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Abstract—A modified Weiss mean-field theory is used to study the dependence of the properties of a thin fer-
roelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic poten-
tial is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-
known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads
to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric.
The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in con-
tact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the
models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric

and with experimental data.
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1. INTRODUCTION

Thin ferroelectric films and the multilayer struc-
tures based on them attract the attention of scientists
due to the possibilities of their diverse applications in
designing next-generation memory devices, capaci-
tors, pyroelectric detectors, cooling devices based on
the electrocaloric effect, and so on (see, e.g., [1—12]).
To describe the electric fields appearing in these thin
films is important from the viewpoint of both applied
and fundamental science. The latter seems to be very
important because of the experimentally detected
unique properties of the thin films that distinguish
them from bulk ferroelectrics. For example, the differ-
ences consist in a shift in the maximum of permittivity
and a change in the losses [6, 7]. The dependence of
the properties of a film on its thickness is taken to be
called the size effect. As a rule, the ferroelectric films
produced to date are polycrystalline and consist of
granules several tens of nanometers in size. According
to the experimental data in [1, 13], each granule is
coated with a passive dielectric layer 2—5 nm thick
with a permittivity of 40. This dielectric layer substan-
tially changes the properties of the ferroelectric. In
particular, if the granule size is smaller than a certain
critical value (which is 10 nm for PbTiO; and 40 nm
for BaliO,), spontaneous polarization in such ferro-
electrics is absent at room temperature [13]. To
describe the size effects in ferroelectric films theoreti-
cally, researchers usually apply the Landau theory of
second-order phase transitions and add the terms tak-
ing into account the surface, deformation, and gradi-

ent effects to the free energy equation [2—12]. It is well
known [14] that the Weiss and Ising models serve as
the basis for deriving the equation of state of an infinite
ferroelectric. The effect of the boundaries of a ferro-
electric is thought to be studied in terms of these mod-
els as well. It can easily be shown that the Ising model
in the simplest version cannot describe the detailed
behavior of polarization near a ferroelectric boundary;
therefore, the Weiss model should be used to describe
a finite ferroelectric. The purpose of this work is to
apply the Weiss theory near an interface.

The structure of this work is as follows. In Section
2, we derive (at a mathematical level of rigor) varia-
tional principles for ferroelectrics that generalize the
variational principles of classical electrodynamics.
The possibility of introducing the gradient terms
describing the correlation effect and affecting bound-
ary conditions into the Lagrangian is studied in Sec-
tion 3. In Section 4, we discuss a ferroelectric layer
model based on the correlation effect. The depen-
dence of the critical temperature on the film thickness
predicted by this model is compared with experimen-
tal data.

The simplest two-layer ferroelectric—dielectric sys-
tem is studied in Section 5 for the case of plane-paral-
lel layers. In contrast to [4, 6—8], we consider the case
where the permittivity of the dielectric is variable. In
Section 6, the Weiss approach is modified for the case
of bounded ferroelectrics. The main subject of inquiry
is the temperature dependence of spontaneous polar-
ization. Since the model under study is one-dimen-
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sional, the coefficients in the related expansions are
scalars; in the general case, they are considered to be
tensors. In this work, we touch upon only some prob-
lems related to the surface of a ferroelectric. Other
problems, such as the formation of domains, the effect
of deformation, and the presence of a charge [6, 7, 15]
and substance concentration gradients [16], were
already resolved. Nevertheless, many phenomena,
e.g., thermodeformation and thermoelectric ones,
have not been taken into account on describing the
boundary of a ferroelectric.

2. VARIATIONAL PRINCIPLES
AND MAXWELL EQUATIONS
FOR A FERROELECTRIC

To obtain an equation of state for a ferroelectric,
researchers as a rule use the condition of the minimum
thermodynamic potential at a given field strength [17].
In this approach, the conditions at the interface are
partly derived from the Maxwell equations and are
partly postulated. In this work, we propose to intro-
duce a thermodynamic potential into a known
Lagrangian (action) for an electromagnetic field from
the very beginning. We formulate the following natural
requirement: the standard Maxwell equations should
appear when the nonlinear terms in the equation relat-
ing electric field E to polarization P disappear. To
describe the electromagnetic field in volume Q, we use
scalar (@(x, 1)), vector (A(x, 7)), and thermodynamic
(F(P, 1)) potentials, where 7 is the time and x is the
radius vector in the coordinate space. The electromag-
netic field is a local field whose action .S is specified as

S = i”ﬁf(x, t, P, Tdxdt. (1)
0Q

In Eq. (1), the Lagrangian has the form

L1 P T) = 2Vo-A)" +(Vo-A) P
@)

—%[Vfo—F(P, n.

where g, is the dielectric constant. The time scale is
chosen so that the velocity of light is unity and currents
are absent in the system. The magnetic properties of
the medium are not taken into account. For them to be
taken into account, it is sufficient to add another mag-
netization-dependent thermodynamic potential to the
right-hand side of Eq. (2). Note that the Lagrangian
did not contain a thermodynamic potential earlier
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[18]. The Euler—Lagrange equations are reduced to
the relationships [19]

3
0
Z a_xAgﬁcp/Bxi = 07
7 3

3
agtgé’A,/é’x,-i'zl%g@A,/ﬁxi =0, %L(l[f =0
j=
where x; and 4; (i = 1, 2, 3) are the Cartesian compo-
nents of vectors x and A, respectively, and the sub-
scripts of & mean the derivatives with respect to these
variables. We can easily obtain the explicit form of
these equations,

V- (&(Vo-A)+P) =0,

0 4)
a(so(V(p—A,)+P)—V><V><A =0,
OF
Vo-A, = —. 5
¢-A= 5o )

Let electric field be E = Vo — A, and magnetic field be
H =V x A. Then, we have

V-(ggE+P) =0, gE+P, = VxH. (6)
It follows from the definition of H that

V-H = 0; 7
in turn, for E we can write V x (E + A) =0, i.e.,
H, = -V xE. (8)

The set of Egs. (6)—(8) is taken to be the Maxwell
equations. The equation

= OF
= 5P, )

should be added to them; this equation is called a con-
stitutive equation [20] and it relates polarization to the
electric field. It is the form of this equation that distin-
guishes a ferroelectric from a dielectric. Note that
Eq. (9) cannot be considered irrespective of the set of
the Maxwell equations. We choose the thermody-
namic potential in the Landau—Ginzburg form [17]
F(P) = %P>+ 2p*, (10)
2 4
where a and b are the Landau—Ginzburg coefficients,
and obtain the constitutive equation in the form

E = aP+bP’. (1)
Thus, action extremum condition (1), (2), and (10)
can be used to obtain Maxwell equations (6)—(8) and
constitutive equation (11). This derivation is also valid
in the case where coefficients @ and b are continuous
functions of time and space coordinates. These equa-
tions should be complemented with boundary condi-
tions for a layered system, where the coordinate
dependences of a and b have a jump at the interface.
Before performing the required refinements, we
present certain generally accepted simplifications in
the problem under study. In most cases, the time con-
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stant for the processes to be studied is large as com-
pared to the characteristic time for electromagnetic
processes (which is determined as the ratio of the
characteristic system size to the velocity of light).
Therefore, the time derivatives may be neglected
because of their smallness and only scalar potential ¢
is used. As a result of these simplifications, we obtain
the following energy functional G:

G = j%)(V@)2+V¢-P—F(P, T)dx, (12)

Q

the extremum condition of which yields the desired
relationship between E and P.

3. BOUNDARY CONDITIONS
AT THE FERROELECTRIC INTERFACE

We now pass to discussing the boundary conditions
and assume that coefficients a = a(x) and b = b(x) are
continuous functions of coordinates in region Q
except for certain surface 2, where they have a simple
discontinuity; that is, X is the interface of media with
different properties. According to the classical calcu-
lus of variations, the Weierstrass—Erdmann conditions
[19], which are only determined by the form of func-
tional, must be met at the interface of the media. For
action (1), (2), and (10) or functional (12), these con-
ditions are well known and require the continuity of
potential @, the normal component of dielectric dis-
placement vector D = g)E + P, and the tangential
component of the field on surface X.

Since we speak about the Weierstrass—Erdmann
conditions, we discuss the possibility of introducing
term g(VP)?/2 with certain constant g, as was pro-
posedin [2—4, 8—12, 21], into thermodynamic poten-
tial G. Then, Laplacian appears in constitutive equa-
tion (11) and a new Weierstrass—Erdmann condition,
which consists in the continuity of the normal compo-
nent of polarization P,, appears. In this case, the nor-
mal components of dielectric displacement D and
polarization P (hence, electric field E) should be con-
tinuous at interface X, which is in conflict with the
generally accepted electromagnetic field equations.
Therefore, a term with (VP)? cannot exist in the
expression for thermodynamic potential F. The pres-
ence of this term causes errors. For example, when
calculating the permittivity of thin ferroelectric films,
the authors of [21] did not pay attention to the fact that
the gradient of piecewise constant polarization P con-
tains the generalized Dirac delta function. Hence, the
integral of (VP)? diverges in this case. One of the pos-
sible versions of retaining a gradient term is the substi-
tution VP — VD, i.e., the choice of a thermody-
namic potential in the form

b

F(P) = 4P+ 2P* + §(VD)". 13
(P) SP+ 2( ) (13)
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Then, the constitutive equation that relates polariza-
tion to electric field takes the form

E = —gAD +aP + bP’. (14)
In this case, the Weierstrass—Erdmann conditions at

the interface are consistent with the Maxwell equa-
tions. In the next section, we study Eq. (14).

4. PHASE TRANSITION IN A THIN FILM
WITH ALLOWANCE
FOR THE CORRELATION EFFECT

The polarization in thin films is nonuniform across
the film thickness. If axis z is directed across a film, the
spatial distribution of polarization modulus P(z) = |P|
with allowance for the correlation effect in the absence
of an electric field is determined by solving the equa-
tion

2
—¢2 L ap = P,
dz
which is the one-dimensional version of Eq. (14) at
E = 0. As boundary conditions, we choose the polar-
ization blocking conditions [22]

P(0) = P(h) =0, (16)
where /4 is the film thickness. We assume that a polar-
ization vector is parallel to the film plane and P = D.
If polarization vector P is normal to the film plane, the
dielectric displacement is constant (D = const), the
polarization equation is not differential, and polariza-
tion is uniform across the film thickness. Thus, the
correlation effect cannot be used to explain the size
effect when polarization is normal to the film plane.
The exact solution to this problem was obtained in,
e.g., [2, 3]. In the ferroelectric phase (a <0, T< T¢),
the solution to the set of Egs. (1) and (16) is expressed
through elliptic functions,

P(z) = Py |2 sinh( z m)
1+m horJ1+m

where Py = ./—a/b is the spontaneous polarization of

a thick film, 4, = «/—g/a is the correlation length, and
sinh(x, m) is the elliptic sine [23]. Parameter m is
determined from the transcendental equation

h = 2hyt1 + mK(m), (18)
where K(m) is the elliptical integral of the first kind
[23]. For P(z) to be real, the condition 0 < m < 1 must
be met. It follows from the properties of elliptic func-
tions that the limit m — 1 corresponds to a thick film
(h > mhy) and the limit m — 0 corresponds to 4 —
mhy. The existence of this limit demonstrates the pres-
ence of a certain critical film thickness 4, = mh, that
corresponds to zero spontaneous polarization, and
spontaneous polarization is absent at a smaller film
thickness. Therefore, the phase transition from a fer-
roelectric into a paraelectric phase can occur when the

5)

17)
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film thickness decreases (thickness-induced phase
transition). Phase-transition temperature 7, is lower
than Curie temperature 7. The temperature depen-
dence of T, follows from Eq. (18) and has the form

e 11-(H0)]

h(0) = s .
(0) n/aoTc

where #£,(0) is the critical film thickness at 7= 0 and a,,
is the Curie—Weiss constant in the formula that
describes the temperature dependence of the Lan-
dau—Ginzburg coefficient (@ = ay(T — T¢)). At h <
h.(0), the film is in the paraelectric phase over the
entire temperature range and spontaneous polariza-
tion is absent. The main disadvantage of this approach
is revealed when Eq. (18) is compared with the exper-
imental dependence of the phase-transition tempera-
ture on the film thickness obtained in [24] for barium
titanate BaliO;,

19)

1000
T, = Tc o
Formula (19), which describes the quadratic
dependence of the phase-transition temperature on
the reciprocal film thickness, is in obvious conflict
with experimental Eq. (20), where this dependence is
linear. Note that the temperature dependence enters
into an arbitrary solution to Eq. (15) only through the
dependence on A, in variable z/h,; that is, quadratic
dependence (19) is present in all solutions to Eq. (15)
without exception. Of course, the character of this
dependence can be slightly changed using, e.g.,
impedance-type boundary conditions [2, 22]; how-
ever, linear dependence (20) cannot be obtained at any
boundary conditions. Thus, a comparison of the
dependence of phase-transition temperature 7T, with
the experimental data allows us to conclude that the
model under study incorrectly describes the experi-
mental results and that it should be refined. We now
pass to studying a simpler model, where the transition
layer is modeled by a dielectric layer (passive layer
model [6, 15]).

(20)

5. PHASE TRANSITION IN A TWO-LAYER
FERROELECTRIC—-DIELECTRIC SYSTEM

We consider a flat ferroelectric layer of thickness 4,

(medium 1) on which a dielectric layer of thickness 4,
is placed (medium 2). Hereafter, the quantities
belonging to the ferroelectric and dielectric layers are
indicated by subscripts “f” and “d”, respectively. We
designate the total layer thickness as 4 = A, + h,, direct
coordinate z across the layers, and suppose that per-
mittivity €,(z) in medium 2 is variable. We also assume
that the outer boundaries of the system have no poten-
tial; i.e., spontaneous polarization is sought for. This
problem was repeatedly considered but for constant g,
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[6, 15]. Let £ and P with the corresponding subscripts
be the projections of field and polarization vectors
onto axis z, respectively. Then, the constitutive equa-
tions that relate these quantities have the form

E; = aP+bP), P, = gy(es—-1)gE,.  (21)

Apart from Egs. (21), the field and polarization meet
the condition of absent space charges,

dﬁz(sd(zwd(x)) = 0, diz(soEﬁPf) 0. ()

Hence, with allowance for Eq. (20), it follows that £, =
const and E,(x) = FE,/e(x), where F, is the constant of
integration unknown at this stage of computations.
Moreover, the electric displacement at the boundary
Z= hyshould be continuous,

e (h) Ey = € Ey— Py, (23)
and the boundaries z = 0 and z = /4 should have no
potential difference,

h
Ephy+ By [ = 0.

ed2)
h/

We now designate the ratio of the layer thicknesses
as ¥ = h,/hyand introduce the effective permittivity of
the dielectric as

(24)

h
1 1 rdz

- = — |2 25
&r  hyde(2) (2
hy
Then, Eq. (24) can be rewritten in the form
Ef+ EZSCfK = 0 (26)
For brevity, we introduce parameter
- Khdgef (27)

go(Khye s+ 1)

With these introduced designations, we write the solu-
tion to problem (21)—(24) as

a+
Pr= bn’ Ep=-p,
P (28)
Ed = — i .
Kh€e

Let us discuss these results. The spontaneous polar-
ization of the ferroelectric—dielectric system turns out
to be identical to that of a single ferroelectric with Lan-
dau—Ginzburg coefficient a replaced by a + 1. This
means the displacement of the Curie temperature by

AT: = n/a,. 29)

Thus, the decrease in the Curie temperature lin-
early depends on the dielectric layer thickness and is
inversely proportional to the ferroelectric layer thick-
ness. This conclusion is supported by the experimental
results in [24]. For a given temperature, there is a crit-
ical ratio of the dielectric to the ferroelectric layer
thickness k, so that the system has no spontaneous
polarization at x > k.. Note that, despite a zero poten-
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tial, the field is nonzero and its directions in the ferro-
electric and dielectric layers are opposite to each
other: the field direction in the ferroelectric is opposite
to the polarization direction (depolarizing field), and
the field and polarization directions in the dielectric
coincide with each other. Note also that the derived
formulas have no coordinate dependence €,(z) in an
explicit form and only contain the dependence on the
effective permittivity.

6. WEISS FIELD NEAR INTERFACE

Various approaches are used to calculate phenom-
enological coefficients @ and b in Landau—Ginzburg
equation (11) [14, 17]. We consider the self-consistent
Weiss field approximation as the simplest one. Recall
its basic points for infinite ferroelectrics [20]. Self-
consistent electric field E.;in a ferroelectric is the sum
of true electromagnetic field £ and molecular field B P,

Eef = E+ BP7 (30)

where [ is a certain positive constant characterizing
the properties of the ferroelectric. Let N dipoles with
constant electric moment p, be present in the unit vol-
ume of a ferroelectric. We now circumscribe ball B of
radius r, around a certain arbitrary point in the ferro-
electric and designate the polar angle measured from
direction E as 6. The value of r, is determined by the
characteristic dipole—dipole interaction distance. In
the classical Weiss theory, the solution is independent
of r,. The potential energy of a dipole in an electric
field is

U = —pyE.cosO. 31)

According to the Boltzmann theorem, the distribution
of molecules is determined by the equation

dN = cexp(——g—) sin0do
kg T (32)

= cexp(ocos0)do.

Here, kg is the Boltzmann constant; ¢ is the number
of the dipoles with the angles of their axes falling in the
range between 0 and 0 + dO; o = pyE.4/kg T, and c is a
normalization constant determined from the condi-
tion that the total number of dipoles in ball B is VN,

where V= 4n r?) /4 is the ball volume, or

I dN = VN. (33)
(B)
Since the integral is
a

0
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Position of ball B with respect to the interface of two
media.

the constant is found to be ¢ = aN/sinha. The total
dipole moment is p,dN and its projection onto direc-
tion E is p,cos0dN. Therefore, the ferroelectric polar-
ization satisfies the equation

T

P= Ipo cosBe”“*’sin0do
) (35)

= pON(coth(x - l)
o

At B =0, Eq. (33) was first derived by Langevin and the
function L(a) = cotha — 1/a is called the Langevin
function. At F — oo, polarization asymptotically
tends toward its limiting value P, = p,N. Assuming
E =0, we find spontaneous polarization Py= P(E = 0)

by the equation
3T,
y = L(—Cy) ,

T (36)

where normalized pressure y = Pg/ P, is unknown and

Tc = pé BN/3kg is the phase-transition temperature
(Curie temperature). At low fields, the Langevin equa-
tion transforms into Landau—Ginzburg equation (11)
[20].

The computations performed above become
invalid near the interface between two ferroelectrics,
where part B, of the circle is in one medium
(medium 1) and part B, is in the other medium
(medium 2) (see figure). We direct axis z normal to the
interface, place its origin at the interface, and assume
that the field is parallel to this axis. Note that the result
will be different at other E directions; that is, the per-
mittivity and other medium parameters near the inter-
face depend on both the electric field and its direction.
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Hereafter, subscripts 1 and 2 indicate the correspond-
ing media. Polarization near the interface is an
unknown function of coordinate z, P = P(z). Obvi-
ously, at a distance larger than r, from the interface,
polarization becomes constant: P(z) = P, at z < ry and
P(z) = P, at 7> ry, where P, , is the polarization for an
infinite ferroelectric with number 1 or 2. Therefore, we
are interested in the behavior of polarization only in
the transition layer |z| < r,. Coordinate z is connected
with polar radius » and angle 6 by the standard relation
z = rcosB. Formula (32) is valid if o is taken to be a
function of coordinate z,

_ Po(D)(E(2) + B(2) P(2))
ks T(2) ’

and coefficients py(z) and B(z) are assumed to be
piecewise constant,

a(z) (37)

STARKOV et al.

B B, z<0,
B(z) = {[327 >0,
(38)
b 0’
Py(2) = {” oS
Py 2>0.

Here, B, , and p,, , are constants characterizing the
media with the corresponding number. Temperature
T(z) is considered to be constant, 7(z) = T = const,
and the thermoelectric effects changing temperature
are assumed to be low. Equation (33) is replaced by the
equation

j dN = V|N, + V,N,, (39)

(B)
where V) , is the part of ball Blocated in medium 1 or

2, respectively. With Eq. (39), we can find constant ¢ in
Eq. (32). The equation

(ViN, + V)N,) j jpo(z)ea(”wserzsin@cosededr

P(z) = (B)

(40)

2n j Iea(Z)coserz sin0d0dr

(B)

is a generalization of the Langevin equation. For P(z)
to be unambiguously determined from Eq. (40), it
should be complemented with a continuity equation
relating E£(z) to P(z) and a condition for determining
E(z) should be formulated. Since the field distribution
in an inhomogeneous medium depends strongly on
the potential, we consider the simplest case (consid-
ered in Section 4) where an applied field is absent and
media 1 and 2 have finite temperature hysteresis 4, and
h,. In this case, the electric field should meet the con-
dition
hZ
j E(z)dz = 0.
_hl

The continuity condition is formulated in the standard
form

(41)

eE(x)+ P(z) = D, (42)

where D is a constant electric displacement. Thus, to
find polarization P(z) (or electric field £(z)), we have
to solve nonlinear integral equation (40) along with
conditions (41) and (42). In contrast to the case of a
homogeneous ferroelectric, problem (40)—(42) is too
complex to be solved even numerically and the stan-
dard methods of solving integral equations are inappli-
cable here. The proposed version of generalizing the
mean-field theory is the simplest and, of course, has
certain disadvantages. For example, the equipotential
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surface for the field of an electric dipole is assumed to
be a sphere. This assumption holds true only of homo-
geneous space. Radius r; is taken to be independent of
the properties of a ferroelectric and to be the same in
media 1 and 2. More exact results can be obtained if a
more rigorous formula is taken for the dipole field near
the interface and integration is performed over the
entire space. Nevertheless, the following qualitative
conclusions can be drawn from the form of Eq. (40)
(or its more exact analog) despite the absence of an
exact solution. A transition layer of a certain thickness
(2r, for the model under study) appears at the interface
between two ferroelectrics or a ferroelectric and a
dielectric. The polarization and electric field are con-
tinuous at the interface but change rather sharply
within the transition layer. A surface charge density at
the interface is absent in the Weiss theory. In this case,
the permittivity in this layer depends on the electric
field direction even if the media in contact are homo-
geneous.

Explicit formulas can be written in the case where
the transition layer thickness is small as compared to
the ferroelectric thickness, ry/A << 1. Then, we do not
need an explicit form of dependence P(z); as will be
shown below, the knowledge of an integral character-
istic of this dependence is sufficient. Thus, we now
consider the problem of finding spontaneous polariza-
tion and its temperature dependence in the two-layer
system consisting of a ferroelectric layer of thickness 4,
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and a transition layer of thickness 2r, 4+ 2ry = h. The
ferroelectric is assumed to obey the Landau—Gin-
zburg equations

E = aP+bP, ze[0;h]. (43)
Continuity condition (42) should be met in the entire
system. Moreover, the system boundaries should have

no potential difference,

h

J.E(z)dz = 0.

0
We consider the transition layer as a small perturbation
of the ferroelectric layer. As a result, we can use the
perturbation theory and search for the solution to the
problem in the form of the sum of the solution to the
unperturbed problem and small correction terms,

P=P;+0P, EF=08E, D= Ps+3dD, (45

where OP, OF, and 3D are small quantities, O(ry/h).
The smallness is understood in an integral sense, i.c.,
h

[l8P@)ldz = O(ry).
0

As a result of elementary manipulations, we obtain the
relationship

h
P
e8E = —=% j (1
h
0
Equation (47) relates depolarizing field d £ to the inte-
gral value of polarization in the transition layer. When
comparing Egs. (28) and (47), we can draw the follow-
ing conclusion: if the dielectric layer thickness and its
permittivity satisfy the relationships

hy = 2, _—2rj(1 P(z) .
0

Eef

(44)

(46)

P@) .. @7)

Py

(48)

the model of a ferroelectric w1th a dielectric layer and
the Weiss model give the same (accurate to small
quantities O(r,/h)) values for the depolarizing field,
the polarization, and (hence) the phase-transition
temperature. Therefore, the mean-field theory can
justify the passive layer model. In both models, the
phase-transition temperature depends linearly on the
reciprocal layer thickness, which agrees with the
experimental data in [24].

7. CONCLUSIONS

We studied the possibility of introducing a term
proportional to polarization gradient squared into the
Landau—Ginzburg thermodynamic potential and
showed that this term ((VP)?) causes boundary condi-
tions that contradict the classical Maxwell electrody-
namics. As a consequence, this term should be
excluded from consideration or should be replaced by
electric displacement gradient squared (VD)?. In turn,
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to describe the boundary of a ferroelectric, we propose
to use the Weiss mean-field model instead of taking
into account the gradient terms. An analysis of the
equations following from this model demonstrates the
presence of a thin transition layer at the boundary of a
ferroelectric. The permittivity of this layer depends on
the electric field direction (even in the absence of this
dependence in the ferroelectrics in contact), and the
polarization and the electric field satisfy a complex
nonlinear integral equation, which generalizes the
well-known Langevin equation to the case of adjacent
media. Since we failed to find an exact solution to this
integral equation, we constructed an approximate
solution using the smallness of the transition layer
thickness as compared to the dielectric layer thickness.
The final formulas only include the average polariza-
tion in the transition layer. The results obtained by the
Weiss model and the passive layer model coincide with
each other at a certain set of parameters. In other
words, we showed the possibility of simulating the
presence of a transition layer in multilayer ferroelectric
structures by a thin dielectric layer. This finding makes
it possible to substantially simplify the calculations of
the physical parameters of materials of this type.
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