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Abstract. The ever-growing demand for higher accuracy in scientific
simulations based on the discretization of equations given on physical
domains is typically coupled with an increase in the number of mesh
elements. Conventional mesh generation tools struggle to keep up with
the increased workload, as they do not scale with the availability of, for
example, multi-core CPUs. We present a parallel mesh generation ap-
proach for multi-core and distributed computing environments based on
our generic meshing library ViennaMesh and on the Advancing Front
mesh generation algorithm. Our approach is discussed in detail and per-
formance results are shown.

1 Introduction

A mesh as partitioning of a physical domain is required to model continuous
phenomena by means of discretized equations in the discrete domain of a com-
puter [6]. The continually growing demand for increased accuracy and the abil-
ity to simulate on more and more complex geometries introduces the need to
increase the number of the mesh elements. Today meshes with around 109 ver-
tices are utilized in large-scale scientific computations [9]. Increasing the mesh
size, however, intensifies the role of mesh generation, as conventional non-parallel
mesh generation tools simply take too long to compute the partitioning [4]. As
a remedy to this problem, a domain decomposition technique can, for exam-
ple, be utilized, where basically the initial domain is partitioned, distributed,
locally (re-)meshed, and utilized [5]. Merging the mesh generation step with
the simulation on distributed computing nodes significantly increases the overall
efficiency, as the communication overhead is minimized. In this work we inves-
tigate a self-consistent volume mesh generation approach for multi-core CPUs
and distributed computing environments based on the Message Passing Inter-
face (MPI). We show that our concise approach achieves a considerable scaling
behavior, thus we may conclude that our approach is a means to significantly
accelerate the generation of large volume meshes.
This work is organized as follows: Section 2 puts the work into context. Sec-
tion 3 introduces our approach, and Section 4 validates the work by depicting
performance results.
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Fig. 1. The input multi-segment hull mesh (left) is distributed segment-wise to the
individual processes (middle) and finally the multi-segment volume mesh is merged
from the partial segment volume meshes (right)

2 Related Work

Different methods for parallel mesh generation are available, which offer various
advantages and disadvantages [3]. For example, Delaunay based methods can be
used, where basically the input domain is initially just roughly meshed and then
gradually refined. The refinement process is parallelized which is quite challeng-
ing due to required synchronization steps between the individual point insertions.
Another example would be Advancing Front based methods which start the vol-
ume meshing from an initial surface and gradually attach new elements to this
surface. Hence, it can informally be seen as growing the volume mesh from an
initial surface towards the interior. Different parallelization approaches are used,
for instance, so-called partially coupled methods, where parallelizable regions in
the various mesh sub-domains are identified prior to the mesh generation process.
A self-consistent parallel volume meshing approach based on a shared-memory
model has already been investigated previously [7]. This approach utilizes the
Advancing Front technique for partial volume meshing steps, but obviously can
not scale beyond a multi-core CPU.

3 Our Approach

Our approach is based on the Advancing Front meshing technique, in which the
algorithm preserves the input hull mesh during the volume meshing process.
Therefore, the communication overhead is minimized, as interface changes do
not have to be communicated through the parallelized meshing environment.
We utilize the ViennaMesh library which offers a unified interface to various
mesh related tools [8]. We use the generic interface of ViennaMesh to utilize
the Netgen volume mesh generation tool [1]. The input mesh is expected to be
partitioned, which in our case is a reasonable assumption due to the availability
of CAD tools, for example, the Synopsys Structure Editor can be utilized in
the field of semiconductor device simulation [2]. We refer to each partition as
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a segment of the mesh, thus we call the whole mesh a multi-segment mesh.
Furthermore, the individual segments of the input multi-segment mesh are hull
meshes, meaning that each segment contains the surface of the sub-domain which
has to be meshed. Figure 1 depicts the schematic principle of our approach. The
individual hull segments are transmitted to the processes, where they are meshed.
The root process is used for driving the overall parallelized mesh generation,
whereas the other available processes are solely used for the partial volume mesh-
ing tasks. The partial volume mesh results are then sent back to the root node,
where they are merged in a final step to the resulting multi-segment volume
mesh.

4 Performance

In the following we present the performance of our approach. Our test environ-
ment consists of three workstations, namely two AMD Phenom II X4 965 with
8 GB of memory, and one INTEL i7 960 with 12 GB of memory, connected by
a gigabit Ethernet network. We investigate two different types of meshes. First,
two artificial test hull meshes containing 96 segments with ∼150k and ∼590k
vertices, respectively (Figure 2). The number of vertices per segment is con-
stant, allowing to investigate the optimal case, where each segment represents a
constant workload for a process. Second, a hull mesh from the field of semicon-
ductor device simulation is investigated, containing ∼110k vertices, 8 segments,
and a varying number of vertices per segment (Figure 3). This mesh is used
to outline the decrease in efficiency for small numbers of segments. The results
depict that the meshing step, which includes the volume mesh generation on the
nodes and the related MPI communications, scales reasonably well for meshes
with approximately a ten times larger number of segments than the number of
cores. Figure 2 depicts an efficiency of about 80% for 10 cores and different mesh
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Fig. 2. Left: An artificial test mesh is analyzed in two different ways. The mesh offers
96 segments, 110k, and 590k vertices, and an equal number of vertices per segment.
The colors indicate different segments. Right: The meshing step offers reasonable
scalability for both mesh sizes (80% efficiency for 10 cores). However, the speedup
decreases due to the overhead of mesh merging.
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Fig. 3. Left: A mesh from the field of semiconductor device simulation is analyzed. The
mesh offers 8 segments, 110k vertices, and a varying number of vertices per segment.
The colors indicate different segments. Right: Excellent scaling can be achieved for
up to 3 cores. However, due to the small number of segments and differently sized
segments the scaling saturates at a speedup of 3.

sizes. However, the efficiency is reduced for larger core numbers, as the final step
of merging the partial mesh results on the root node becomes large relative to
the overall execution time. For example, for the 150k mesh and 2 cores, 7.7%
of the overall execution time is used for the final mesh merging, where with 10
cores it is already 25%. Figure 3 outlines that our approach achieves a consid-
erable speedup of 3 for meshes offering a small number of 8 segments. However,
the scaling saturates for 4 cores and a speedup of 3, due to the small number
of segments relative to the number of cores and due to the varying number of
vertices in the different segments.

5 Conclusion

Our approach offers good scalability for meshes with approximately ten times
larger number of segments than the number of cores. Even for meshes with
approximately three times the number of segments than the number of cores,
we achieve a considerable speedup. Therefore we conclude, that our presented
self-consistent parallel mesh generation approach is indeed a meaningful way to
significantly accelerate the volume mesh generation. However, a flexible mesh
partitioning approach is required to enable an improved speedup for larger dis-
tributed environments. The mesh merging step in the root process has to be
further improved, to achieve higher efficiency for large-scale meshes.
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