ÞnDt

� �
; ð19Þ
where V ð‘ÞL ¼ VLð‘DtÞ, is not derived from the underlying finite-difference discretization, causing unphysical numerical reflec-
tions at the boundary. In principle, these reflections can be made arbitrarily small for Dt ! 0. However, for practical time
step sizes, the calculation of the current density would be still distorted. Our (new) idea is to apply a Crank–Nicolson dis-
cretization to a differential equation satisfied by expði

R t
0 VLðsÞds=�hÞ. Indeed, this expression solves
de
dt
ðtÞ ¼ i

�h
VLðtÞeðtÞ; eð0Þ ¼ 1:
The Crank–Nicolson discretization of this ordinary differential equation reads as
eðnþ1Þ ¼ eðnÞ þ Dt
i

2�h
V ðnþ1=2Þ

L ðeðnþ1Þ þ eðnÞÞ; eð0Þ ¼ 1:
This recursion relation can be solved explicitly yielding
eðnÞ ¼ exp 2i
Xn�1

‘¼0

arctan
Dt
2�h

V ð‘þ1=2Þ
L

� � !
; n 2 N0:
A Taylor series expansion
2i arctan
Dt
2�h

V ð‘þ1=2Þ
L

� �
¼ i

�h
V ð‘þ1=2Þ

L Dt þ OððDtÞ3Þ
reveals that in the limit Dt ! 0, the ad hoc discretization in (19) coincides with the discrete gauge change which is derived
from the Crank–Nicolson time-integration method.

Analogously, expð�iðE� VLð0ÞÞt=�hÞ needs to be replaced by
cðnÞJ :¼ exp 2i
Xn�1

‘¼0

arctan �Dt
2�h

E
� � !

exp 2i
Xn�1

‘¼0

arctan
Dt
2�h

V ð0ÞL

� � !

¼ exp 2in arctan
Dt
2�h

V ð0ÞL

� �
� arctan

Dt
2�h

E
� �� �	 


; n 2 N0:
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Thus, the discrete analog of u in definition (18) is given by
uðnÞj ¼ wðnÞj eðnÞ � /jc
ðnÞ
J ; j 2 f0; . . . ; Jg; n 2 N0:
Replacing wðnÞj by uðnÞj in (16b), we obtain the desired nonhomogeneous discrete transparent boundary condition at xJ ¼ L:
wðnþ1Þ
J�1 �ðnþ1Þ � sð0Þwðnþ1Þ

J �ðnþ1Þ ¼ ��ðnÞwðnÞJ�1 þ
Xn

‘¼1

sðnþ1�‘Þ wð‘ÞJ �
ð‘Þ � /Jc

ð‘Þ
J

� �
� sð0Þ/Jc

ðnþ1Þ
J þ /J�1 cðnþ1Þ

J þ cðnÞJ

� �
: ð20Þ
At the left contact x0 ¼ 0, a nonhomogeneous boundary condition can be derived in a similar way. Since the potential en-
ergy in the left lead is assumed to vanish, the term eðnÞ is not needed, and the boundary condition is given by
wðnþ1Þ
1 � sð0Þwðnþ1Þ

0 ¼ �wðnÞ1 þ
Xn

‘¼1

sðnþ1�‘Þ wð‘Þ0 � /0c
ð‘Þ
0

� �
� sð0Þ/0c

ðnþ1Þ
0 þ /1 cðnþ1Þ

0 þ cðnÞ0

� �
; ð21Þ
where
cðnÞ0 :¼ exp �2in arctan
Dt
2�h

E
� �� �

; n 2 N0:
We summarize: The Crank–Nicolson scheme (14) with the nonhomogeneous discrete transparent boundary conditions
(20) and (21) reads as
Bwðnþ1Þ ¼ CwðnÞ þ dðnÞ; ð22Þ
where wðnÞ ¼ ðwðnÞ0 ; . . . ;wðnÞJ Þ
T
; d ¼ ðdðnÞ0 ;0; . . . ;0; dðnÞJ Þ

T. Furthermore, B is a tridiagonal matrix with main diagonal
ð�sð0Þ; iR� 2þwV ðnþ1=2Þ

1 ; . . . ; iR� 2þwV ðnþ1=2Þ
J�1 ;�sð0Þeðnþ1ÞÞ, upper diagonal ð1; . . . ;1Þ, and lower diagonal ð1; . . . ;1; eðnþ1ÞÞ; C

is a tridiagonal matrix with main diagonal ð0; iRþ 2�wV ðnþ1=2Þ
1 ; . . . ; iRþ 2�wV ðnþ1=2Þ

J�1 ;0Þ, upper diagonal ð�1; . . . ;�1Þ and
lower diagonal ð�1; . . . ;�1;�eðnÞÞ; furthermore,
dðnÞ0 ¼
Xn

‘¼1

sðnþ1�‘Þ wð‘Þ0 � /0c
ð‘Þ
0

� �
� sð0Þ/0c

ðnþ1Þ
0 þ /1 cðnþ1Þ

0 þ cðnÞ0

� �
; ð23Þ

dðnÞJ ¼
Xn

‘¼1

sðnþ1�‘Þ wð‘ÞJ �
ð‘Þ � /Jc

ð‘Þ
J

� �
� sð0Þ/Jc

ðnþ1Þ
J þ /J�1 cðnþ1Þ

J þ cðnÞJ

� �
: ð24Þ
3.2. Fast evaluation of the discrete convolution terms

In the subsequent simulations, scheme (22) has to be solved in each time step and for every wave function w ¼ wk; k 2 K.
We recall that the kernel coefficients sðnÞ need to be calculated only once as they do not depend on the wave number k. Let N
denote the number of time steps. For each k 2 K, we require order OðNÞ storage units and OðN2Þ work units to compute the
discrete convolutions in (23) and (24). For this reason, simulations with several ten thousands of time steps are not feasible.
To overcome this problem, one may truncate the convolutions at some index, since the decay rate of the convolution coef-
ficients is of order Oðn�3=2Þ [[16, Section 3.3]]. The drawback of this approach is that still more than thousand convolution
terms are necessary to avoid unphysical reflections at the boundaries.

The problem has been overcome in [6] by approximating the original convolution coefficients sðnÞ and calculating the
approximated convolutions by recursion. More precisely, approximate sðnÞ by
esðnÞ :¼
sðnÞ; n < m;XK
‘¼1

blq�n
l ; n P m;

8><>:

such that
CðnÞðuÞ :¼
Xn�m

‘¼1

esðn�‘Þuð‘Þ �Xn�m

‘¼1

sðn�‘Þuð‘Þ ð25Þ
can be evaluated by a recurrence formula which reduces the numerical effort drastically. As in [6], we set m ¼ 2 to exclude sð0Þ

and sð1Þ from the approximation. In fact, sð0Þ does not appear in the original convolutions, whereas sð1Þ is excluded to increase
the accuracy.

Let K 2 N. The set fb0; q0 . . . ; bK; qKg is computed as follows. First, define the formal power series
hðxÞ :¼ sðmÞ þ sðmþ1Þxþ sðmþ2Þx2 þ � � � þ sðmþ2K�1Þxmþ2K�1 þ � � � ; jxj 6 1:
The first (at least 2K) coefficients are required to calculate the ½K� 1jK�-Padé approximation of h; ehðxÞ :¼ PK�1ðxÞ=QKðxÞ,
where PK�1 and QK are polynomials of degree K� 1 and K, respectively. If this approximation exists, we can compute its
Taylor series ehðxÞ ¼ esðmÞ þ esðmþ1Þxþ � � �, and by definition of the Padé approximation, it holds that
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~sðnÞ ¼ sðnÞ for all n 2 fm; mþ 1; . . . ; mþ 2K� 1g:
It can be shown that, if QK has K simple roots q‘ with jq‘j > 1 for all ‘ 2 f1; . . . ;Kg, the approximated coefficients are given by
~sðnÞ ¼
XK
‘¼1

b‘q�n
l ; b‘ :¼ � PK�1ðq‘Þ

QKðq‘Þ
qm�1
‘ – 0; n P m; ‘ 2 f1; . . . ;Kg: ð26Þ
Summarizing, one first computes the exact coefficients sð0Þ; . . . ; sðmþ2K�1Þ followed by the ½K� 1jK�-Padé approximation.
Then one determines the roots of QK, yielding the numbers q1; . . . ; qK. Finally, one evaluates (26) to find the coefficients
b0; . . . ; bK. We stress the fact that these calculations have to be performed with high precision (2K� 1 mantissa length) since
otherwise the Padé approximation may fail (see [6]). We employ the Python library mpmath for arbitrary-precision floating-
point arithmetics [23]. As an alternative, one may use the Maple script from [6, Appendix].

A particular feature of this approximation is that it can be calculated by recursion. More precisely, for n P mþ 1, the func-
tion CðnÞðuÞ in (25) can be written as
CðnÞðuÞ ¼
XK
‘¼1

CðnÞ‘ ðuÞ;
with
CðnÞ‘ ðuÞ ¼ q�1
‘ Cðn�1Þ

‘ ðuÞ þ b‘q�2
‘ uðn�2Þ; n P mþ 1; CðmÞ‘ ðuÞ ¼ 0:
Hence, the discrete convolutions in (23) and (24) are approximated for n P m ¼ 2 by
Xn

‘¼1

sðnþ1�‘Þuð‘Þ � Cðnþ1Þ uð Þ þ sð1ÞuðnÞ; ð27Þ
whereas the exact expressions are used for n ¼ 0 and n ¼ 1. As a result, the storage for the implementation of the discrete
transparent boundary conditions reduces from OðNÞ to OðKÞ. Even more importantly, the work is of order OðKNÞ instead of
OðN2Þ.

Obviously, the quality of the approximation depends on K. By construction, we have sðnÞ ¼ esðnÞ for all
n 2 f0; . . . ;2Kþ m� 1g but esðnÞ approximates sðnÞ very well even if n is much larger [6]. We illustrate in Section 4.3 that
the convergence of the complete transient algorithm with respect to K is exponential.

3.3. The complete transient algorithm

In the previous sections, we have explained the approximation of the transient Schrödinger equation with discrete trans-
parent boundary conditions for given potential energy V ¼ Vbarr þ V self . Here, we make explicit the coupling procedure with
the Poisson equation for the selfconsistent potential
� @
2V self

@x2 ¼ e2

e
ðn½V self � � nDÞ; x 2 ð0; LÞ; V selfð0; tÞ ¼ 0; V selfðL; tÞ ¼ �eUðtÞ;
with the electron density
n½V self �ðx; tÞ ¼
Z

R

gðkÞjwkðx; tÞj
2 dk:
According to the Crank–Nicolson scheme, a natural approach would be to employ a two-step predictor–corrector scheme.

More precisely, let fwðnÞk gk2K ! fw
ð�Þ
k gk2K be propagated for one time step using V ðnÞself to obtain V ð�Þself . Then one uses

V ðnþ1=2Þ
self :¼ 1

2 ðV
ðnÞ
self þ V ð�ÞselfÞ to propagate fwðnÞk gk2K ! fw

ðnþ1Þ
k gk2K again. This procedure doubles the numerical effort and is com-

putationally too costly. As an alternative, the scheme V ðnþ1=2Þ
self :¼ 2V ðnÞself � V ðn�1=2Þ

self can be employed (as in [31]). We found in our

simulations that the most simple approach, V ðnþ1=2Þ
self :¼ V ðnÞself , gives essentially the same results as the above schemes. The rea-

son is that the electron density evolves very slowly compared to the small time step size which is needed to resolve the fast
oscillations of the wave functions. Hence, the variations of V self are small. Similarly, the right boundary condition of the Pois-
son equation can be replaced by V selfðLÞ ¼ �eUðnDtÞ if the applied voltage varies slowly. This is used in the circuit simula-
tions of Section 5.

The complete transient algorithm is presented in Fig. 5.

3.4. Discretization parameters

We choose K ¼ 3000 for the number of wave functions as in the stationary simulations and Dt ¼ 1 fs (fs = femtosecond)
for the time step size. With the maximal kinetic energy of injected electrons �hxM ¼ �h2k2

M=ð2mÞ, where kM is the maximal
wave number, the period is computed according to sM ¼ 2p=xM . Thus, the fastest wave oscillation is resolved by
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sM=Dt � 18:5 time steps. The space grid size is chosen to be Dx ¼ 0:1 nm. Consequently, the smallest wave length
kM ¼ 2p=kM � 10 nm is resolved by approximately 100 spatial grid points. Furthermore, we take K ¼ 70 for the approxima-
tion parameter of the discrete convolution terms. This choice results from a numerical convergence study presented in
Section 4.3.

It is important to note that the wave functions which are propagated using the fast evaluation of the approximated dis-
crete convolution terms (27) practically coincide with the wave functions which are propagated using the exact convolutions
23,24 (see Section 4.3). Employing the exact convolutions, however, is equivalent to solving the Crank–Nicolson finite dif-
ference equations of the whole space problem. Considering that the electron density evolves smoothly in space and time,
it is clear that the error of the complete transient algorithm (see Section 3.3) is determined by the Crank–Nicolson finite dif-
ference scheme. A global error estimate, together with a meshing strategy depending on a possibly scaled Planck constant �h
is given in [7]. The calculations in this article are performed in SI units without any scaling.
3.5. Details of the implementation

The final solver is implemented in the C++ programming language using the matrix library Eigen [22] for concise and
efficient computations. As we are interested in simulations with a very large number of time steps N (e.g., N ¼ 100;000),
some sort of parallelization is indispensable. We employ the library pthreads to realize multiple threads on multi-core pro-
cessors with shared memory. The most time consuming part in the transient algorithm (see Section 3.3) is the propagation of
the wave functions and the calculation of the electron density. Since the wave functions evolve independently of each other,
this task can be easily parallelized. At every time step, we create a certain number of threads (usually, this number equals the
number of cores available). To each thread, we assign a subset of wave functions which are propagated as described above.
Before the threads are joined again, each thread computes its part of the electron density. All these parts provide the total
electron density which is used to solve the Poisson equation in serial mode. The simulations presented below have been car-
ried out on an Intel Core 2 Quad CPU Q9950 with 4	 2:8 GHz.
4. Numerical experiments

We present three numerical examples. The first example shows the importance to provide a complete compatible discret-
ization of the open Schrödinger–Poisson system. The second numerical test shows the time-dependent behavior of a reso-
nant tunneling diode, which allows us to identify three physical regions. In the third experiment, we investigate the
Fig. 5. Flow chart of the transient scheme.
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convergence of our solver with respect to the parameter K which appears in the context of the fast evaluation of the discrete
convolution terms.

4.1. First experiment: constant applied voltage

We compute the stationary solution to the Schrödinger–Poisson system with an applied voltage of U ¼ 250 mV. At this
voltage, the current density achieves its first local maximum. We apply the transient algorithm of Section 3 until
t ¼ 25 fs, keeping the applied voltage constant. Accordingly, the stationary solution should be preserved and the current den-
sity Jcond, defined in (12), is expected to be spatially constant.

The ad hoc discretization (19) is employed using the time step sizes Dt ¼ 1 fs, 0.5 fs, 0.25 fs. We observe in Fig. 6 that the
current density is not constant. The reason is that the discretization (19) is not compatible with the underlying finite-differ-
ence scheme. The distortions are reduced for very small time step sizes but this leads to computationally expensive algo-
rithms. In contrast, with the discrete gauge change of Section 3.1, the current density is perfectly constant even for the
rather large time step Dt ¼ 1 fs; see Fig. 6.

We mention that the transient solution is also distorted if the scattering states as initial wave functions are computed
from an ad hoc discretization of the continuous boundary conditions (5) and (6). For stationary computations, spurious
reflections due to an inconsistent discretization play a minor role but they become a major issue for transient simulations.

4.2. Second experiment: time-dependent applied voltage

For the second numerical experiment, we consider a time-dependent applied voltage. The conduction current density is
no longer constant but the total current density is expected to be conserved. We recall that the total current density
Jtot ¼ Jcond þ @D=@t is the sum of the conduction current density Jcond and the displacement current density @D=@t. Here D de-
notes the electric displacement field which is related to the electric field E by D ¼ �0�rE. Indeed, replacing the electric field by
the negative gradient of the potential we obtain
Fig. 6.
discreti
density
@D
@t
¼ � �0�r

e
@

@t
rV self :
The temporal and spatial derivatives are approximated using centered finite differences. Ampère’s circuital law r	 H ¼ Jtot

for the magnetic field strength H yields
divJtot ¼ divðr 	 HÞ ¼ 0;
and hence, in one space dimension, Jtot is constant in space.
The following simulation demonstrates that the total current density is a conserved quantity in the discrete system as

well. First, we compute the equilibrium state using an applied voltage of U ¼ 0 V. This solution is then propagated using
a raised cosine function for the applied voltage
UðtÞ ¼ U0

2
1� cos

2pt
T

� �
; 0 6 t 6 1 ps;
where U0 ¼ 0:25 V and T ¼ 2 ps. At later times, t P 1 ps, UðtÞ ¼ U0 is kept constant. Conduction, displacement, and total cur-
rent density at different times are depicted in the left column of Fig. 7. As can be seen, the total current density is perfectly
conserved at all considered times. The change of the charge density @q=@t is illustrated in the right column of Fig. 7. In our
model, q is given by q ¼ e nD � nð Þ.
Conduction current density in a resonant tunneling diode at t ¼ 25 fs for a constant applied voltage of U ¼ 250 mV. Discretizations using the ad hoc
zation (19) of the analytical boundary conditions yield strongly distorted numerical solutions (broken lines). In contrast, the conduction current
computed with our solver is perfectly constant (solid line).
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The time-dependence of the total current density in response to the applied voltage is shown in Fig. 8. We can identify
three different regions in the temporal behavior, each of which is governed by a different physical mechanism.

4.2.1. Region I: capacitive behavior
When the applied voltage increases during the first picosecond, the resonant tunneling diode behaves mainly like a par-

allel plate capacitor. This can be clearly seen in the top left panel of Fig. 7. In the region of the double barrier, the displace-
ment current gives the dominant contribution to the total current, whereas the conduction current is small. The top right
panel of Fig. 7 shows a build-up of negative charge before the left barrier and of positive charge after the right barrier.
The formation of opposite charges on the two sides of the double barrier results in the formation of an electric field between
the two regions of opposite charge density. This field is necessary to accommodate the externally applied voltage. Fig. 8
shows that the current closely follows the time derivative of the applied voltage:
Fig. 7.
at diffe
Jcond � C
dU
dt
¼ pCU0

T
sin

2pt
T

� �
:

This expression allows us to estimate the apparent capacitance C. The maximum current density occurring at
t ¼ T=4 ¼ 0:5 ps takes approximately the value 1:2 � 109 A m�2. We compute C ¼ TJ=pU0 ¼ 3:06 � 10�3 F m�2. Equating this
value to the parallel plate capacitance, C ¼ e0er=d, we find the average separation of the opposite charge densities to be
d ¼ 33:1 nm.
Left column: total current density Jtot ¼ Jcond þ @D=@t, conduction current density J :¼ Jcond, and displacement current density @D=@t versus position
rent times. Right column: temporal variation @q=@t of the charge density versus position.



Fig. 8. Applied voltage and total current density versus time in different scalings.
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4.2.2. Region II: plasma oscillations
During the second picosecond, a strongly damped oscillation occurs in the current density. From Fig. 8, we estimate five

oscillations to occur during one picosecond, which relates to a period of about 200 fs. It is believed that these are plasma
oscillations which were excited by the rapidly changing applied voltage U. As soon as the transient phase of UðtÞ is over
and UðtÞ is kept constant at U0 for t P 1 ps, the excitation vanishes and the oscillations fade out quickly. As a rough estimate
we calculate the plasma frequency xp for a classical electron system of uniform density:
x2
p ¼

ne2

me0
:

Note that in the resonant tunneling diode the density is neither uniform nor is it governed by the classical equations of mo-
tion. Nevertheless, we may use this expression to estimate the order of magnitude of the time constant associated with this
effect. Since plasma oscillations usually occur in the high-density regions of a device, we set n ¼ n1

D ¼ 1024 m�3 and obtain
sp ¼ 2p=xp ¼ 111:4 fs. This value is of the same order as the 200 ps estimated above, which is a strong indication that the
physical effect observed here is a plasma oscillation.

4.2.3. Region III: charging of the quantum well
For t > 2 ps, an exponential increase in the current can be clearly observed in Fig. 8. Below 2 ps we see a superposition of

both the exponential current increase and the plasma oscillations. The origin of this effect can be understood from the right
panels of Fig. 7. Negative charge builds up in the quantum well. This charge results from electrons tunneling through the left
barrier into the quantum well. In this context, we note that the temporal variation of the voltage between the left and right
end points a2 and a5 of the double-barrier structure, respectively, follows closely the variation of the applied voltage U and
hence, it is practically constant for t > 1 ps (see Fig. 9). The rate j@q=@tj decreases with time as can be seen by the snapshots
at t ¼ 1:5 ps and t ¼ 3 ps. We calculate the number of electrons residing in the quantum well:
NðtÞ :¼
Z a5

a2

nðx; tÞdx:
Since the charging process is expected to show an exponential time dependence, we assume the following exponential law
for NðtÞ and extract the free parameters s and N1:
NðtÞ ¼ N1 þ Nðt1Þ � N1ð Þe�ðt�t1Þ=s:
In Fig. 9, the difference jNðtÞ � N1j is plotted, which decays to zero with an extracted time constant of s ¼ 1:25 ps.
This time scale is related to the life time of a quasi-bound state. At U ¼ 0:25 V, the current–voltage characteristic has its

first maximum, which means that the first resonant state in the quantum well is carrying the current. The life time of this



Fig. 9. Number of electrons in the quantum well versus time. In Region III (t P 2 ps) this number clearly follows an exponential law. Ua2 ;a5 denotes the
temporal variation of the voltage between x ¼ a2 and x ¼ a5.
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resonant state can be extracted from the width of the resonance peak in the transmission coefficient. Fig. 10 depicts the
transmission coefficient of the double-barrier structure at U ¼ 0:25 V. The transmission coefficient is defined as the ratio be-
tween the transmitted and the incident probability current density jtrans and jinc. In terms of the amplitude and the wavenum-
ber of the transmitted and the incident wave, it reads:
jjtransj
jjincj

¼ jAtransj2ktrans

jAincj2kinc

:

Extracting DE, the half width at half maximum of the first transmission peak, the life time of the resonant state can be esti-
mated as follows [25]:
s ¼ �h
2DE

:

At U ¼ 0:25 V we find 2DE ¼ 5:31 � 10�4 eV and thus s ¼ 1:24 ps. This value is very close to the time constant of s ¼ 1:25 ps
extracted from the exponential charge increase in the quantum well, which is the cause for the observed exponential current
increase.
4.3. Third experiment: convergence in K

Finally, we study the convergence of the complete transient algorithm detailed in Section 3.3 with respect to the param-
eter K which appears in the context of the fast evaluation of the discrete convolution terms. For this purpose, we repeat the
last experiment with different values of K. We compare the results with those obtained from the algorithm which uses the
discrete transparent boundary conditions with the exact convolutions 23,24. Since the computation of the reference solution
is extremely expensive, we restrict the experiment to the final time t ¼ 1:5 ps. The conduction current densities at t ¼ 1:5 ps
for two different values of K and for the reference solution are depicted in Fig. 11 (left). The relative error in the ‘2-norm for
increasing values of K is shown in Fig. 11 (right). We observe that the relative error decreases exponentially fast. Thus, using
a relatively small value of K practically yields the same results (at dramatically reduced numerical costs) as if the discrete
transparent boundary conditions with the exact convolutions were used.
Fig. 10. Transmission coefficient of the double-barrier structure at U ¼ 0:25 V in different scalings.



Fig. 11. Conduction current density at t ¼ 1:5 ps (left) and relative ‘2-error for increasing K.

Fig. 12. High-frequency oscillator containing the resonant tunneling diode RTD.

Fig. 13. First circuit simulation: voltage URTD and current IRTD through the resonant tunneling diode versus time.
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5. Circuit simulations

In this section, we simulate a high-frequency oscillator consisting of a voltage source Ue, a resistor with resistance R, an
inductor with inductance L, a capacitor with capacity C, and a resonant tunneling diode RTD; see Fig. 12. Each element of the
circuit yields one current–voltage relationship,
UR ¼ RIR; UL ¼ L_IL; IC ¼ C _UC ; IRTD ¼ f ðURTDÞ: ð28Þ
The last expression is to be understood as follows. Given the applied voltage URTD at the tunneling diode, the current
IRTDðtÞ ¼ AJtotðtÞ is computed from the solution of the time-dependent Schrödinger–Poisson system. Here, A ¼ 10�11 m2 is
the cross sectional area of the diode and Jtot is the total current density. In the simulations we use R ¼ 5 X; L ¼ 50 pH,
and C ¼ 10 fF.

According to the Kirchhoff circuit laws, we have
Ue ¼ UR þ URTD þ UL; URTD ¼ UC ; IL ¼ IR; IL ¼ IRTD þ IC : ð29Þ
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Combining (28) and (29), we find that
Fig. 14.
differen
C _URTD ¼ C _UC ¼ IC ¼ IL � IRTD;

L_IL ¼ UL ¼ Ue � UR � URTD ¼ Ue � RIR � URTD ¼ Ue � RIL � URTD:
Consequently, we obtain a system of two coupled ordinary differential equations,
d
dt

URTD

IL

� �
¼

0 1
C

� 1
L � R

L

 !
URTD

IL

� �
þ
� 1

C IRTD
1
L UeðtÞ

 !
: ð30Þ
First circuit simulation: electron density, potential energy, current densities, and variation of the electron density versus position in the RTD at four
t times.



Fig. 15. Second circuit simulation: applied voltage and current at the resonant tunneling diode versus time.
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The time-step size Dt is very small compared to the time scale of the variation of the potential energy and the variation of
the current flowing through the diode. Hence, using the same time step for the time integration of (30), we can resort to an
explicit time-stepping method. We choose the simplest one, the explicit Euler method. Alternatively, one may employ an
implicit method, but we observed that both methods yield essentially the same results.
5.1. First circuit simulation

In the first simulation, the RTD solver is initialized with the steady state corresponding to URTDðtÞ ¼ 0 for all t 6 0. The
external voltage Ue is assumed to be zero for t 6 0, and the initial conditions for (30) are URTDð0Þ ¼ 0 and ILð0Þ ¼ 0. For
t 2 ½10;20� ps, the external voltage is increased smoothly to 0.275 V and then kept constant (see Fig. 13). This value is be-
tween the voltages where the stationary current density reaches its local maximum and minimum (see Fig. 4). The time evo-
lution of the voltage and the current at the RTD are depicted in Fig. 13. It is clearly visible that the system starts to oscillate.
Furthermore, the potential energy, electron density, current densities, and the temporal variation of the total charge @q=@t
are shown in Fig. 14 for four different times from the interval ½t1 ¼ 77:7; t2 ¼ 87:2� ps, which covers exactly one oscillation.
Around 2 ps after the beginning of the period, the electron density within the quantum well in ½65;70� nm becomes minimal
(first row). After some time, we observe a build-up of negative charge in the quantum well with @q=@t < 0 (second row). At
about t ¼ 84:6 ps the electron density reaches its maximum value (third row). Subsequently, the electrons leave the quan-
tum well again and @q=@t > 0 in ½65;70� nm (fourth row). The frequency of the oscillations is approximately 105 GHz which
corresponds qualitatively to frequencies observed in standard double-barrier tunneling diodes [14]. The temporal evolution
of the physical quantities in the circuit is animated in the video available at http://www.asc.tuwien.ac.at/
mennemann/
projects.html.
5.2. Second circuit simulation

In this experiment, the external voltage Ue is kept fixed for all times. At times t 6 0, the circuit contains the voltage source,
resistor, and RTD only. We initialize the transient Schrödinger–Poisson solver with the steady state corresponding to
URTDðtÞ ¼ 0:275 V for all t 6 0. To compensate for the voltage drop at the resistor, the external voltage is set to
UeðtÞ ¼ RIRTDðtÞ þ URTDðtÞ; t 6 0:
At time t ¼ 0, the capacitor and inductor are added to the circuit. In order to avoid discontinuities in the voltages, we charge
the capacitor with the same voltage which is applied at the RTD before the switching takes place, UCðtÞ ¼ URTDðtÞ for t 6 0.
For similar reasons, we set the current flowing through the inductor to the current flowing through the RTD, ILðtÞ ¼ IRTDðtÞ for
t 6 0. This configuration corresponds to the equilibrium state. Therefore, one would expect that the system remains in its
initial state for all time. However, the equilibrium is unstable and a small perturbation will drive the system out of equilib-
rium. In fact, numerical inaccuracies suffice to start the oscillator. However, we accelerate the transient phase by perturbing
ILðtÞ by the value 5 � 10�6 A for t 6 0. The numerical result is presented in Fig. 15. The simulation took less than 4 h computing
time on an Intel Core 2 Quad Core Q9950 with 4	 2:8 GHz.
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