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Abstract A memristor is characterized by its electrical
memory resistance (memristance), which is a function of
the historic profile of the applied current (voltage). This
unique ability allows reducing charge- and flux-based mea-
surements to straightforward resistance measurements. The
memristive measurement seeks a memristor with a constant
modulation of the memristance (memductance) with respect
to the charge (flux) for charge (flux)-based measurements. In
this work the geometry dependent memristive behavior of a
spintronic device is studied to demonstrate the possibility of
both charge- and flux-based sensing, using spintronic mem-
ristors with different device geometries. The dynamic prop-
erties of a propagating magnetic domain wall in different ge-
ometrical structures make the spintronic memristor suitable
for the charge-based capacitance and flux-based inductance
measurements.

Keywords Magnetic domain wall · Memristive
measurement · Spintronic memristor

1 Introduction

The memristor, or memory resistor, is the fourth fundamen-
tal circuit element which is defined by a functional rela-
tionship between two circuit variables, charge q and flux
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ϕ (the time integral of voltage), called constitutive rela-
tion. The memristor was predicted based on a symmetry ar-
gument of circuit theory in 1971 [1]. About four decades
later, the physical realization of the first memristor based
on ionic transport in TiO2−x films [2] attracted much in-
terest worldwide. Shortly after that, spintronic memristors
were proposed [3] based on the spin-transfer torque (STT)
effect. The STT mechanism gives memristive capabilities to
a spintronic device for which the total electrical resistance
depends upon the magnetization state which itself is a func-
tion of the cumulative effects of electron spin propagations.

The magnetization state of a thin-film element (Fig. 1a)
including a magnetic domain wall (DW) manipulated by the
electric current is determined by the historic profile of the
applied current (voltage). Having a varying width, the de-
vice exhibits a memristive behavior, while the total electrical
resistance is a function of the DW position [3]. The dynamic
properties of the propagating DWs are strongly affected by
the device geometry [4, 5]. Therefore, the memristive behav-
ior of the device is a function of the geometrical structure of
the memristor. Here, the rich dynamic behavior of spintronic
memristors is studied to address both charge- and flux-based
memristive measurements.

2 Capacitance and Inductance Memristive
Measurement

The basic circuit elements (resistor R, capacitor C, induc-
tor L, and memristor M) are defined in terms of functional
relationships between two of four circuit variables (current
i, voltage v, charge q , and flux ϕ) as R = dv/di,C =
dq/dv,L = dϕ/di, and M = dϕ/dq . Memristors act as
programmable (nonlinear) resistors and have the same unit
as resistors (�) in contrast to capacitors (F) and inductors

mailto:mahmoudi@iue.tuwien.ac.at
mailto:sverdlov@iue.tuwien.ac.at
mailto:selberherr@iue.tuwien.ac.at


1746 J Supercond Nov Magn (2013) 26:1745–1748

Fig. 1 (a) Domain wall
spintronic memristor [3].
(b) Desired device geometries
for charge-based (solid line) and
flux-based (dashed line)
memristive sensing

(H). The memristance, therefore, can be determined instan-
taneously by measuring the current and the voltage simul-
taneously. The behavior of basic electrical circuits is de-
termined by Kirchhoff’s current (KCL) and voltage (KVL)
laws. As capacitors and inductors relate the voltage to the
current through differential equations, the RLC-based ca-
pacitance and inductance measurement methods are entirely
different from those used for resistance and memristance
measurement. The unique ability of the memristor to mem-
orize the history of the applied current or voltage instan-
taneously leads to a sensing capability which cannot be
achieved by RLC-networks alone. In [6] we have shown
that, regardless of the memristor device material and operat-
ing mechanism, when a charge (flux)-controlled memristor
is connected in series (parallel) with a capacitor (inductor),
the capacitance (inductance) is determined as

C = �q

�vC

=
(

dM(q)

dq

)−1
�M(q)

�vC

(1a)

L = �ϕ

�iL
=

(
dG(ϕ)

dϕ

)−1
�G(ϕ)

�iL
(1b)

where vC (iL) is the voltage (current) of the capacitor (in-
ductor) and M (G) is the memristance (memductance). The
term dM/dq (dG/dϕ) is related to the intrinsic properties
of the memristor. These terms are zero for a conventional
(linear) resistor. A charge (flux)-controlled memristor with
this term being constant is suited for capacitance (induc-
tance) measurements. In the following section we study the
geometry dependent dynamic behavior of the DW spintronic
memristor to find a proper device structure for memristive
measurements.

3 Geometry Dependent Memristive Behavior

The current-induced DW motion in a magnetic thin-film el-
ement exhibits memristive properties, when the thin-film as-
pect ratio (w/t) [4] is varying with the film-length direc-
tion x. For the device with constant thickness t , the mobility

of the DW, thus the electrical resistance (memristance M) of
the device, is a function of the thin-film element width (w)
and is expressed as [3]

M(w) = M0

(
w

w0

)−(k+1)

(2)

Here M0 and w0 are the resistance and the width of the
element, respectively, when the DW is located at x0 and
k defines the DW mobility scaling with the aspect ratio
μ ∼ (w/t)k. When the spatial dependence of the element
width as a function of the DW position is given by w(x) =
w0(x/x0)

ρ , the memristance is determined as [3]

M(x) = M0

(
x

x0

)−ρ(k+1)

(3)

To determine the memristive behavior of the device, which
is significantly affected by the DW dynamic properties, the
DW velocity (dx/dt) is assumed to be proportional to the
current density [3]. Therefore the memristor constitutive re-
lation is given by

ϕ(q) = Aq(1−ρk)/(ρ+1) (4)

where A is a constant coefficient. According to (1a), (1b),
the suited device geometries for charge- and flux-based
sensing are determined as (5a) and (5b), respectively. We
have

dM(q)

dq
≡ d2ϕ(q)

dq2
= const. ⇒ ρ = − 1

k + 2
(5a)

dG(ϕ)

dϕ
≡ d2q(ϕ)

dϕ2
= const. ⇒ ρ = 1

2k + 1
(5b)

The desired structure geometries are shown in Fig. 1b for
k = 2.2 [4].

In order to taking a closer look at the DW dynam-
ics in a patterned structure, we use the one-dimensional
model of the DW dynamics [7–10]. The dynamics of the
DW position x and position-dependent magnetization S =
S(sin θ cosϕ, sin θ sinϕ, cos θ) is described as
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Fig. 2 Time-averaged domain
wall velocity in the absence (a)
and presence (b) of the
non-adiabatic spin-torque effect
plotted for different geometrical
structures (ρ). When β is
nonzero (b), the DW
propagation is characterized by
a linear regime and a turbulent
regime above the Walker
breakdown. With different
geometries (ρ) the device has
different values of the Walker
breakdown current. The axes are
dimensionless, with position x,
time t , and current I , expressed
in units of λ, t0 = 2�/SKT , and
Icr

Fig. 3 Dynamics of a
current-driven domain wall in a
thin-film element with a varying
width. A DW position as a
function of time (a) and the
modulation of the term
(x/x0)

−ρ(k+1) (normalized
memristance) with the charge
flowing through the device (b)
plotted for two different
geometries (ρ and ρ1)

λ
dϕ

dt
+ α

dx

dt
= βvel (6a)

dx

dt
− λα

dϕ

dt
= SKT

2�
λ sin(2ϕ) + vel (6b)

where ϕ is the angle between spins at the wall center and
the easy plane, λ is the DW thickness, α is the damp-
ing parameter, KL and KT are the longitudinal and trans-
verse anisotropy constants, and β defines the strength of the
non-adiabatic spin torque. vel is the spin-torque excitation
strength determined as

vel = λη

eNS
IDW (7)

where η denotes the polarization efficiency, e is the elec-
tron charge, and IDW is the current following through the
DW cross-sectional surface (wt). N is the number of spins
in the DW and a denotes the lattice constant. To take into
account the varying width of the element, w(x), we obtain
the memristor dynamics by solving numerically the cou-
pled equations (3), (6a), (6b), and (7), for which the num-

ber of spins in the DW is a function of the DW position
(N(x) = 2w(x)tλ/a3).

Figure 2 shows the geometry dependence of the DW
dynamics for zero and nonzero non-adiabatic spin-torque
values. In the absence of the non-adiabatic term (Fig. 2a),
there is a geometry dependent threshold current required
to move a DW. Therefore, for the currents below a (geom-
etry dependent) current threshold the memristive behavior
cannot be observed. In the presence of the non-adiabatic
term (Fig. 2b), the average DW velocity increases linearly
with the applied current for low current values. Therefore,
with β �= 0, the memristive behavior can be observed and
with proper geometry, the device can be used for memris-
tive sensing. Above a (geometry dependent) critical current
value called the Walker breakdown [11, 12], the DW mo-
tion becomes non-uniform and shows complex behavior as
demonstrated in Fig. 3.

For two different geometrical structures and current lev-
els, the dynamics of the DW position (x) are shown in
Fig. 3a. With the desired geometry (ρ = −0.24), the term
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(x/x0)
−ρ(k+1) has a constant modulation with charge for

the current levels below a critical value as shown in Fig. 3b.
Therefore, according to (3), the device is suited for charge-
based measurement. This memristive sensor shows nonlin-
ear behavior at high current values, which results from the
Walker breakdown. Similarly, by using the one-dimensional
model of the DW dynamics with varying number of spins
in the DW, it can be shown that at the current/voltage lev-
els below a critical value, the memductance (M−1(x) ∼
(x/x0)

ρ(k+1)) has a constant modulation with flux for a ge-
ometrical structure with ρ = 0.19. This geometry, therefore,
is suited for flux-based measurement.

4 Sensitivity

The sensitivity of the memristive charge/flux-based sens-
ing scheme is determined by the value of the memris-
tance/memductance modulation with respect to the charge/
flux of the memristor. We define �Q as the amount of
charge passed through the memristor which changes the
memristance from its minimum to its maximum value. For
TiO2 memristors [2], since the mobility of dopants (oxygen
vacancies) in titanium dioxide is low (∼10−10 cm2 s−1 V−1

[2]), �Q is in the range of tens to hundreds of micro-
coulombs for a nanometer-scale motion of the doping front.
It turns out that it is in the range of nano-coulombs to pico-
coulombs in spintronic memristors for a micrometer-scale
motion of the magnetic domain wall (extracted from exper-
imental results of [4] and [13]). Our results indicate that the
memristive capacitance sensors based on TiO2 memristors
can measure capacitances in the range of micro-farads to
nano-farads [6]. Since spintronic memristors are more sen-
sitive and can be more finely tuned, they are promising for
measuring capacitances of 3–6 orders of magnitude lower
than that measured by the TiO2 memristors.

5 Conclusion

The effect of the device geometry on the memristive be-
havior of a spintronic device is studied to determine proper
geometries for memristive charge- and flux-based sensing.
In the presence of the non-adiabatic spin-torque effect, the
device shows memristive behavior at low current/voltage
regimes and within the desired geometries the device has
a constant modulation of the memristance (memductance)
with respect to the charge (flux) applied, which can be used

for capacitance (inductance) measurement. Although induc-
tance and capacitance sensing are far from being new prob-
lems, the use of a memristor reduces the measurement to a
straightforward resistance measurement which can be per-
formed fast. The memristive sensing method is suitable for
measuring time-varying inductances and capacitances and it
has the potential to be used in novel inductive and capacitive
sensors.
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