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and Thermal Phenomena for Ferroelectric Domain
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The theoretical model of the ferroelectric domain wall motion has been developed. It
is demonstrated that for a proper phenomenon description it is necessary to consider
the thermoelectroelasticity gradient terms. It is shown that in the linear approximation
the general solution of three-dimensional problem in transversely isotropic thermoelec-
troelastic media can be obtained by means of five newly introduced harmonic potential
functions. As an example of the proposed model applicability, the electroelastic field
induced by a sphere (SPM tip) located near a plane boundary of two half-spaces is
considered and described.

Keywords Ferroelectric; domain wall; domain switching; SPM; approximate boundary
conditions

I. Introduction

It is a well-established fact that for the description of the ferroelectric behavior it is necessary
to consider the electric and elastic fields simultaneously [1–5]. At the same time, the
influence of thermal phenomena has not been discussed in the literature before. In this work
we have shown that the account of latter ones is essential in the context of proper modeling
of ferroelectric materials. A complete theory of the domain wall should take into account
the interaction of electromagnetic, elastic, and thermal fields. Moreover, the influence of the
magnetic field, caused by the presence of currents having different nature, should be taken
into account even in the case of non-multiferroics ferroelectric. To be more precise, there
are the typical “electric” current induced by the polarization change, pyroelectric current,
which appears for the varying temperature [6], and, finally, piezoelectric current caused by
the change of elastic stresses. We restrict ourselves by description of the electrical, thermal,
and elastic fields interaction only. Taking into account the magnetic field contribution,
the developed approach can easily be accomplished by introducing of additional terms.
However, such a procedure leads to a significant complication of the formulas. For example,
the number of the possible gradient terms increases from 6 to 12. We admit the necessity
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to take these terms into consideration, but this is out of the scope of this work. In the
case of the domain wall motion the change of the polarization takes place in a small area.
This fact, due to the electrocaloric effect, results in the release or absorption of heat at the
domain interface. It is possible to estimate temperature change caused by the electrocaloric
effect in 0.1 K [7] and the size of the heating area of 10 nm [3]. From analysis of this
data one may conclude that a temperature gradient is of 107 K/m that coincides with the
order of magnitude of the temperature gradients in the burning film. Moreover, it is obvious
that the consideration of the elastic field gradient at the domain wall is also necessary. As
a consequence, flexoelectric and flexothermal effects must be simultaneously taken into
account.

II. Statement of the Problem

For simultaneous description of electrical, thermal, and elastic properties of ferroelectric
we introduce the following physical quantities: the potential ϕ, the vector of polarization
�P , the electric field �E = −∇φ, the dielectric displacement �D = ε0 �E + �P , the vector of
deformation ui (i = 1,2,3), the strain tensor εij = (ui,k + uk,i)

/
2, and the stress tensor σij.

Here and below, the symbol χi,k means ∂χi/∂xk . Further, we will use Einstein’s notation
for the summation of repeated indices.

The generalized form of the free energy density is given by:

F = F0(T ) + FLandau + Felast + Fgrad + Fcoup + Fcoupgrad, (1)

where F0(T) is the independent on field part of the free energy. The second and third
summands in Eq. (1) are Landau potential and the elastic part of the free energy containing
the thermal stress tensor, respectively. The Landau thermodynamic potential can be written
in the form [3]:

FLandau = ai

2
P 2

i + aij

4
P 2

i P 2
j + aijk

6
P 2

i P 2
j P 2

k − EiPi, (2)

which allows to describe phase transitions of the first and the second kind. Among the
Ginzburg-Landau coefficients {ai, aij, aijk}, only the first one depends on the temperature:
ai = ai0(T − Tc), where ai0 is the Curie-Weiss constant. The elastic part of the free energy
is:

Felast = cijklεijεkl + (T − T0)tijεij, (3)

where cijkl is the elastic modules tensor and tij is the thermal stress tensor, while T0 is
ambient temperature. The gradient terms can be represented as:

Fgrad = λijTiTj + gijklDi,jDk,l, (4)

where λij is the thermal conductivity tensor, while gijkl are electrical gradient tensor coeffi-
cients. Let us mention that Eq. (4) includes the components of the electric displacement �D
instead of the polarization �P (as performed in the standard approach [3]). This is because
the presence of (∇ �P )2 in Eq. (4) results in the continuity of �P normal component at the
interface, contradicting Maxwell’s equations. Piezoelectric part of the free energy can be
expressed by the formula [9]:

Fcoup = eijkεijPk + eijklεijPkPl, (5)
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where eijk is the piezoelectric constants tensor and eijkl are modules of the electrostriction.
The first term in Eq. (5) describes the piezoelectric effect, which exists under certain
restrictions on the symmetry of the ferroelectric material. The second term is responsible
for the electrostriction. In the last summand of the free energy we collect the terms, which
describe the influence on the polarization and temperature (as well as strain gradients of
these quantities):

Fcoupgrad = bijPiT,j+bijkεijT,k+fijk(T −T0)εijk+fijklPiεjk,l+dijklεijPk,l+dij(T −T0)Pi,j. (6)

There exist six possible variants of the pair-wise interaction for three variables
{ �P , T , εij} and their gradients (any interactions between the quantity and its gradient
are not considered). In other words, the first couple of terms in Eq. (6) describe the impact
of ∇T on the polarization (the thermopolarization effect or polarization thermogradient
effect) and the strain (the elastic thermogradient effect). The second pair reflects the impact
of the strain gradient on the temperature (the flexothermal effect) and polarization (the
flexoelectric effect). The third pair is used to describe the polarization dependence on the
temperature gradient and deformation (thermal and elastic polarization gradient effects).
The quantities {bij, bijk, fijk, fijkl, dij, dijkl} are the coefficients of the corresponding effects.

The last pair of terms in Fcoup grad is possible to be excluded from the consideration
assuming the insignificance of effects described by this summand. Variation of Eq. (1) in
the {P, T , ui} variables gives us:

Ei = aiPi + aij

2
PiP

2
j + aijk

3
PiP

2
j P 2

k + ekliεkl + ekjilεijPl −gijklDk,lj +bijT,j +fijklεjk,l. (7)

It should be noted that there is no summation over i in Eq. (7).

(λijT,j)i − tijεij + ai0P
2
i /2 + bijPi,j − fijkεij,k = 0 (8)

σij = cijklεe − (T − T0)tij − eijkPk − eijklPkPl. (9)

Eqs. (7)–(9) should be supplemented by the standard boundary conditions at the
interface:

T1 = T2; λ
(1)
ij T1,jni = λ

(2)
ij T2,jni; D(1)

i ni = D(2)
i ni; u(1)

i = u(2)
i ; σ

(1)
ij nj = σ

(2)
ij nj, (10)

which implies the continuity of the temperature, the heat flux, the deformation vector, the
normal component of electric displacement, and the stress tensor. The indices 1 and 2 in
Eq. (10) indicate the value location with respect to the number of the considered media; ni

are components of the vector normal to the boundary. At the outer boundary it is possible
to assume temperature T = T0 and heat flow λijT,jni = q0 or their linear combination
λijT,jni + H0(T − T0) = 0. Here, q0 is the heat flow at the boundary and H0 is the heat
transfer coefficient.

The mechanical boundary conditions can consist of the setting σijnj = Fi and the
displacement ui = Pi, or have a mixed form, where {Fi, Pi} are the components of forces and
displacements at the boundary. The interface potential or the electrical intensity Eini = E0

can be used as the electrical boundary conditions. Note that it is also possible to consider a
combination of the aforementioned quantities (impedance type boundary condition).
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III. Thermoelectroelastic Potentials for Transversely Isotropic Medium

Due to the nonlinearity of Eq. (7), the solution of the problem described above is possible to
obtain only numerically. Therefore, to derive analytical expressions describing the electric
field distribution, we linearize Eq. (7) and consider a transversely isotropic medium. In
this case the mechanical, dielectric, and piezoelectric properties of the ferroelectric are
determined by a set of five modules of elasticity (c11, c12, c13, c33, c44), two dielectric
constants (κ11, κ33), and three piezomoduli (e31, e33, e15).

The equilibrium equations, in terms of the stress σij and the electric displacement Di,
are given by:

σij,j = 0,Di,i = 0, i, j = 1, 2, 3. (11)

The constitutive equations take the form:

σij = cijklεkl − ekijEk − tii(T − T0),Dk = ekijεij + ε0κklEl + PSk, (12)

where �PS is spontaneous polarization.
Let the (r, θ ) be the plane of the cylindrical coordinate system (r, θ , z), which coincides

with the isotropic plane of the transversely isotropic medium. The poling direction is to be
along the z-axis. The displacements and the electric potential may be expressed by the five
potential functions Ui (i = 1, 2, 3, 4, 5) [9, 10]:

ur =
4∑

i=1

∂Ui

∂r
− 1

r

∂U5

∂θ
, uθ =

4∑
i=1

1
r

∂Ui
∂θ

+ ∂U5
∂r

, uz =
4∑

i=1
m1i

∂Ui
∂z

,

ϕ =
3∑

i=1
m2i

∂Ui
∂z

, m5T = ∂2U5
∂z2 . (13)

The constants {m14,m5} are defined by the relations:

m14 = t33(c44 − s4c11) + t11(c13 + c44)

t11(c33 − s4c44) − t33(c13 + c44)
, s4 = λ33

λ11
, m5 = t11

c44 + (c13 + c44)m14 − c11s4
.

(14)

The remaining unknown constants m1 and m2 are defined below. Putting Eq. (13) into
Eqs. (11), (12) yields:

∂2Ui

∂r2
+ 1

r

∂Ui

∂r
+ 1

r2

∂2Ui

∂θ2
+ ∂2Ui

∂z2
i

= 0 i = 1, . . . 5, (15)

where zi = z/
√

si, s4 is defined above, s5 = c44
c11−c12

and the other three roots si (i = 1,2,3)
are determined from the characteristic equation:

As3 + Bs2 + Cs + D = 0. (16)

In Eq. (16), the constants A, B, C, and D are the combinations of the material constants
and given by:

A = c11(e2
15 + c44κ11)
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Figure 1. The configuration of the system under consideration. (Color figure available online).

B = 2e15(e15c13 − e33c11) + 2c13(e15c31 + c44κ11) − c44(e2
31 + c11κ33)

+κ11(c2
13 − c11c33),

C = e33(e33c11 + 2e15c44) − 2e33(e15 + e31)(c13 + c44) − κ33(c2
13 + 2c13c44 − c11c33),

+κ11c33c44 + c33(e15 + e31)2,

D = −c44(e2
33 + c33κ33). (17)

In Eq. (13) m1i and m2i (i = 1, 2, 3) are constants related to si by:

c44 + (c13 + c44)m1i + (e15 + e31)m2i

c11
= c33m1i + e33m2i

c13 + c44 + c44m1i + e15m2i

= e13m1i − κ33m2i

e15 + e31 + e15m1i − m2iκ11
. (18)

Thus, the displacements, the electric potential, and the temperature are expressed
in terms of five potentials in sufficiently simple way. These potentials are solutions of
the generalized Laplace Eq. (15). This approach allows us to obtain precise analytical
expressions for certain problems of the thermopiezoelectric elasticity.

IV. Impact of the Piezoelectric Properties on Electric Field for SPM Tip

To illustrate the model described above, we consider the problem of calculating the electro-
static and elastic fields generated by a sphere of radius r0, which is maintained at a potential
V (Fig. 1). The sphere is located in the upper (dielectric) half space at the height h. The
lower half space is a both ferroelectric and piezoelectric. The problem is axisymmetric
and, in addition, we assume uniform temperature distribution. In this case we can confine
ourselves to the three potentials {U1, U2, U3} in ferroelectrics and the electrostatic potential
ϕd in dielectric, which are the solutions of Eq. (15). To simplify subsequent calculations,
as a new potentials we take derivatives with respect to z from the old ones. Additionally,
let us introduce a new set of constants:

μi = c44 + c44m1i + e15m2i
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Figure 2. The coordinate dependence of the displacement vector vertical component for the different
positions of the SPM tip. (Color figure available online).

νi = si(e15 + e15m1i − κ11m2i). (19)

Using these constants it is easy to write down the values that must be continuous at the
boundary z = 0:

ϕd =
3∑

i=1

m2iUi, σzz =
3∑

i=1

siμi
∂Ui

∂z
, σzr =

3∑
i=1

μi
∂Ui

∂r
, Dz =

3∑
i=1

ν i
∂Ui

∂z
. (20)

Figure 3. The coordinate dependence of the electric intensity vertical component on the SPM
tip position with (thick red lines) and without (thin black lines) consideration of the piezoelectric
properties of ferroelectric.
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To solve problem (20) we shall use the bispherical coordinates associated with the
initial cylindrical ones by the relations [11]:

r = c sin α

cosh β − cos α
, z = c sin β

cosh β − cos α
. (21)

where, c =
√

h2 − r2
0 is the scale factor. The surface of the sphere and the boundary

between the media are given by equations: β = β0, cosh β0 = h/r0, and β = 0, respectively.
Solutions of Laplace’s Eq. (15) are sought in the form of Fourier series:

Ui = V (α, β)
∞∑

n=1

UinPn(cos α)e−(n+1/2)β,

ϕd = V (α, β)
∞∑

n=1

(ϕn1 cosh(n + 1/2)β + ϕn2 sinh(n + 1/2)β)Pn(cos α), (22)

where V (α, β) = V
√

2(cosh β − cos α) and Pn(χ ) is a Legendre polynomial.
The Fourier coefficients {Un1, Un2, Un3} are uniquely determined by substitution of Eq.

(22) into the boundary conditions arising from the equations σzz = σzr = 0 - i.e. the conti-
nuity of the electrostatic potential and the normal component of the electric displacement at
the interface and the specified value of the potential ϕd on the sphere. For the results visual-
ization, solution of Eq. (22) was performed for PZT-4 ceramics. The coordinate dependence
of the displacement vector vertical component for the different position of the scanning
probe microscope (SPM) tip – sphere, is demonstrated in Figure 2. Additionally, in Figure 3
one can see the coordinate dependence of the electric intensity vertical component on the
SPM tip position with/without (black lines) consideration of the piezoelectric properties
of ferroelectric. It should be mentioned that a more accurate formula for this model can
be obtained by taking into consideration the influence of the domain walls and the surface
charge density at z = 0.

V. Conclusion

Basic physical ideas supported by precise calculations how to model the ferroelectric do-
main wall motion have been presented. The results obtained for PZT-4 ceramics employing
the proposed theoretical approach have shown that the presence of the piezoelectric proper-
ties of a ferroelectric results in a significant reduction of the electric field. Moreover, we have
demonstrated that for the proper description of domain wall motion it is necessary to take
into account temperature, elastic stress, and electric displacement gradients. In this case the
joint description of the thermal, electrical, and elastic phenomena is significantly simplified
by the introduction of five potential functions. Our study may provide a theoretical basis
and physical insights for the further domain wall motion phenomena investigations.
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