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ABSTRACT - The advent of Very Large Scale Integration has been an

incentive to concentrate persistently on device modeling. The

fundamental properties which represent the basis for all device
modeling activities are summarized. The sensible use of physical
and technological parameters is discussed and the most important
physical phenomena which are required to be taken into account
are scrutinized. The assumptions necessary for finding a
reasonable trade-off betweenefficiency and effort for a model

synthesis are recollected. Methods to bypass limitations induced

by these assumptions are pin-pointed. Simple and easy to use
formulae for the physical parameters of major importance are
presented. The necessity of a careful parameter-selection, based
on physical information, is shown. Some glimpses on the
numerical solution of the semiconductorequationsare given. The

discretisation of the partial differential equations with finite

differences is outlined. Linearisation methods and algorithms

for the solution of large sparse linear systems are sketched.

Results of our two dimensional MOSFET model - MINIMOS - are
discussed with typical applications. Much emphasis is laid on
the didactic potential of such a complexhigh order model. In
addition to its academic importance, the role of modeling as a

tool to optimize transistor performance is stressed.



491

1. INTRODUCTION

The first integrated circuits which just contained a few

devices became commercially available in the early 1960's. Since
that time an evolution has taken place so that today the

manufacture of integrated circuits with over 400.000 transistors
per single chip is possible. This advent of the so-called Very-

Large-Scale-Integration (VLSI) certainly revealed the need of a
better understanding of the basic device physics. The

miniaturization of the single transistor, which is one of the
inseparable preconditionsof VLSI, brought about a collapse of
the classical device models, because totally new phenomena
emerged and even dominated the devicebehaviour. One consequence

of this evidence led to an unimaginable number of suggestions of
how to modify the classical models to incorporate various of the
new phenomena. Additionally new activities have been initiated
to explore the physical principles which make a device
operationable. The number of scientific publications which
utilize the terms \"device analysis\", \"device simulation\" and

\"device modeling\" (c.f./4/, /53/, /83/) grew in an incredible

manner.

At first it seems necessary to clarify these frequently used

terms to facilitate the intelligibility of the subsequent
chapters. Consultinga dictionary one will find among many more

the following interpretations:

Analysis
\342\200\242separation of a whole into its component parts, possibly

with comment and judgement
\342\200\242examination of a complex, its elements, and their

relations in order to learn about

Simulation
\342\200\242imitative representation of the functioning of one system

or process by means of the functioning of another
\342\200\242examination of a problem not subject to experimentation

Modeling

\342\200\242to produce a representation or simulation of a problem or
process

\342\200\242to make a description or analogy used to help visualize
something that cannot be directly observed

Therefore, analysis is at least intended to mean \"Exact

Analysis\" and simulation must inferentially mean \"Approximate
Simulation\" using only to some extent physically motivated
models. Modeling is necessary for analysis and simulation, but

with a different objective. However, any model should at least
reflect the underlying physics.
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2. SOME FUNDAMENTAL PROPERTIES

To accurately analyze an arbitrary semiconductor structure
which is intended as a self-contained device under various
operating conditions,a mathematical model has to be given. The

equations which form this mathematical model are often called the

fundamental semiconductor equations; these will be discussed in
the first sectionof this chapter.

The second section will deal with assumptions which have to
be made for special applications additionally to those which have

already been used in the derivation of the equations and which

are beyond the scope of this presentation. Furthermore, all
quantities which are involved in the basic equations will be
outlined moreor less qualitatively.

It will become apparent that the fundamental equations
employ a set of physical and technological parameters. An

in-depth analysis of all these parameters is far from being
finished at the moment - or the results of such an analysis are
of overwhelming complexity

- because of inherent methodical
difficulties.

The third section will deal with additional assumptions
which can be made to ease and speed up models for MOS-devices.

The topic of the fourth section of this chapter is the

description of some suggestions for a heuristic simulation of the
most important parameters based, as it were, on physical
principles.

2.1 The Fundamental Semiconductor Equations

The most familiar model of carrier transport in a

semiconductor device has been proposed by Van Roosbroeck /172/.
It consists of Poisson's equation (2.1-1), the current continuity

equations for electrons (2.1-2) and holes (2.1-3) and the current
relations for electrons (2.1-4) and holes (2.1-5)

div C grad \302\253\302\273\302\273=-q(p-n+C) (2.1-1)

div ~J
=

-q ( G - R ) (2.1-2)n

div \"j =
q ( G - R ) (2.1-3)

P

3 = -q ( P n grad t|J
- D grad n ) (2.1-4)n n n

3 - -q < J\302\273P grad ip+ D grad p ) (2.1-5)
P P P
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These relations form a system of coupled partial
differential equations. Poisson'sequation, which is one of
Maxwell's laws, describes the chargedistribution in the interior

of a semiconductor device. The balance of sinks and sources for
electron- and hole currents is characterized by the continuity
equations. The current relations describe the absolute value,
direction and orientation of electron- and hole currents. The

continuity equations and the current relations can be derived
from Boltzmann's equation by not at all trivial means. The ideas

behind these considerations cannot be presented here due to

limited space. The interested reader should refer to /172/ and

its secondary literature or text books on semiconductorphysics
e.g. /18/, /78/, /136/,/148/.

However, it is of prime importance to note that the

equations (2.1-4) and (2.1-5) do not characterize effects which

are caused by degenerate semiconductors (e.g. heavy doping).

/97/, /171/, /174/ discuss some modifications of the current
relations, which partially take into account the consequences
introduced by degenerate semiconductors (e.g. invalidity of
Boltzmann's statistics, bandgap narrowing). These modifications
are not at all simple and lead to problems especially for the
formulation of boundary conditions /116/, /l73/. In case of
modeling MOS devices, degeneracy is, owing to the relatively low

doping in the channel region, practically irrelevant. For modern

bipolar devices, though, bearing in mind shallow and

extraordinarily heavily doped emitters, it is an absolute

necessity to account for local degeneracy of the semiconductor.

Furthermore, (2.1-4) and (2.1-5) do not describe velocity
overshoot phenomena which become apparent at feature lengths of
O.ljfci for silicon and ljtei for gallium-arsenide /60/; and
certainly no effects which are due to ballistic transport, the

existence of which is still questionable /77/, are included. The

latter start to become important for feature sizes below O.OljIm

for silicon and O.ljka for gallium-arsenide /61/. Consideringthe

state of the art of device miniaturization, neither effect has to

bother the modelists of silicon devices. For gallium-arsenide
devices new ideas are mandatory for the near future /60/, /110/,
/111/. \342\226\240

2.2 Assumptions and Discussion of Parameters

It is imperative to discuss the parameters of the

semiconductor equations to get some insight into the complexity
of that mathematicalmodel and the difficulty of a more or less
rigorous solution.

The permittivity \302\243in Poisson's equation in the most general
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case is a rank two tensor. Because all common semiconductor
materials grow in cubic crystal structure and because silicon-
dioxide is amorphous no anisotropy exists and the permittivity
can be treated as a scalar quantity. Furthermore, one can savely
assume that the permittivity is homogenous with sufficient

accuracy for even degenerate semiconductors.

The electrically active net doping concentration C in

Poisson's equation is the most important technological parameter.
To obtain this quantity by mathematical analysis /51/ is at least
as cumbersome as to accurately analyze some semiconductor device,
because the physics of the technological processes which
determine the doping concentration still lacks basic
understanding. The need of modeling in this area is drastically
increasing in view of VLSI devices. One-dimensional process
modeling is fairly well establishednowadays, but two-dimensional

simulation is just appearing /51/, /164/. Some glimpses of

modeling doping profiles with handy analytical expressions will
be given in section 2.4.1. One assumption which is usually made
with fairly satisfactory successis the total ionization of all
dopants (2.2-1).

C = N - N = N* - N~ (2.2-1)
D A D A

As long as the Fermi level is separated several thermal

voltages from the impurity level, this assumption holds quite
nicely. For modern bipolar transistors, however, it certainly
becomes questionable for the emitter region (degenerate
material).

The electron density n and the hole density p are commonly

assumed to obey Boltzmann's statistics (2.2-2).

\302\273-\302\273...<*-
*)/0I

p
. n. .e\302\253Pp

\"
\302\253\302\273\342\200\242/% (2.2-2)l r l

This assumption principally neglects degeneracy; but

moderate degeneracy can be included /55/ by introducing an

effective, doping dependent intrinsic number (2.2-3).

n. = n.(T,N) (2.2-3)

52.7(ln(N/10i')+\\|(ln(N/10i'))i +0.5)/T,. J7, U, ,\342\200\236\342\200\236\342\200\23617\342\200\2362

n.(T,N)
= n.(T) e

n.CT) - a.M.lO16-!1-5-.-700071

N = N_ + N.
D A
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The temperature dependence of the intrinsic number is based

on the influence of the effective carrier masses and the bandgap.
More elaborate formulae for these effects which might be

imperative for low temperature applications can be found in /62/.
The formula for bandgap narrowing in (2.2-3) was first suggested
by Slotboom /146/. For a dopingconcentrationof 1.3\302\25310^' cm-^

the intrinsic number has already increased by twenty percent.

The mobility of electrons Pn and holes Pp is in principle a
rank two tensor function of many arguments. One ends up with a
so called \"mobility\" after averaging and combining various
physical mechanisms which are still not analyzed thouroghly
enough to be modeled satisfactorily /79/. Some formulae for a
mobility model for silicon will be summarized in section 2.4.2.

Another assumption which is unfortunately not at all free of
doubts is the validity of the Einstein-Nernstrelations(2.2-4).
D = P -UT D -

J\302\273-0_ (2.2-4)n n 1 p p 1

Some guidelines on how to extend these relations for
degenerate material are given in e.g. /8/. It is important to
remember that the current relations (2.1-4) and (2.1-5) do not
differentiate between lattice temperature and electron

temperature. Therefore, if one has to deal with hot electrons in
a precise manner, the current relations have to be updated; in
particular the mathematical structure of the diffusion current

term has to be refined.

The last parameter which remains to be dealt with for a
qualitative characterization is the net generation/recombination

rate (G-R) in (2.1-2) and (2.1-3). This quantity has to describe
a number of physical processes which are responsible for
generation/recombinationof electron-holepairs. These processes

and their interactions are also not analyzed to a satisfactory
level so that one has to use heuristic expressions for a model

which is at least plausible in the underlying physics. Some

suggestions for these formulae will be given in section 2.4.3.

2.3Additional Assumptions for MOS-Models

The fundamental semiconductor equations describe the
internal behavior of any semiconductor device. However, for
certain devices these equations may be simplified without

significant loss of accuracy. As the MOSFET is a minority
carrier device, the current is given mainly by the continuity
equation of one carrier type. If avalanche is neglected, only
little carrier generation occurs in the MOSFET.
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Therefore, the eqs. (2.l-2)-(2.1-3) may be rewritten as

div J =0 (2.3-1)n
J = 0 (2.3-2)

P

for the n-channel device and

div ? =0 (2.3-3)
P

J = 0 (2.3-4)n
for the p-channel device. However, it should be kept in mind

that these assumptions are valid only if the avalanche effect is
neglected.

The channel width of a MOSFET is usually much larger than

the depletion widths. As a consequence the partial derivatives
in that direction can be neglected and the semiconductor

equations reduce to two dimensions. The neglection of the
derivative of the potential in source-draindirection is a proper

assumption only for long-channel devices. The so called

\"gradual-channel approximation\" was the basis of a lot of one-
dimensional models. These models fail to predict accurately the
behaviorof modern miniaturized devices.

If the avalanche effect should be included, the assumptions

(2.3-l)-(2.3-4) are no longer valid and both continuity equations
have to be solved with inhomogeneityterms. As a consequence,
the ionization-generated majority carriers (holes for an

n-channel MOSFET) flow to the substrate as they are repelled from
the source and drain junctions. There are several optionsto
account for the voltage drop which is induced by the substrate

current; (a) a truly three-dimensional analysis; (b) extension of

the simulation over the entire bulk area; (c) extensionof the

two-dimensional simulation over the depletion region and using an

(effective) bulk resistor (Fig. 2.3-1). If one wants to avoid
excessive computing time associated with (a), option (c) is to be

preferred because it allows inclusion of current spread into the

third dimension and, also, consumes less computing time than (b).

In that way the voltage drop across the parasitic bulk resistor
simulates a more positive bulk bias and, if large enough, is able
to forward-bias the parasitic bipolar npn transistor (according
to source, bulk, and drain). This causes a larger drain current
and facilitates the breakdown which then will occur at smaller
drain voltages/133/.
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<

Fig. 2.3-1: Current flow in deep bulk

In the followingwe should like to suggest an easy method to
estimate the value of the bulk resistor. It is assumed that the
current spreads at an angle of 45 degrees /15/ into both
directions perpendicular to its flow (x- and z- direction in Fig.
2.3-1). This assumption is arbitrary but not implausible, and,
furthermore, if we neglect any diffusion current, we obtain the
following expression for the electric field in the deep
substrate.

sy_h _ h (2.3-5)

dy
\"

Ka
*

K.(L+2y)(W+2y)

with IC standing for the conductivity of the substrate and A the

area of the current flow. L and W are channel length and channel
width, respectively. Integrating this equationalong y from the

end of the simulation area d to the bulk contact we obtain

hu Ik

<3\302\273

dy
dy

B
2K.CW-L)

( ln(
L+2d
L+2d ) - ln(W+2d

W+2d
) ) . (2.3-6)

For L=W this equation simplifies to

d-d

^ulk
=

fc(L+2d)(L+2d )
(2.3-7)

s
This calculation is fairly crude compared to the elaborate

solution of the basic equations. However, any more precise
calculation would be very complicated and the present method is

sufficient to investigate the influence of the parasitic bulk
resistance at least qualitatively.
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2.4 Models of Physical Parameters

2.4.1 Formulae for Modeling Doping Profiles

A one dimensional doping profile which can be calculated

fairly accurately with a process simulation program (e.g. /6/)

may be heuristically converted to two dimensions for a structure
with an ideal oxide mask as shown in Fig. 2.4-1 using (2.4-1).

V/ ' //.
OXIDE

z

y

Fig. 2.4-1 Coordinate nomenclaturefor an ideal oxide mask

C(x,y) = C(\\|y2+max(x/f,0)2 (2.4-1)

This formula is extraordinarily simple to use and needs only
one fitting parameter:f which controls the amount of lateral
diffusion. For most applications f lies in the range of 0.5 to
0.9. An elliptic rotation at x=0 (c.f. Fig. 2.4-1) of the
one-dimensional profile is performed to obtain the doping
concentration below the oxide mask. Out-diffusioneffects which

occur near the mask edge are not at all taken into account.

Lee /89/, /90/ recently published expressions which are

still fairly simple to use, but which are based on more physical
reasoning. (2.4-2)
predeposition step,
diffusion constant,concentration.

can be used

Ld denotes
t: diffusion

Ld
\342\200\242^JD't

C (x,y) =
P

0.5-N -(y/LdV

for the simulation of a
the diffusion length; D:

time, N_: desired surface

(2.4-2)

erfc(x/Ld)
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The distribution of implanted ions under mask edges has also
>een investigated extensively e.g. /128/. The formulae (2.4-3)
fhich have been taken from /89/, /90/ allow simulation of
diffusion with an initial ion-implantation. Rp denotes the

projected range, QRp: projected standard deviation, Dose:
implantation dose.

a = (2 + (Ld/Aftp)2 )\"1/2 (2.4-3)

K(y)
= e-(*'(Rp-y)/ARp)2 .

erfc(-a-((Rp/ARp)+\\fI-y/Ld))

\342\200\242ARp'Vi)C.(x,y)
=

(a/(4-^Rp-)jH))-Dose
\342\200\242

(K(y)+K(-y))
\342\200\242

erfc(x/Ld)

In the derivation of (2.4-2) and (2.4-3) it is assumed that
the diffusion \"constant\" is really constant. This limits the
application to relatively low peak values of the implanted
profile. For high peak values one might fit the diffusion
lengths Ld to obtain a desired junctiondepth.

The diffusion constant D can be estimated, again for fairly
low concentrations, with the classical exponential law (2.4-4).

(2.4-4)
D =

D0-,

Element

B

P

Sb

As

gTa/T

D0/(cm2s'\"1)

0.5554

3.85

12.9

24.

T /(K)
a

-3.975-104

-4.247-104

-4.619-104

-4.735-104

The projected range parameters Rp and Oftp which are
nonlinear functions of the implantation energy can be looked up

in standard tables /64/. These tables are principally tedious to
implement in computer programs, so that one might prefer some

polynomial fit (2.4-5); x denotes here the implantation energy.

(2.4-5)
n

Rp
= La.\342\200\242xr l

i-1
n

&Rp = Ib.-x1l
i-1

(j*n)

(JkO



502

The coefficients for such polynomials are given in Fig.
2.4-2 for Rp in silicon, in Fig. 2.4-3 for ^Rp in silicon and in

Fig. 2.4-4 for Rp in silicon-dioxide.

Element

al

a2

a3

a4

a5

B

3.338-10\"3

-3.308-10~6

P

1.259-10-3

-2.743-10\"7

1.290-10-9

Sb

8.887-10~4
-1.013-10\"5
8.372-10-8

-3.056-10\"10
4.028-10-13

As

9.818-10\"4

-1.022-10~5

9.067-10~8

-3.442-10\"10

4.608-10\"13

Fig. 2.4-2 Coefficients for Rp in silicon

Element

bl

b2

b3

b4
b5

B

1.781-10-3

-2.086-10-5

1.403-10-7

-4.545-10~10
-135.525-10

P

6.542-10-4

-3.161-10-6

1.371-10-8

-2.252-10-11

Sb

2.674-10-4
-2.885-10-6
2.311-'10~8

-8.310-11-10
1.084-10-13

As

3.652-10~4

-3.820-10~6

3.235-10\"8

-1.202-10\"10

1.601-10\"13

Fig. 2.4-3 Coefficients for QRp in silicon:

Element

al

a2

a3

a4

a5

B

3.258-10-3

-2.113-10-6

P

9.842-10~4

-2.240-10~7

Sb

7.200-10~4
-8.054-10-6
6.641-10-8

-2.422-10-10
3.191-10-13

As

7.806-10\"4

-7.899-10\"6

7.029-10\"8

-2.653-10\"10

3.573-10\"13

Fig. 2.4-4 Coefficients for Rp in silicon-dioxide

The maximum error of the projected range parametersculated with these coefficients and (2.2-5) is in the energy

ge of 5keV to 300keV only a few percent compared to /64/.
e data are given in /141/.
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If an implantation is performed through an oxide, the

projected range in the semiconductor has to be reduced /129/ e.g.
with (2.4-6).

RP
=

RPe '(1-T- /Rp ) (2.4-6)r rse iox \"ox

T\302\243ox
denotes the thickness of the oxide, RPse/^Pox*

projected range in semiconductor/oxide.
2.4.2Formulae for Mobility Modeling

The mobility of carriers is, as already mentioned, an

eminently complex quantity. Additionally it is an important

parameter, because all errors in the mobility lead to a

proportional error of the current through the multiplicative
dependence. This is certainly one of the primary results any

model should yield reliably. The formulae which will be given

below describe phenomenologically the mobility in silicon; the
subscripts n and p denote electrons and holes, respectively.

To model mobility at least plausibly, several scattering
mechanismshave to be taken into account, the basis of which is
lattice scattering. This effect can be described by a simple
power law /79/, /136/ in dependenceof temperature (2.4-7).

J\302\273L(T)
= A-T~8 (cm2/Vs) (2.4-7)

A = 7.12-108 A = 1.35-108
gn = 2.3 gP

= 2.2
6n 6p

The pure lattice mobility is reduced through the scattering
processes at ionized impurities. (2.4-8) is a well established

formula which models temperature dependent ionized impurity

scattering /24/ and electron-hole scattering /55/. The latter is

extremely important in low doped regions where high injection
takes place.

KT(N,T) = K(T)-a + P . -(1 -
a) (cm2/Vs) (2.4-8)

li L min
1a = r

1 +
(T/300)D-(N/NQ)C

N = 0.67-(N
*

+ N \") + 0.33-(n + p)DA r
P . = 55.24 P . = 49.7minn minp
b = -3.8 b = -3.7n p

c = 0.73 c = 0.7n 17 P
17

N = 1.072-10 N = 1.606-10
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Similar expressions which have been partly deduced from
measurement and/or theory have been presented in /7/, /41/, /47/,
/92/, /132/.

To properly simulate the mobility in MOS transistors, one

has to deal with surface roughness and field dependent surface

scattering. /30/, /130/, /153/ presented interesting measured

results on inversion layer mobility; /162/, /163/ gave some

excellent ideas on how to treat theoretically these and other
scattering mechanisms; /182/ suggesteda heuristic formula for
field dependent surface scattering which is applicable for

two-dimensional simulations, but whose adequacy is questioned in

/162/. However, we have developed (2.4-9) which models

phenomenologically with best fit to measurement surface roughness
as well as field dependent surface scattering /143/.

y+y

J\302\273LIS(y,E ,Et,N,T)
=

J>LI(N,T)
\342\200\224

(crnVVs) (2.4-9)
P

y+b-y

yr
=

y0/U+yEp0)
b =

2+Et/Et0
E = max(0,(E -J +E -J )/(J 2+J V/2)

p x x y y x y

E_
= max(0,(E -J -E -J )-J /(J 2+J 2))

t -xyyxxxy ?
yn

= 5-10' yn
= 4-10\"'

0n 4 \302\260P
3

E - = 10 E n
= 8-10

pOn , pOp
Ekn

= 1.8-10 Ek-
= 3.8-10tOn tOp

In regions with a high electric field component parallel to
current flow, drift velocity saturation has to be taken into
account. (2.4-10) combines, also phenomenologically, this

physical effect and the lattice-impurity-surface mobility using a
Mathiessen-type rule with a weakly temperature dependent
saturation velocity /23/, /79/, /80/.

ftot^vv1*^
-

<>w-)6+(vv6)1/6 (2-4\"10)

v = 1.53-109-T-\302\260-87 v = 1.62-108-T-\302\260-52sn sp
B = -2 B = -1n p
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2.4.3 Formulae for Modeling Generation/Recombination

To simulate satisfactorily transfer phenomena of majority
carrier current and minority carrier current in just a simple
diode, it is an absolute necessity to model carrier recombination
and generation as carefully as possible. (2.4-11) represents the
well known Shockley-Read-Hall term for modeling thermal
generation/recombination. The carrier lifetimes can be simulated
as being doping dependent/35/, /103/.

(l/cm3s) (2.4-11)

3.52-10~5/(l+N/7.1-1015)

Surface generation/recombination /74/ can be treated in a
fairly similar manner by (2.4-12).

2 _

( G-R)s
=

(p+pXs+LI )/s '*y> (1/cm3s) (2-4\"12)
In 1 p

o(y) : Dirac-Delta function, y=0 denotes an interface

s = 100 s = 100n p

Impact ionization can be modeled by an exponentially field
dependent generation term /27/, /28/. The constants in (2.4-13)

(l/cm3s) (2.4-13)

1.588-106

2.036'106

( G - R )
n.l p-n

th
yp+p^+yn+v

I = 3.95-10~5/(l+N/7.1-1015) T =
n p

are essentially taken from /170/.

a q

B ft I
n I , n I nl ..

A exp ( - -^- ) +
E-Jn

B J

+ -^
A exp ( - \342\200\224E-L-E1

)
4 v E'J

A = 7-10
n

t
B = 1.23-10

n

A =
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It should be noted that this form of simulating avalanche is
relatively crude compared to moreexact considerations,but the

underlying physical principles are so complex that a trade-off in
accuracy and complexity leads to that type of formula. The

ionization probabilities C^ p for silicon as a function of the
electric field have been measured by various authors: Mc Kay

/101/, /102/, Miller /105/, /106/, Chynoweth /27/, /28/, Lee
/88/, Moll /112/, /113/, Ogawa /118/, Van Overstraeten /170/,
Grant /65/, Dalai /36/. Their results are summarized in Fig.
2.4-5 for electrons and in Fig. 2.4-6 for holes. Additionally,
the measured results are compared to theoretical results of
Baraff /10/ (material constants from Sze /157/, /158/). Also
drawn in Fig. 2.4-5 and Fig. 2.4-6 are theoretical limits
published by Okuto /111/, /123/, which imply that all the energy

the carriers can obtain from the electric field is used to

generate additional carriers. Furthermore, the energy loss per
single ionizationhas been taken to be 1.6eV for electrons and

1.8eV for holes (see also /75/). A more concise treatment of the
ionization probabilities has been undertaken theoretically by

/5/, /26/, /91/, /145/, /160/, /161/, /162/, /169/, /181/ and

experimentally by /95/, /131/, /149/.

To analyze high injection conditions,Auger recombination

has to be included as an antagonism to avalanche generation.
Already the use of a simple formula like (2.4-14) in general
gives satisfactory results /31/, /35/, /52/, /55/.

( G - R ). = (n.2 - p-n ) (C *n + C *p ) (l/cm3s) (2.4-14)
Aug i

r n p

-31 -32
C = 2.8*10 C - 9.9-10

n p

Finally, all generation/recombination phenomena have to be
combined to one total quantity. The usual way to do so is to
simply sum up all terms (2.4-15). However, that means that no
interaction of the different phenomena does exist.

(G-R) ,.
- (G-R), + (G-R) + (G-R). + G (2.4-15)tot th s Aug a
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3. NUMERICAL SOLUTION OF SEMICONDUCTOR EQUATIONS

The major difficulty in designing a high order numerical

model of a semiconductor device is the adaption of adequate
numerical methods for the solution of the basic semiconductor
equations and their associated, often very complex, physical
parameters, as outlinedin the previous chapter.

In section 3.1 we should like to discuss the discretisation
of the basic equations. The classical method of replacing
derivatives with finite differences will be explained. The last

part of that section will deal with automatic and adaptiv mesh

generation which is a task of primary importance for user

oriented models, but which has as yet not been scrutinized

thoroughly.

The linearization of discrete equations will be treated in

section 3.2 with some emphasis on the severely strong

nonlinearity of the semiconductor equations. For that purpose

some modified Newton schemes are presented which yield an

incredible gain in computer efficiency.

Algorithms for the solution of the linearized discrete

equations are discussed in section 3.3. A review of the most
attractive methods for linear systems with special sparsity
structure is given and also some cautious judgement is ventured.

3.1 Discretisation of SemiconductorEquations with Finite

Differences

Unfortunately, the basic semiconductor equations cannot be

solved in closed form by analytical methods. To utilize a
numerical method, first of all the domain in which a solution is
wanted has to be split into a finite number of small parts.
These parts have to be sufficiently small so that all dependent
variables of the basic equations behave like some arbitrarily
chosen, but nevertheless simplefunctions;the equations have to
be discretised. However, one should always bear in mind that one
can, following the above sketched outline, obtain only an exact
solution of the discretised problem,which is just an approximate
solution of the analytically formulated equations. The

difference between the discrete solution and the solution of the
real problem depends obviously on the partitioning of the domain

and the selection of the approximating functions.

There exist basically two classical methods for obtaining
algebraic equations, which approximate the differential equation
and which can be solved numerically, namely: the Finite

Difference method and the Finite Element method. The fundamental
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difference between these two methods can be summarized, at least
qualitatively, as follows. By applying the finite difference
method, all derivatives in the differential equationare replaced

by finite differences between discrete points in the interior of
the domain and the residual of the resulting difference equation
is set to zero on every discrete point. The finite element

method in its residual formulation demands that the weighted
residuum integrated over the whole domain be zero. This can be
achieved algebraically by setting all residual integrals for
every finite elementfor which the solution is assumed to obey
some simple functional relation to zero. From our point of view
it is impossible to favourize one method distinctly; both methods
have their advantages and bottlenecks. Following the literature
many renowned authors have concentrated their work on finite
elements e.g. /I/, /13/, /20/, /21/, 111/, /25/, fill, /70/,
/111, /119/, or finite differences e.g. /56/, /66/, /67/, /76/,

/84/, /85/, /93/, /94/, /107/, /108/, /109/, /121/, /154/. We

have also concentrated our activities on finite differences,
becausethe mathematical background required to produce a running
program seemsto be somewhat smaller for the finite difference
method than for the finite element method. Some interesting
extensions of the finite difference method have been recently
proposed by Adler HI, /3/. When fully utilizing these ideas,
one advantage of the finite element method, high flexibility at
the partitioning task, should also be reached with the finite
difference method.

We should like to explain the discretisation with
five-point-star differences, which is probably the best known

approach of the finite difference method for two dimensional

partial differential equations (PDEs). The domain in which the
solution of a PDE is desired is first partitioned into small
areas by grid lines parallel to some arbitrary coordinate system.
For the sake of simplicity a rectangular domain and a cartesian

coordinate system will be assumed. By laying NX vertical grid
lines (parallel to y-axis) and NY horizontal grid lines (parallel
to x-axis) one gets NX\302\253NY intersections. On these intersections
one wants to obtain an approximate solution of the PDE of

sufficient accuracy. For that purpose the PDE is replaced on

every inner point (i,j) (see Fig. 3.1-1) by a difference equation
which uses the inner point (i,j) and its four nearest neighbours
(i+l,j), (i-l,j), (i,j+l) and (i,j-l). The major assumption for
the derivation of the difference equationis that the solution

can be approximated with a piecewise linear function along the
verteces between the inner point (i,j) and its neighbours. Thus

one gets (NX-2)\342\200\242(NY-2) difference equations because that is
exactly the number of inner points. At the boundary of the
domain the solution of the PDE has to fulfill some- boundary
conditions from which one can obtain equations for the boundary
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points in a similar manner; there exist 2\302\253(NX+NY-2) boundary

points. The total number of equations equals, therefore, the
total number of points and a unique solution can be found.

yj-i

e

yj

M-1

N-1

M

X;i-1 Xi

Fig. 3.1-1: The index convention used

In the next section the discretisation of the quasiharmonic

equation in a precise manner will be dealt with, becausethe

linearized forms of Poisson's equation as well as continuity
equations belong to this important category of PDEs and many

publications have been written on that subject e.g. /58/, /59/,
/98/, /147/.
3.1.1The Quasiharmonic Equation

Let G be a finite domain in the (x,y) plane bounded by R

which is piecewise continuously differentiable. Furthermore, let
the functionsP(x,y), S(x,y) and F(x,y) be piecewise continuous
in G. P(x,y) be positive and not vanishing anywhere; S(x,y) be
positive or zero. Then (3.1-1) represents the quasiharmonic
equation with solution u(x,y).

div(P(x,y)-grad(u(x,y)))- S(x,y)'u(x,y)=
F(x,y) (3.1-1)

subject to the boundary conditions:

A(x,y)-u(x,y) + B(x,y)'u(x,y) = C(x,y) (3.1-2)
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where A(x,y), B(x,y) and C(x,y) are defined in R, piecewise
continuous and positive or zero, and A(x,y)+B(x,y) is not
vanishing anywhere. u(x,y)n denotes the derivate of u(x,y)
perpendicular to the boundary.

For a solution of this problem the differential equation has
to be integrated in every area g^i, obtained by partitioning as
outlined above, around the inner point (i,j). The area g^j is
drawn with dashed lines in Fig. 3.1-1; it is represented by the

rectangle around point (i,j).

I div(P*grad(u))'dx\"dy
- I S'u'dx'dy= F'dx'dy

g.. g.. g.. (3.1-3)

Using Green's theorem, the area integral can be transformed
into a closed boundary integral around g^i.

|jdiv(P'grad(u))'dx-dy
=

|(P'(3u/3x)'dy-P'(3u/3y)'dx)

g.. r.. (3.1-4)

Let x^
be the geometrical distance between the i.th and

i+l.st vertical grid line and y; the distance between the j.th
and j+l.st horizontal grid line (cr. Fig. 3.1-1). Let PM

be the

value of function P(x,y) at point M which is placed exactly
between points (i,j) and (i+l,j); and assume the analogous
relations for

Pm-1> pN and PN-1> w^ich can be easily made clear

with Fig. 3.1-1. Then the following holds:

J(P'(3u/3x)-dy-P-(3u/3y)-dx)=

r. .

= 0.5'(y.+y. ,)\"(P '(u.^. .-u. .)/x. +

'j \"'j-l M l+l,J i,j l

+
PM \302\253(u. . .-u. .)/x. .) +
M-l l-l, J i,j l-l

+ 0.5\"(x.+x. ,)*(P\342\200\236'(u. .^,-u. .)/y. +
l l-l N i,j+l i,j J3

+ P.. *(u. . ,-u. .)/y. ) +
N-l i,j-l i,j J-1

+ o(x. .+x.) + o(y. ,+y.) (3.1-5)l-l i 'j-1 J2
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The second and third integral of Eq. 3.1-3 can be
approximatedstraightforwardly under the assumptions that the
functions S(x,y) and F(x,y) and the solution u(x,y) are
sufficiently smooth in the area

g^\342\200\242.

[[s-u'dx-dy
= 0.25'S. .'u..'(x.+x. ,)'(y.+y. .) (3.1-6)

flF-dx-dy
= 0.25'F..'(x.+x. ,)'(y.+y. ,) (3.1-7)

JJ ij i i-l J J-l

8ij

After combining (3.1-5), (3.1-6) and (3.1-7) and separating
the unknowns, one obtains for each inner point (i,j) a linear
equation of the following form:

ui,j '^V^-^^VWi^i-i) +

(x.+x.^WP^y.+P^/y.^)
-

+ 0.5-S. .-(x.+x. ,)'(y.+y. .)) =

i,j l i-l 'j j-l
=

u.^. .'((y.+y. ,)'P\342\200\236/x.)
+

i+lfj J J-l M i

+ u. . .-((y.+y. .)\"PM ,/x. ) +

i-l>J J J-l M-l i-l

+ u. . .\"((x.+x. )'PH/y.)+

i,j+l l i-l N j

+ u. . '((x.+x. .)'P.T ,/y. .) -
l,j-l l l-l N-l j-l

- 0.5-F. .-(x.+x. ,)'(y.+y. .) (3.1-8)i>J i i-l J J-l

In Eq. 3.1-8 no estimate of the discretisation error is
given. For a non-aequidistant mesh (xj^x^_}, y;^y;_i) the
discretisation error decreasesapproximately linearly with the
mesh spacings. Some ideas on proper mesh selection to
sufficiently bound that error will be given in section 3.1.4.
However, more exact consideration should be looked up in the

classical mathematical literature e.g. /58/, /147/.

The discretisation of the boundary conditions is basically
no problem. It is treated quite carefully in many lecture books

on numerical mathematics e.g. /47/ so that we can refrain from an

explanation.
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All equations obtainedby the discretisation procedure can
be combined to a sparse linear operatorB (3.1-9) applied to a
vector u of unknowns which represent the solution at the mesh

points.

B(u) = 0 (3.1-9)

Therefore, the rank of the operator B equals the total
number of meshpoints which is usually rather large. However, B

is also very sparse; there exist at most five elements per row.

The treatment of these specially structured equationswill be
outlinedin the following sections.

3.1.2 Poisson's Equation

Poisson's equation (3.1-10) is an exponentially nonlinear

elliptic equation.

CPD-M*/Ut) (MMRn)/Ut)
div C grad \302\253*>=

-q-(ni-e
p

-n^e
n

+C) (3.1-10)

The geometry for the simulation of MOS transistors which we
and many others use is shown in Fig. 3.1-2. Poisson's equation
(also the continuity equations) has to be solved for the
rectangular area A-F-G-H which represents the silicon region. In
the area C-D-E-B which represents the gate oxide, only the
Laplacian equationhas to be solved because no space charge
exists there. The boundary conditions are usually treated as
follows: The contacts (A-B: source, E-F: drain, G-H: bulk) are
assumed to be ideally ohmic. The potential is kept constant at
the sum of the applied bias plus the built-in potential which is

caused by the doping. At the vertical boundaries (A-H, F-G) the
derivative of the potential perpendicularto the boundary (i.e.
the lateral electrical field component) has to be zero.
Certainly,this condition is only valid from the physical point
of view if the source contact A-H and the drain contact E-F are
sufficiently long. At the silicon to silicon dioxide interface
the potential must obey GauB's law (3.1-11). The existence of
fixed surface states can be treated directly with GauB's law,
confer to /155/; however, we think it is more economic and

sufficiently accurate to account for fixed surface states with

the flatband voltage, because fixed surface states should be kept

small anyway and, should, therefore, not effect the solution very

much.

^x-tf^ox^.-O^y^ (3.1-11)



514

r
GATE

SOURCE
}\302\273\302\273>>>)7T7r>

OXIDE DRAIN
ezzzzzzzzzza

g INTERFACE
[T

SEMICONDUCTOR

H BULK

Fig. 3.1-2: The simulation geometry for planar MOSFETs

The Laplacian equation in the oxide is coupledwith

Poisson's equation via (3.1-11). At the gate contact (C-D) the
potential is kept constant at the appliedbiasminus the flatband

voltage; at the vertical boundaries of the oxide (OB, D-E) the

lateral electric field has to vanish.

It is interesting to note that many authors suggest a one
dimensional voltage drop in the oxidee.g. /166/. In that manner
one can obtain a mixed boundary condition (c.f. Eq. 3.1-2) for
the potential at the interface. However, we feel that this is
too crude an assumption for miniaturized MOS transistors.

3.1.3 Current Continuity Equations

Only the discretisation of the continuity equation for
electrons will be treated in the following because the continuity
equations for holes can be handled in an analogous manner. The
major difficulty of the discretisation of the continuity
equations is to find a proper, numerically stable formulation of

the divergency of the current by just using information of
physical quantities at meshpoints. A naive discretisation of the
current relation (c.f. (3.1-12) for electrons)as only published
in very early papers has been proved by various authors to be
unstable.
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div J =
-q-div ( J\302\273-n'grad \302\273J>

- D -grad n ) (3.1-12)n n\302\260 n
\302\260

However, Scharfetter and Gummel suggested already in 1969 a
stable discretisationwhich has been physically motivated /132/.
Their work can certainly be interpreted mathematically which

helps in understanding various numerical phenomena associated

with that discretisation. By assuming the validity of
Boltzmann's statistics one gets with the substitution:

s = e-VUt (3.1-13)

the following expression for the divergence of the electron

current:

\342\200\242* UKUt
div J = q*div(D 'n.'eT 'grad s) (3.1-14)

n n l

This substitution is, as a matter of fact, essential because

we have now a self-adjoint elliptic operator in s for the

divergence of the current. For that type of operators the
mathematicalanalysisis relativelyeasy and well investigated.

Recalling now the elliptic operator of the quasiharmonic
equation (3.1-1), an analogy becomes evident. With:

P(x,y) - D 'n.'e1^ (3.1-15)
n l

we can use the results of section3.1.1 for the discretisation.

The fundamental problem, however, is to find a proper

interpolation of (3.1-15) to obtain the mid-vertexvalues Pjj etc.

A naive linear interpolation of the exponential of the electric
potentialis definitely not appropriate. The very best one can
do from the mathematical point of view is to use an exponential

interpolation. (3.1-16) is an example for this type of

interpolation between points (i,j) and (i+l,j). We should like

to refrain from a proof of this relation as it is fairly lengthy.

The interested reader should consult e.g. /124/.

=
e^.J-berCMl.j-m+i.j)

(3.1-16)

with: ber(x) = x/(e -1) (Bernoulli function) (3.1-17)

The actual programming of the Bernoulli functions (3.1-17)
has to be undertaken with care to avoid underflow and overflow
traps /73/. Furthermore, it should be noted that only
differences of potential values occur in the Bernoulli functions.
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Numerical stability is, therefore, greatly increased. The

leading explicit exponential of ^ in (3.1-16) vanishesif it is
combined with the s values (3.1-13) to electron densities which

are numerically in an acceptable range compared to the
exponentialsof ^ andipn.

The mystery of the stability of the discretisation which has

just been outlined lies in the fact that it representsa

so-called \"windward\" difference approximation. For a large
potential drop between neighbouring meshpoints the windward
scheme degenerates in a forward- or backward difference scheme

depending on the sign of the potential difference (i.e. electric
field). Therefore the propagation of local errors is very small.

The boundary conditions are very simple for the continuity
equations. At the contacts (A-B, E-F, G-H in Fig. 3.1-2) the
carrier densitiesare set constantto their equilibrium value.

At the remaining boundaries (B-E, F-G, A-H) no current component

perpendicular to the boundary must exist.

A very interesting and successfully applied alternative to
the outlined discretisation has been proposed by Mock /108/ for
the MOS transistor. Through the introduction of so-called
\"stream-functions\"one also obtains a self-adjoint operator for
the divergence of the current with similar problems in the
interpolation of exponentials of the electric potential. The

treatment of inhomogeneities i.e. recombination/generation,
however, is morecomplicatedwith stream-functions. Therefore we
favour the other discretisation.

3.1.4 Grid Generation

To keep computer time as well as memory requirements

reasonably small, it is necessary to limit the number of mesh

points. A suitable tradeoff between accuracy and computing costs

can be found once the discretisation errors are estimated. In

critical regions with large discretisation errors grid spacing
has to be kept small whereas it may be large in regions in which
only small errors occur. Such considerations make it evident
that an equidistant mesh is not suitable because in that case
grid spacing has to be adapted to the critical regions and the

number of mesh points would be very large.

As the discretisation errors depend on the distribution of
the quantities T,n,p a suitable mesh cannot be estimated a
priori, that is without knowledge of the solution. Therefore,
grid generation is performed adaptively, i.e. a priliminary

solution is calculated on the basis of an initial mesh, then the

mesh is adapted to this solution and again the basic equations



517

are solved. Regenerationof the mesh can be done repeatedly if
necessary.

Let f(x) be a four times continuously differentiable

function; then one can savely write:
h h h

f. + 1
\302\261f. + f!h. + f!'^ + f'\"7T+ fIV<?>o7 (3.1-18)i+l i 11 i2 id 24

2 3 4

fi-i
*

fi
-

fiVi +
n'^

-
fi\"V +

fIV(?4r
(3-1-19)

and we get for the second order differential quotient:
(f. ,-f.)/h. + (f. ,-f.)/h. ,

f\"(x.) * 2- 1+1 L *

u
1_1 L ^ +

l n . + h . ,1 1_1 2 2h.-h. , ,\342\200\236 hT-h.h. ,+hf
+ f! fXV(?)'

L *

^
1-i

(3.1-20)

The first term on the right hand side of eq. (3.1-20) is the
finite difference approximation. The other two terms represent
the discretisation error. For an aequidistant mesh

(h\302\243=h\302\243_i) the

second term on the right hand side vanishes and only
differentials of at least fourth order cause discretisation
errors. Principially eq. (3.1-20) can be used to fix the mesh

spacing h^ for given largest acceptableerror, knowledge of the

fourth differential provided, and also to bound the maximum mesh

progression ^ when knowing the third differential
h. h. ,

tL
= max

(jji\342\200\224, ^ZL).
(3.1-21)

i-1 i

The errors which are induced by the finite difference
approximation of the inhomogeneity terms are going to be

considered in the following. The inhomogeneities around each
mesh point up to the next midpoint are approximated by

h. k.
l

xiT yj -2

f |F(x,y)-dx-dy
\302\2610.25-F. .(h.+h. ,)(k.+k. ,) (3.1-22)

x.-
h. , k. ,l-l j-1

y
J

i 2 'j 2

with F(x,y) being the inhomogeneity term. For a one dimensional
error estimation a series expansion of F(x) yields:
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h.

Xi+2i h2-h2 h3+h3

f F(x)-dx =\302\261F.(h.+h. ,)+T\\
L

J-'1 **\"<$)
i

,.i\"1 (3.1-23)
Jhi-1

xi~F-
The first term in (3.1-23) is the finite difference approximation

as given in (3.1-22) and the two other terms describe the local
error. The global error is extremely difficult to estimate.
However, it is often of by one reduced order.

If we consider Poisson's equation once again, the second

differential of the space charge limits the mesh spacing and the
first differential limits mesh progression.

Z

r\302\243

\" 1 - *
F,m^X (3.1-24)

i i-1

hi \342\226\24012
F^ffy

(3-1~25)

As already discussed earlier ionisation rates are very

sensitive to the electric field. Therefore, the generation rate
exhibitsan abrupt peak in the pinch-off region which can only be

kept under control with a very fine discretisation. The integral
of the generation rate over the total area gives the substrate

current, and the discretisation error is, therefore, proportionalto the error of the substrate current. If we consider only the
first derivative of the electric field

E(x)
= E(x.) + (x-x.)-E'(x.)l 11

we get for ft'' on the basis of Chynoweth's law:

\342\200\236
(x-x.)E!

flf(x) =
A-expC^-(l e^^)]i i

tf'(x.) =
VeI'OKx.) (3.1-26)

1 E2 L x

l

tf\"(x.) =
CVe:32-<*(x.) (3.1-27)

E2 X

l

By substituting these expressions in (3.1-24), (3.1-25) we

get some rules for the mesh generation. If one likes to limit
the maximum relative error in the substrate current, it is useful

to divide (3.1-26), (3.1-27) by the maximum ionization rate which
occurs in the device.
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3.2 Linearization of the Coupled System

In this section we should like to discuss some properties of
one-step stationary iterative methods of the form (3.2-2) for the
solution of systems of nonlinear equations (3.2-1).

F(x) = 0 (3.2-1)

xk+1 = G-xk (3.2-2)

The problem (3.2-1) be properly defined /124/. Suppose the

operator G has a fixed point x*. Then (3.2-2) will converge to
x if G is F-differentiable /124/ at x* and if the spectralradius of it's JacobianG'(x*)satisfiesEq. (3.2-3).

?(G'(x*)) < 1 (3.2-3)

This very important theorem(Ostrowski theorem) is the basis
of all investigations on the convergence of one-step iterations
for the solution of nonlinearequations. In the following we

should like to write the discretised semiconductorequationsin a

more abstract form to simplify the formulae. Let (3.2-4) be
Poisson's equation and (3.2-5), (3.2-6) the continuity equations
for electrons and holes in the unknowns <ft f^ and IfL which

represent vectors of the meshpoint values of the electrostatic
potential, the quasifermilevel of electrons and holes,
respectively.

Fl =
Fl(qMPh,Vp)

= 0 (3.2-4)

F2 =
F2(H>,Vn,fp)

= 0 (3.2-5)
F3 =

F3(qMPn>Vp)
= 0 (3.2-6)

Then Fl, F2 and F3 represent a nonlinear system of equations
with the rank 3*(NX'NY) which is three times the total number of

meshpoints, usually a large number. We have now to find some
operators G which are relatively easy to calculate and for which

condition (3.2-3) holds. The best known method is certainly the
classical Newton-Raphson method.

3.2.1 Newton's Method and Modified Newton Methods

For Newton'smethod the iteration is defined as follows:

(\302\253t>)k+1 (<|\302\273)k (3fi/3<i> 3fi/3^ 3fi/3vd)_1 (Fi)k

<*a) \342\226\240
<V

-
(3f2/3\302\2731> 3f2/3^ 3f2/9Vp) \342\200\242(F2) (3.2-7)

(Y>) (Vp) (3f3/&j> 3F3/3vn 3f3/3v ) (F3)
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The operator G is, therefore, defined as:

G = <I - F,-1-F) (3.2-8)

It can be proved that the Jacobian G' of this operator has
only zero eigenvalues at x*, F(x*)=0 and fulfills trivially
condition (3.2-3). As all eigenvalues are zero, even quadratic
convergenceis anticipatedas the solution is approached /124/,
/126/. Although Newton's method is very attractive from the
mathematical point of view, there are practical difficulties.

The main implementation problem is the evaluationof the

derivative terms in equation (3.2-7), since the total equation
(including modeled physical parameters) must be differentiated
accurately with respect to the variables <V, f^ and 'ft,. This can
be done analytically, in principle, but one loses much

flexibility in changing the modelsof the physical parameters.
Therefore, a numerical algorithm is necessary to automatically
calculate the requiredderivatives. The best algorithm known at
the moment has been published by Curtis and Reid /34/. Some very

interesting comments on numerical differentiation have also been
given in /81/.

Another fairly difficult problem when considering Newton's

method is overshoot. The iteration process does not neccesarily

converge monotonously to the solution. Especially, if one starts

the iteration with a bad initial guess - which is the usual
situation - monotonic convergenceor convergence at all cannot be
guaranteed. Therefore, one has to introduce a mechanism which

dampens the increments resulting from the iteration process so
that convergence is monotonic. The naive algorithms simply limit
the increments to some maximum value e.g. /108/ or they use some

function to continuously limit large increments e.g. /19/.
Deuflhardtsuggesteda more elaborate method /44/, /45/. Roughly
explained, he calculates a parameter V in the range 3o,13 so that
condition (3.2-9)holds.

lF'-1(xk)-F(xk+y-(xk+1-xk))J < ||F,-1(xk)-F(xk)| (3.2-9)

k+1 .After having found V, the solution x is calculated with
Eq. (3.2-10).

xk+1 = xk + y-(xk+1-xk) (3.2-10)

This procedure guarantees monotonic convergence; for 1^1 it
is the classical Newton method.

Another excellent method was proposed by Meyer /104/. He

suggested to modify the iteration operator G by introducing a

positive parameter X as given in Eq. (3.2-11).
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G = (I - (A*I + F')_1-F) (3.2-11)

A has to be chosen as small as possible so that the norm of

p(xk+l) is smaller than the norm of F(x^). Some practical
guidelines on how to find this parameter A with reasonable effort
have been recently presented by Bank and Rose /9/.

It is very time and also memory consuming to solve the large
linear system which, nevertheless, has to be done for every

Newton step. Therefore, many authors use another iterative
algorithm, suggestedby Gummel /69/, for the linearization of the
semiconductorequations.

3.2.2 Block-Nonlinear Iteration

Gummel's idea, in essence, was to solve the semiconductor
equations by independently linearizing each equation
consecutively with respect to its dominant variable. The first

step is to solve Poisson's equationwith Newton's method assuming
that the quasifermilevels are known functions of position; i.e.
the best guess of the quasifermilevelsis assumed to be correct.
In the second step one of the continuity equations is solved

assuming that the electric potential and the quasifermilevel of
the other continuityequationare correct. In the third step the
second continuity equation is solvedunder similar assumptions.
These three steps are performed repeatedly until a consistent

solution is found. The effort for one cycle of this block-
nonlinear iteration is obviously less than for one Newton step
because the rank of one decoupledequation system is only a third
of the rank of the total system.

A complete theoretical proof of the convergence of the
block-nonlinear iteration algorithm has as yet not been
published. However, strong theoretical indicationshave been

given by Mock /109/. One should also not underestimate the

\"practical\" indications; many authors have used Gummel's
iterative scheme with excellent success.

It should also be noted that a few authors have published

modifications of the original Gummel method e.g. /14/, /133/,
/156/. These modifications are basically motivated on intuition.

They are, therefore, as arbitrary as the original approach

itself. However, for special purpose applications some

improvement in efficiency could be gained.
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3.3 Solution of Large Sparse Linear Systems

For any of the linearization procedures which have been
outlined in section 3.2 a large sparse linear equation system
(3.3-1) has to be solvedrepeatedly.

A-x = b (3.3-1)

We assume that A has been derived by linearizing five-point-
star discretized PDEs. Hence matrix A has at most five nonzero
entries per row; A is very sparse. For a full Newton scheme

these entries are 3x3 matrices; for Gummel's scheme they are
scalars. For the solution of these special types of linear

equation systems two classes of methods, can, in principle, be
used: direct methods which are based on elimination and iterative
methods. An excellent survey on that subject has been published
recently by Duff /48/.

3.3.1 Direct Methods

Classical Gaussian elimination is not feasible for our

systems of equations because the rank of A in (3.3-1) is very
large and A has many coefficients which are zero. Therefore,
some modifications of the classical Gaussian elimination
algorithm have to be introducedto account for the zero entries.
There exist quite a few activities on that subject (c.f. /49/)
and powerful algorithms which treat the nonzero coefficients only

are available. Another serious drawback of direct methods lies

in the fact that the upper triangular matrix which is created by
the elimination process has to be storedfor back substitution.

This matrix has usually more nonzero entries than the matrix A.

Therefore, memory requirement of direct methods is substantial.

In spite of all drawbacks of direct methods, their major
advantage is high accuracy of the solution. However, we feel

that for the semiconductor problems iterative algorithms are to
be slightly favoured.

3.3.2 Relaxation Methods

The fundamental idea of relaxation methods is the splitting
of the coefficient matrix A (3.3-1) into three matrices D, E, F

(3.3-2).

A = D -
E - F (3.3-2)

D denotes the diagonal entries of A; -E denotes a lower

triangular matrix which is formed from all sub-diagonal entries
of A; and -F denotes an upper triangular matrix which is formed
from all super-diagonal entries of A.
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With an arbitrary non-singular matrix B which has the same
rank as A the linear system (3.3-1) can be rewritten to (3.3-3).

B-x + (A-B)-x = b (3.3-3)

One obtains an iterative schema by setting:

B-xk+1 = b - (A-B)-xk (3.3-4)

(3.3-4) can be solved for x :

xk+1 = (l-B-1-A)-xk + B-1-b (3.3-5)

The iterative scheme (3.3-5) will converge if condition

(3.3-6) holds.

9(I-B-1-A) < 1 (3.3-6)

(3.3-6) is a necessary and sufficient condition. The
various relaxation methods can be won by differently setting
matrix B with the matrices obtained by the splitting of A

(3.3-2).

The simplest scheme,the point-Jacobimethod, uses D for B.
Matrix D is a diagonal matrix and is, therefore, easily
invertible.

The Gauss-Seidel method uses D-E for B. The matrix D-E is a
lower triangular matrix. Therefore one has only to perform a
forward substitution process for its inversion.

The successive overrelaxation method (SOR) makes use of a
parameter W within the range J0,2L. The iteration matrix B is

defined:

B = D/U>- E (3.3-7)

As B is again a lower triangular matrix, its inversionis
instantly reduced to a substitution.

The major advantage of these iterative methods lies in their

simplicity. They are very easy to program and demand only low
memory requirement. As already noted, they converge if condition
(3.3-6) holds. However, it is difficult to prove that condition.
A sufficient condition for convergence is that A is positive
definite (3.3.-8) which is the regular case for five-point-stardiscretizedPDEs.

x -A-x > 0 for all x?0 (3.3-8)
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These point-iterative schemes can by accelerated quite

remarkably with the conjugate gradient method or the Chebyshev
method. An excellent survey on these topics can be found in

/68/.

3.3.3 Strongly Implicit Iterative Methods

The convergence rate of relaxation methods is relatively
poor. Therefore, various activities can be observed for the
developmentof morepowerful algorithms with the advantages of
iterative schemes.

One of the best known algorithms which has been established
in semiconductor device analysis is perhaps Stone's strongly
implicit procedure /151/. Stone's idea was to modify the

original coefficient matrix A by the addition of a small matrix N

so that a factorization of (A+N) involves much less computational
effort than the standard decompositionof A and the norm of N is

much smaller than the norm of A. Assuming this has been done,
the development of an iterative procedure is then fairly
straightforward becausethe equation can be written as:

(A+N)-x = (A+N)-x+ (b-A-x) (3.3-9)

which suggests the iterative procedure:

(A+N)-xk+1 = (A+N)-xk + (b-A-xk) (3.3-10)

When the right hand side is known and (A+N) can be
factorized easily, (3.3-10) gives an efficient method for

directly solving for xk+l. Furthermore, one would intuitively

expect a rapid rate of convergence if N is sufficiently small

compared to A. We will refrain from explaining in detail Stone's
suggestion of how to choose the perturbation matrix N because

this has been done thoroughly in many publications e.g. /59/,
/147/, /151/.

There exist a few algorithms which are similiar in terms of
underlying ideas comparedto Stone'smethod. The most attractive
are perhaps the method of Dupont et al. /50/, the \"alternating
direction implicit\" methods e.g. /16/, /59/, /178/ and the
Fourier methods /150/, /111/.

One disadvantage of all strongly implicit methods and also

the direct methods is that they cannot be implemented efficiently
on a computer with a pipe-line architecture (vector processor).
Some comments on that subject have been given in /48/.
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t. TYPICAL APPLICATIONS OF MINIMOS

+.1 A Didactic Example

It is rather difficult to provide an interesting example for
the experienced reader, which is also impressive and easy to
understand for readers with general interest in modeling but
without specific knowledge of device physics. We have chosen the
effects of ion implantation on short channel MOS transistors for
the purpose of demonstrating the use of two dimensional

simulation. Three devices are calculated whose properties become
apparent from the original simulation input decks presented in
Fig. 4.1-1. The following discussion of Fig. 4.1-1 shall also
demonstrate the ease of using MINIMOS /138/, /139/, /140/, /142/,
our simulation program.

The first line is a title line, which is used only to
identify the output of the program. The input syntax is totally
based on a master key, key and value structure. The next input
line which is the \"DEVICE\" statement, characterizes the device.
Specified is an n-channel device (CHANNEL=N) with an n-doped
polysilicon gate (GATE=NPOLY), an oxide thickness of 35
nanometers (TOX=350.E-8), a channel width of 10 micrometers
(W=10.E-4) and a channel length of one micrometer(L=l.E-4). The

\"BIAS\" statement specifies the operating point. A drain voltage
of 3 volts (UD=3.) and a gate voltage of zero volts (UG=0.) has
been chosen. The substrate voltage is assumed to be zero by

MINIMOS, if not specified otherwise.

The \"PROFILE\" statement is used to specify the substrate
doping and the source/drain diffusion. In the examples presented
here we used the simplest way of defining a doping profile, that
is the direct calculationby MINIMOS. Another possibility would
be to make use of a technology simulation program like SUPREM,

the Stanford University PRocess Engineering Models program /6/,
for the more accurate calculation of vertical profile shapes
which are fitted in the lateral direction. For our simulation a
substrate doping of 10 cm (NB=1.E15) and a source/drain
implantation with phosphorus (ELEM=PH), an implantation dose of
10 cm (D0SE=1.E15) and an implantation energy of 40keV

(AKEV=40) is specified. The implantation is performed through an

isolation oxide of 35 nanometers (TOX=350.E-8)and followed by an

annealing step at 1000 centigrades (TEMP=1000) for 1200 seconds

(TIME=1200).
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ONE-MICRON ANALYSIS (DEVICE 1)
DEVICE CHANNEL=N GATE=NPOLY TOX=350.E-8 W=10.E-4 L=l.E-4
BIAS UD=3. UG=0.
PROFILE NB=1.E15 ELEM=PH DOSE=l.E15 AKEV=40 TOX=350.E-8
+ TEMP=1000 TIME=1200
END

ONE-MICRON ANALYSIS (DEVICE 2)
DEVICE CHANNEL=N GATE=NPOLY TOX=350.E-8 W-10.E-4 L-l.E-4
BIAS UD=3. UG=0.

PROFILE NB-1.E15 ELEM=PH DOSE=l.E15 AKEV=40 TOX=350.E-8
+ TEMP=1000 TIME=1200
IMPLANT ELEM=B DOSE-3.5E11 AKEV=25 TEMP=925 TIME=1800
END

ONE-MICRON ANALYSIS (DEVICE 3)
DEVICE CHANNEL=N GATE=NPOLY TOX=350.E-8 W=10.E-4 L-l.E-4
BIAS UD=3. UG=0.

PROFILE NB=1.E15 ELEM-PH DOSE-1.E15 AKEV-40 TOX-350.E-8
+ TEMP=1000 TIME=1200
IMPLANT ELEM=B DOSE=3.5Ell AKEV-25 TEMP=925 TIME-1200
IMPLANT ELEM-B DOSE=1.5Ell AKEV-100
END

Fig. 4.1-1: Some typical input decks for MINIMOS

The second input deck further includes an \"IMPLANT\"

statement which defines a channel implantation with boron
(ELEM-B), a dose of 3.5-lOcm (DOSE-3.5E11), an energy of
25keV (AKEV=25), annealed at 925 centigrades (TEMP-925) for 1800
seconds (TIME-1800).The third input deck has an additional
\"IMPLANT\" statement specifying a second, deeper channel
implantation with boron (ELEM=B), a dose of 1.5-10 cm\"

(DOSE-1.5E11) and an energy of lOOkeV (AKEV-100). It is assumed

that both channel implantation steps are annealed at the same

time. It is fairly well known that the first of these three
devices is, owing to the short channel effect, \"normally-on\" and

that the shallow implantation of device 2 effects a threshold
shift to obtaina \"normally-off\" device. Furthermore, the deep
implantation of device 3 is necessary to avoid punch through.
These effects will now be demonstrated by birds-eye-view- and
contour-plots of physically relevant quantities in the interior

of the three model devices.

The calculated doping density distributions for our devices
are shown in Figs. 4.1-2, 4.1-3, 4.1-4.
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Fig. 4.1-2: Doping profile for device 1

From these figures one can read off the depth of the
pn-junctions under source and drain being approximately 300
nanometers. The surface concentration of the source and drain
regions is about 10^\302\260cm . The effective channel length is
reduced by the lateral subdiffusion to about 0.6 micrometers.
The shallow channel implantation for threshold tailoring can be
seen in Figs. 4.1-3,4.1-4. Additionally, Fig. 4.1-4 shows the

deep implantation for punch through suppression. The threshold

voltage is only marginally affected by the deep implantation.
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Fig. 4.1-3: Doping profile for device2

Fig. 4.1-5 shows the distribution of the electric potential
for the first device. The drain contact is on the right. In the
depletion regionof the reverse biased drain-bulk diode the

potential decreases monotonously and it is more or less constant
in the highly doped source and drain regions. The barrier at the
source channel diode is relatively small /168/. Fig. 4.1-6 shows

the potential distribution in the second device. The birds-eye-

view plot looks very similar to the plot in Fig. 4.1-5.
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Fig. 4.1-4: Doping profile for device 3

The contour-plot, however, shows quite a pronounced
potential basin directly below the interface. Of even greater
importance than this basin itself is the saddlepoint below the
basin. At this saddlepoint the electric field vanishes and

current only can flow by carrier diffusion. This sort of saddle-
point is, following the proposition of many authors (e.g. /12/,
/87/), a typical indication of the punch-through effect. The
electric field which is induced by the gate is unable to separate
the depletion regionsof sourceand drain.
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Fig. 4.1-5: Electricpotentialfor device 1

These depletion regions are in contact belowthe region of
controlby the gate. As it will become apparent later , the

saddlepoint is a reliable indication of the punch-througheffect,
but it need not exist.
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Fig. 4.1-6: Electric potential for device 2

Fig. 4.1-7 shows the potential distribution in the third
device. The birds-eye-view plot differs just marginally from the
plot in Fig. 4.1-6. But from the contour plot one can see a well
pronounced barrier between source and channel which guarantees
the \"normally-off\" behaviour.
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Fig. 4.1-8 shows the lateral current density distribution in
the first device. For better visibility, the plot on the right
shows the mirror image to give better insight into the channel

region. In the channel near the source the current is forcedto
flow at the surface by the transversal component of the field.

Fig. 4.1-8:Lateralcurrent density for device 1

But already in the middle of the channel one can watch
current spreading caused by the drain influence, a typical short
channel effect.

It also should be noted that the current channel is fairly
wide. The reason for this phenomenon is to be found in a

superposition of an inversion channel and a punch through channel.
The maximum of the lateral current density surprisingly lies
below the contacts. This fact becomes clear when we consider

current continuity. Current can only pass through the contact in

transversal direction. Current flow in the semiconductor,
however, takes place globally in the lateral direction from

source to drain. As current flow is continuous, the lateral
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current component has to be large below the contacts, because the

flux in the channel, which is relatively wide, as mentioned, is

large too.

The lateral current distribution for the second device is
shown in Fig. 4.1-9. As one can see, this device is operatingin
the punch through mode. The current flow takes place in a wide

channel in the bulk. Surface current does effectively not exist.
Furthermore, the maximum of the current density has decreased
more than an order of magnitude compared to the first device.

Fig. 4.1-10shows the lateral current density distribution
for the third device. The second channel implantation results in
a total suppression of punch through in this operating point.
The entire current flows at the semiconductor surface, but the
peak value of the current density is about a factor of 200
smaller than in the seconddevice.

pm pm

Fig. 4.1-9: Lateral current density for device 2



Fig. 4.1-10: Lateral current density for device 3

Current density distributionsof this shape are typical for

regularly operating transistors in subthreshold and can be used

as criterion for valuation.

Fig. 4.1-11 shows the subthreshold characteristics for two

different drain voltages. The solid lines denote lOOmV, the

dashed lines 3V drain bias. The slope is the same for all three

devices at a drain voltage of lOOmV. It is dramatically
decreased at 3V drain bias for devices 1 and 2 by the punch

through current. The shift of the characteristics for different
drainvoltages,which is caused by the short channel effect, is a
minimum for the third transistor thus verifying the success of
the channel implantationsteps.
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Fig. 4.1-11:Subthresholdcharacteristics
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4.2 Process Sensitivity

VLSI is evidently connected to the miniaturization of the

single transistor. Merely shrinking the physical device
dimensions usually poses serious problems concerning device
behaviour. Instead, all device parameters have to be scaled
(e.g. /43/, /99/) together with the device geometry according to
certain rules. In general, lower voltages, heavier doping,
shallower junctions and thinner oxides help to maintain
applicable device characteristics as channel length is reduced.

Down to about two microns channel length the device
behaviour can be controlled excellently by the relevant

technological steps (implantation, diffusion, oxidation,
photolithography). However, as often observed in experimental
investigations, this controlability is no longer ensured for
devices with further reduced channel length. Reproducability

tends to become worse with decreasing size, posing increasingly
severe problems on tracking down the parameters of adjacent
transistors, which should behave identically for certain kinds of
circuits (e.g. latches).

To verify the increased process sensitivity of scaled
devices, we have performed an analysis of certain device
parameters '

with MINIMOS /137/. In this chapter the sensitivity
of the threshold-voltage,which is usually the most important
device property for the designer, will be outlinedfor a well

established short channel MOS process to determine the practical
limit of miniaturization for a given technology. However, the

analysis of threshold sensitivity is just an example for a

strategy which is applicable to examinethe sensitivity of any

device property.

An n-channel silicon gate process with arsenic source/drain
doping and a double channel implantation for threshold tailoring
and punch-through suppression has been chosen. Fig. 4.2-1 shows

the doping distribution logarithmically drawn in a
quasi-three-dimensional plot for a one micron transistor. The
channel implantation is performedwith boron as the dopant, a
dose of 3.10 cm and an energy of 35keV for the shallow layer
and a dose of 10 cm and an energy of 160keV for the deeper
layer.

1) parameter
= a variable which one can choose arbitrarily, e.g.

L, W, T .
OX

2) property = a physical attribute which is influenced by choice
of parameters, e.g. UT, breakdown voltage, transconductance.
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Fig. 4.2-1: Doping profile of the analyzed devices

A junction depth of 320nm and a lateral diffusion of about
200nm is obtained by this process. The extremely steep gradientat the junctions is typical for arsenic. The oxide thickness -
the oxide is not drawn in these figures - is about 50nm for these
devices. The whole process was designed for two micron lateral
dimension.
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For an analysis of the behaviour of the threshold voltage
one first has to formulate an adequate definition of the
thresholdvoltage. The most common definitions are based on the
extrapolation of an output characteristic. However, one drawback

of extrapolation methods lies in their inaccuracyand in the

experimental effort. Mainly owing to these mentionedreasons we

define threshold voltage in the following simple and definite

way: It is that applied gate voltage, at which the device sinks
0.1 microamps times the channel width per channel length. The
channel length is defined as the distance between the

metallurgical junctions. With this definition it is ensured tha.t
no threshold voltage shift versus channel length for long devices
occurs and we can, therefore, directly obtain a quantitative
measurefor the influence of the short channel effects. It is
probably necessary at this pointto mention that drain bias and
bulk bias are not explicit parameters in our definition of the
threshold voltage. The dependence on those parameters has to be
obtained by certain characteristics, namely: threshold voltage
versus drain bias, threshold voltage versus bulk bias. Our

definition is naturally arbitrary - as arbitrary as any

definition - so one might have to argue about the quantitative
value of the used constant (0.1J)A). For devices with a steep
subthreshold characteristic, and only such devices are of
practical relevance,we think that the constant we use is quite
suitable. For devices with a degraded subthreshold
characteristic any definition of a subthreshold characteristic
becomesmeaningless.

Ui.
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- t.00 /

-
200 /

\342\200\242-/1 \342\200\242-
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Ub=-2V

1 1 1 1 1 1 1

5Mm

Fig. 4.2-2: Threshold voltage versus channel length
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Fig. 4.2-2 shows the threshold voltage versus channel length
for our devices. An operating point of 3V drain bias and -2V
bulk bias has been chosenfor the comparison of different channel

lengths. To avoid confusion, all the following figures will also
refer to this operating point. Fig. 4.2-2 reflects the well

known decrease of the threshold voltage with shrinking device
length,which becomes dramatic at a length of below one micron.

Usually in papers on short channel MOS transistors a

comparison between theoretical curves and selected experimental
results is given. Some of them report on statistical
measurements (e.g. /42/), but only one paper /184/, to our
knowledge, deals explicitly with the sensitivity of an electrical
property, namely the threshold voltage. However, with respect to
the inherent dependence of most properties on the dispersion of
geometry and technology, it seems to be a real necessity to
analyse and present these dependences directly. Therefore we

carried out numerical investigations to extract the most

important sensitivities. A two dimensional simulation program
like MINIMOS is excellently suited for numerical investigation of
the sensitivity of devicepropertiesto dispersionof design and

process parameters. First, the physical model parameters of the
computerprogram have to be matched to those corresponding to
measured characteristics, i.e. the program has to be
\"calibrated\". This procedure has to be done with non critical
transistors with relatively long channels becausethe measured

characteristics should deviate only minimally with inaccuracies
in geometry and in technology. This \"calibration\" procedure
should certainly be done for every technology which is to be
analyzed numerically as the formulae which are used in a
simulation program for modeling the physical parameters (e.g.
mobility) are partly heuristic. A few \"constants\" of those
formulae have to be fitted if total agreement of simulation and
measurement is desired. It is certainly absurd, and physically

invalid, to change the physical model parameters when simulating

transistors with just different channel lenghts (for example)
becauseall effects due to changes in the channel length are
principally included in the structure of the fundamental
semiconductor equations and not in their parameters.

To obtain a sensitivity by computer simulation, one has to
vary the interesting parameter (e.g. channel length) in the

vicinity of its nominal value and then differentiate after the
results (e.g. threshold voltage). This parametervariation must

certainly be done within a small range becausethe validity of
linearization on which the whole strategy is based has to be

ensured. On the other hand, it is necessary to have a

sufficiently large range of parameter variation to avoid

cancellation errors at the (numerical) differentiation.
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This parameter variation within a small range cannot, in
general, be performed experimentally- A minute change of a
process parameter which is reproducable piles up tremendous
fabrication problems or inherent costs. However, with a fast

modeling program the partial derivative of any electrical

property with respect to any technological or geometrical
parameter can be calculated easily with the outlined strategy.
Thus numerical investigations are ideally suited for the

performance of sensitivity analysis.
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Fig. 4.2-3: Sensitivity on channel length tolerances

Fig. 4.2-3 shows the partial derivative of the threshold

voltage with regard to the channel length versus channel length

for our devices; that is, the sensitivity of the threshold
voltageon tolerances of the channel length. Assume a transistor

with an effective channel length of one micron accurate to ten

percent. With this figure one can read an uncertainty of the

threshold voltage of +/-60mV.

Fig. 4.2-4 shows the sensitivity of the threshold voltage to
the deviation of the oxide thickness. As one probably has not
expected at first glancethis sensitivitydecreases for devices

with short channels. This is due to the decreasinginfluence of
the bulk charge with shrinking channel lengths. Note that this
figure is qualitativelyvery similar to the figure showing the
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threshold voltage versus channel length (Fig. 4.2-2). This fact
can be understood analytically by recalling the simple formula

for the threshold voltage:

ut\302\261*ms
+

2'V \302\253>f.+V/c\302\253

(without short-channel effect)

C = Z /Tox ox ox

3UT/0T = -(Q, +Q.)/\302\243
ox xfs ^b ox

UT = (3uT/3t )*T + const,
ox ox

With an uncertainty of 5% of the oxide thickness, one has an

uncertainty of about +/-40mV for a 5 micron device and not even
half this value for a 1 micron device. However, one should not

revel in this fact. The decrease of the sensitivity results
from the decrease of the controllability of the transistor by the

gate.
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Fig. 4.2-4: Sensitivity on oxide thickness tolerances
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Fig. 4.2-5 shows the sensitivity of UT on junction depth
tolerances versus channel length. A one micron device with an
uncertainty of 10% in the junction depth, thus has an uncertainty

of about -/+40mV of the threshold voltage. The underlying

physical cause of this sensitivity is the reduction of the

channel charge by the depletion regions of source and drain (cf.

/168/).

Fig. 4.2-6 shows the sensitivity of UT on drain bias

variation. A 300mV change, that is 10% of the applied bias,
results in about 30mV change of the threshold voltage for this
operatingpoint. Again the modulation of the depletion region of
the drain is the relevant physical effect. At first glance it
seemsto be easy to measure this particular sensitivity in even a
minimally equipped laboratory. However, in case of short channel
devices just the nominal values of the process and geometry
parameters are known for an individual device. The dispersion of
these parameters would merely allow to extract bars by
statistical measurements which again will make the analysis
expensive and time consuming.

Fig. 4.2-7 shows the sensitivity of UT on bulk bias

variation. A 200mV change, that is again 10%, results in a
threshold shift of about HmV, which is usually not dramatic.
(For the practical problem, however, one has to deal with a sum

of all uncertainties. Therefore this influence may also become

important.) An interesting detail of this figure is the fact

that the sensitivity decreases first with shrinking channel
length and at a certain length begins to increase rapidly. This
behaviour is caused by a superposition of the short channel
effect, which decreases this particular sensitivity, and the
punch-through effect, which increases the sensitivity. For long
channel devices it is fairly simple to estimate this sensitivity
analytically:

3ut/8ub = -l/c '3o, /3ub
ox ^b

with:

Qb
=

q-(Nb'yc
+ Dose)

For the partial derivative only y has to be considered:

3UT/3UB* -(T /y )\342\200\242(\302\243./\302\243 )
OX JC SI OX

With a value of about two micrometer for y one obtains a
\342\200\242\342\200\242\342\200\242 \342\200\242 . . c \342\200\242

sensitivity of approximately -7.5 percent which is confirmed by

the more exact two-dimensional calculations.
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Fig. 4.2-8 shows the sensitivity of UT on uncertainties of
the implantation dose. Qualitatively the superposition of the

short channel effect and the punch-through effect is again
apparent. The absolute value of this particular sensitivity is
low due to the fact that the depletion region below the channel

covers the whole implanted region at this operating point. An

analytical estimate for the long channel transistor can be
obtainedin a straightforward way for this sensitivity:

9uT/3Dose * -1/C \302\2538q,/3Doseox xb

10 -9
q/C = 23 mV/10 cm

ox

Fig. 4.2-9 shows the temperature coefficient of the
thresholdvoltagefor our devices. We have, qualitatively, a
similar behaviour to that already discussed, namely the

superposition of short channel effect and punch through. The
absolute value is around -lmV/K. The qualitative behaviour as
well as the absolute value of this sensitivityhave been verified

by fairly complicated experiments /159/.
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Fig. 4.2-9: Sensitivity on temperature variation
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The partial derivatives denote isolated sensitivities on a

certain set of parameters. These values show which parameters
are the most critical ones. However, in addition, a global
sensitivity number indicating the cumulative effect of the
isolated sensitivities is useful. The global sensitivity is
related to a certain technology and its expected application. It
should indicate the limit of channel length reduction. To obtain
such a global number typical ranges of deviation of design
parameters have to be specified. The table in Fig. 4.2-10 is an

example for such a specification. In this examplea rather small

value of the absolute uncertainty of the channel length (lOOnm)

has been chosen. For long devices this value is unrealistic, but

in consideration of a one micrometer technology lOOnm absolute

uncertainty represents 10 percent relative dispersion, which is

relatively large. The tolerances of the remainingparameters in
Fig. 4.2-10, however, represent a good laboratory standard.

Parameter DX

L

TOX

RJ

UD

UB

AKEV

DOSE

50nm

320nm

3V

-2V

35keV

* in11 \"2
3.10 cm
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2.5nm

32nm

150mV

lOOmV

0.7keV

9 -2
6.10 cm

5

10

5

5

2

2

Fig. 4.2-10: Desired process and operating tolerances
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Reproducability of the analyzed devices

Fig. 4.2-11 shows the global threshold voltage sensitivity
based on the specifications of Fig. 4.2-10. O denotes the
uncertainty of the threshold voltage for identical devices on the
same chip. D stands for device. This sensitivity is given by

just the length influence, as the other parameters are commonly

very homogeneous across one chip. 0, W stands for wafer,
denotes the uncertainty for identical devices on wafers, which

have been fabricated with different charges. Hereone has to use
a Euclidian norm over all deviations. Note that this value is
highly constant down to a certain channel length, but then
increases dramatically. The channel length at which the
excellently pronounced knee is located, 1.4 microns for our

devices, can, therefore, be interpreted as the practical limit of
channel length reduction due to threshold uncertainty.
Nevertheless should it be noted that the data in Fig. 4.2-10 are
to be understood as an example which is mainly of importance for
our technology.
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4.3 Breakdown Phenomena

To increase the number of functional units per chip, it is
necessary to decrease the size of the devices (e.g. channel
length and channel width for MOS transistors). As the

performance of a device depends strongly on its geometry, any
reduction requires certain design rules (c.f. /43/ for MOS

devices). However, in recent years devices have been

miniaturized without reduction of supply voltage, mainly to stay

compatible with existing circuits and to maintain an acceptable
signal to noise ratio. Unfortunately problems with punch through
and avalanche breakdown arise from the reduction of size. Punch
through can be controlled relatively well by technological steps
as already outlined in the last chapter for an MOS transistor.

But there exists an increasing demand for a transparent
description of the physical processes which lead to avalanche
breakdown.

Avalanche problems have so far been treated /86/, /165/ in
the followingmanner: First Poisson's equation is solved to
obtain a solution for the electrical potential distribution and
then the ionization integral is evaluated by integrating the

strongly field dependent ionization coefficients over the high

field region. As result multiplication factors are obtained
which describe the increase of current due to avalanche. Since
the carrier densities need not be calculated, this method seems

to be very efficient in calculating breakdown voltages. However,

any feedback of the increase in carrier densities on the

electrical field is, therefore, neglected. A more serious treatment

requires the solution of both carrier continuity equationswith

proper modeling of the generation term /133/, /135/.

In this section calculationsfor a one micron gate length
n-channel MOS transistor are presented. The lateral subdiffusion
and the junction depth of the source and drain regions are 0.2
and 0.3 fin, respectively. A deep channel implantation with

fairly high dose was supposed to have been performed to suppress
punch-through.

Fig. 4.3-1 shows calculated drain and bulk currents versus
drain voltage for that transistor. For UGg=lV breakdown is
reached at U=5.6V whereas 8.4 Volts are necessary to lead the
device into breakdown if no gate voltage is applied. On first

glance that seems to be paradox, if one considers that
U\342\200\236s=0V

certainly causes larger peak values of the electric field. The

explanation of this phenomenon lies in the low current level.
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Although the probability of ionization is larger for U =0V

than for U\342\200\236=1V, the generation rate still remains small as there
is little current flow causing ionization. With increasing drain
voltage the drain current and consequently avalanche generation
as well as hole density increase. This additional space charge
even lowers the potential barrier between source and bulk. Now

an internal feedback mechanism exists which acts as follows:

Because of the lower potential barrier the electron current

injected by source, and consequently, the avalanche generation
increase. Thus the hole density rises even more and, in turn,
further lowers the potential barrier. Once the feedback gain
becomesunity, the node currents rise unlimited unless controlled
by external resistors in the current paths. Furthermore, owing

to the higher current level, the situation now becomes more and
more similar to the situation at larger gatevoltages. The I-V

characteristic, therefore, has to move towards the
Up

=1V

characteristic and the drain voltage decreases with increasing
drain current. This effect implies negative resistance and is
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usually called \"snap-back\".The voltage drop of the hole current
at the parasitic resistor of the deep bulk also lowers the
potential barrier and thus enhances the feedback gain.

Applying a negative bulk voltage renders breakdown more

difficult although it increases the bulk current level. The

reason for this lies in the hole density which is decreased by
applying a more negative bulk bias which attracts the holes.

Fig. 4.3-2 Concentration of electrons (U_=0V,UTXC=8V)
V70 Do

There exists an additional feedback mechanism apart from the

one just mentioned: The carriers generated by ionization cause

again ionization. This effect leads to an \"avalanche-like\"

increase of both carrier densities, and determines the breakdown

voltage of a p-n junction. The feedback depends on the

ionization ability of both carrier types and is of little
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importance in our case. For MOS transistors the mechanism
described above is much stronger and it is active with even
vanishing ionization ability of holes.

In the following we should like to discuss internal physical
quantities at U =0V, UDS=8V,

and
UGS=2V UDS=5.6V. These

operating points have been chosen to explain clearly the physical
phenomena which eventually lead to the snap back effect. The

computed drain currents are about 20|>A and 15mA, respectively.
Since the Ur=2V characteristic was out of locus bounds, it is
not drawn in Fig. 4.3-1.

Fig. 4.3-3 Concentration of electrons (U_\342\200\236=2V, UT,\342\200\236=5.6V)V70 Do

Fig. 4.3-2 and Fig. 4.3-3 show the electron distribution for
both operating points in a logarithmic scale. At the first

operating point, Fig. 4.3-2, the transistor is turned off; there
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is no inversion layer between the source and drain regions which
can be found, as expected, in Fig. 4.3-3at the second operating

point. It should be noted that in Fig. 4.3-3 the electron

density does not drop below the intrinsic number in contrast to

Fig. 4.3-2. The reason for this is source barrier lowering

brought about by the increased hole density.

The corresponding hole densities are given in Fig. 4.3-4 and

Fig. 4.3-5, respectively. One should bear in mind that all the
holes outside the undisturbed bulk region are generated by impact
ionization. In agreement with the electron densities the hole

density is also much larger for Ur =2V. The large hole density
near the source partially compensates the acceptor doping. Thus

the potential barrier at the source is lowered and high electron

injection from the source region ensues.

Fig. 4.3-4 Concentration of holes (U =0V, Un\342\200\236=8V)
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Fig. 4.3-5 Concentration of holes (U =2V, UT,{,=5.6V)

Looking at Fig. 4.3-1 again, we find that the negative
resistance branch of the U =0V characteristic for large current
levels leads into a vertical slope, i.e. the decrease of U__ is

stopped. The corresponding drain voltage is called \"sustain
voltage\"; it increases weakly with increasing U__ because a large
gate bias smoothes the electric field distribution thus lowering

its peak value. The existence of a nearly unique sustain voltage
can be explained by heavy recombination as demonstrated in /134/.
A good many interesting results concerning avalanche breakdown
phenomena have been published in /33/, /57/, /86/, /114/, /133/.
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4.4 A Simple n-MOS Inverter with Depletion Load

Simple inverters are eminently important for the design of
an integrated logic circuit. They consist of a driver transistor
and a load which is usually another transistor as these devices
can be fabricated more easily than resistors. The driver

transistor should be normally off in order to turn it off easily.
With the input voltage logically high, this deviceshould turn on
and should exhibit high conductivity between source and drain;
the voltage drop across this transistor will, therefore, be small

and the output voltage will be very low. The load transistor has
to combine two features: when the driver transistor is turned on,
nearly the total voltage should drop across the load and the

current must be moderate. On the other hand, when the driver

transistor is turned off, it should be able to supply the output
without a significant voltage drop. These features can be

achieved by a depletion (normally on) transistor with a smaller

channel width than the driver transistor.

t \302\273

ucc

UB

Fig. 4.4-1: A simple n-MOS inverter

Fig. 4.4-1 shows a typical n-MOS inverter with depletion
load. In the following we shall analyze a depletion transistor
which can be used as depletionloaddevicetogetherwith device 3

of chapter 4.1.
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To realize a depletion transistor, donor impurities have to

be implanted into the channel. With this technique a conducting
channel between source and drain is created. However, if the
dose and depth of the implantation are moderate, the device can
still be controlledvia the gate voltage. In this way the

threshold voltage can be shifted towards a negative value.

Fig. 4.4-2shows the doping profile of the load device
indicating the shallow implantation at the surface of the

channel. The implantation has been carried out with Antimony, a

dose of 1012cm~2, and an energy of 180 keV. The other device

data are identical with the third transistor of chapter 4.1. The

shallow Boron implantation, however, has beenomitted.

Fig.4.4-2:Doping profile of depletion transistor
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To get a more principal understanding of depletion-mode
devices, some internal distributions will be discussedfor the

same operating point as has been chosen in chapter 4.1 (UD=3V,

UG=0V, UB=0V).

SOURCE

pm 0.0 0.2 0.4 0.6 0.8 1.0 jjm
Fig.4.4-3:Potential distribution in depletion device

The potential distribution is given in Fig. 4.4-3. No
effective barrier between source and channel can be seen in
contrast to the pictures of chapter 4.1. A source-channel diode
does not exist and the built-in potential at the n+n junction
remains small.

Fig. 4.4-4 shows the electron distribution in the load

device. An electron channel with its maximum electron density at
a depth of about lOOnm can be seen. The onset of pinch-off is
due to the fact that donor channel implantation was low enough to
be easily depleted. Similarly, the channel couldbe depleted by

a negative gate voltage.

In Fig. 4.4-5 the distribution of the lateral current

density is presented. The channel is rather wide because of the
donor implantation profile; that can be also deduced from the
electron density. Thus the load device is able to conduct much

more current at the same peak current density than an enhancement

device. It is also to note that no indications of punch-through
exist.
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Fig. 4.4-4: Electron distribution in depletion device
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pm )jti

Fig. 4.4-5: Lateral current density in depletion device

The transfer function of an n-MOS inverter consisting of two

transistors - as just discussed - has been calculated. The

channel widths for the enhancement and depletion transistors have

been chosen to be 20 fko and 2.5 J*m, respectively to get a proper
6 ratio /72/. Substratevoltagehas been set to -2 V to increase

the threshold voltage of the enhancement transistor and to

enhance the signal to noise ratio. Fig. 4.4-6 shows the output
characteristic of the driver transistor in solid and the load

characteristic in dashed lines. As drain and gate voltages are
identical for the load transistor and the threshold voltage is

negative, this device always operates in the triode region. In
the given circuit the load characteristic is linear which is due
to the compensationof substrateand drain voltage influence on
threshold voltage.

The transfer characteristic is given in Fig. 4.4-7. The

low-level is 0.2 Volt, the high level is 3 Volt and is identical

with the supply voltage because the load transistor does not
produce a voltage drop without current flow. The noise margin at

the low-level is very low (0.2 Volt) which is a well known

problem with miniaturized logic circuits. The reason for this
unfortunate phenomenon is to find in the low threshold voltage of
the driver transistor. The noise margin at the high-level is
1.36 Volts and is certainly sufficient. Voltage amplification is
-2.5 and should be acceptable. However, the performance of the
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inverter could definitely be improved by optimizing the device

parameters. This offers a broad field of application for the
presentmodel.

1.0 20 3.0 V

Fig. 4.4-6: Output characteristics of drive and load device

UCC- 3 V

UB .-2 V

0.2 1.0 2.0 3.0

Fig. 4.4-7: Transfer characteristicof n-MOS inverter
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4.5 A CMOS Inverter

In this chapter we shall discuss a simulation of a CMOS

inverter which is the basic cell of any integrated circuit in
CMOS technology. Of primary interest in this technology are

power consumption, propagation delay and impact ionization, the
latter mainly because of the disadvantageous \"Latch-Up\" which is
induced by substrate current. The device data for the inverter
which will be discussed here are summarized in Fig. 4.5-1.
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Fig. 4.5-1: Process data of CMOS devices
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The basic diagram of the CMOS Inverter and its principal
technological realisation are given in Fig. 4.5-2. Using the

process data of Fig. 4.5-1, threshold voltages of about 1.2V

(n-channel transistor) and -1.2V (p-channel transistor) are
achieved. As these values are rather large, good signal-to-noise
behavior can be expectedin contrast to the inverter discussed in
the previous chapter.
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The output diagrams for both independent transistors have

been calculated within the range 0<Upg<5V
for Ugg=2, 3, 4, and 5

Volts and are given Fig. 4.5-3. Although the threshold voltages
of both transistors are equal (their absolute values), the
current in the n-channeltransistor is much larger than in the
p-channel transistor (for given drain and gate bias) which has to
be contributed to the lower mobility of holes. The difference in
the current values is less pronounced for high drain voltages
because the saturation velocities of both carrier types only
differ slightly.

uDS/v uDS/v

Fig. 4.5-3: Output diagrams for both transistors

The output resistance in the pentode regime is very large,

thus demonstrating that both transistors exhibit long channel

behavior which is caused by the large channel doping. The long-

channel behavior can also be seen in the potential distribution
in Fig.4.5-4 for both transistors for a subthreshold case
(Ugg=i0.5V, UDS=i5V).

The surface potential is constant along
the channel up to the pinch-off region. This is a typical
subthreshold behaviorof long channel devices. The pinch-off
region extends more towards source in the depth than at the
surface as the doping level decreases with increasing distance

from the surface. In the p-MOST the pinch-off region is also
more extended than in the n-MOST which is due to the different
doping levels.
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n-channel p-channel

Fig. 4.5-4: Potential distribution

The transfer characteristic for the given transistor pair
has beencalculatedand is shown in Fig. 4.5-5. Because of
different carrier mobilities in both transistors this

characteristic is shifted by about 90mV from the symmetry-line.
As expected, noise immunity is very good. Specifying ,ua ^ ,-

the L-level and Ua>4.5V for the H-level it can be deduced from

Fig. 4.5-5 that these levels are obtained at Ue>2.5V and

Ue<2.22V, respectively. Voltage amplification is very large in
the active region (vu=-50)

because both transistors operate in
the pentode regimewith very large output resistance.
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Fig. 4.5-5: Transfer characteristic

Fig. 4.5-6 shows the supply current as function of the input
voltage. The very low stand-by current is the main power of the
CMOS technology and has to be contributed to the excellent

subthreshold behavior of the simulated transistors. However, the

benefit of little power consumption can only be utilized in the
static or low-frequency operation as parasitic capacitanceshave

to be charged and discharged during any logic sweep. Another

component contributing to increased power consumption in the

dynamic operation is the current flux through the transistors

during the change of the input voltage.
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Ue/V

Fig. 4.5-6: Supply current versus input voltage

Now let us estimate the propagation delay for the chosen

inverter. As our analysis is only static, no exact calculation

can be presented here. However, the transistors are usually so
fast that switching speed is determinedmainly by parasitic

capacitances rather than by the rise times of the node currents

of the transistors. So let us neglect any transient behavior of
the transistors themselves. If we apply an ideal L-H voltage
jump on input, the p-channel transistor is turned off instantly
and can, therefore, be ignored (cf. Fig. 4.5-7),
characteristic is given by the integral equation

The ua(t)
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ua(t)
=

ua(0)
- / -i dt

0 ^ (4.5.1)

The fall time tf, defined as the time after which the

L-level at the output has been reached, can be found by numerical

integration of the inverse of the output characteristic for
Uqs=5V (Fig. 4.5-5). tf is proportional to the output

capacitance and is tf=4.3ns for Ca=lpF. The delay is larger for
the L-H swing at the output because of the smaller conductance of
the p-channel transistor (tr=7.6ns).

uGS=5V

R T^
ua(t)

rig. 4.5-7: Simplification for estimationof tf

Figure 4.5-8 demonstrates the substrate currents in both
transistors (p-well current in the n-MOST) as function of the
input voltage. For low input voltage the n-MOST is turned off,
the supply voltage totally drops along this transistor and Ups
vanishes for the p-MOST. When the input voltage is increased,
the transfer current rises exponentially(subthresholdregime of

the n-channel transistor) and the same applies to the p-well
current. However, when the input voltage approaches about 2

Volts, the output voltage, which is the drain-to-source voltage
of the n-channel device, and consequently the p-well current
start to decrease. At about 2.4Volts the output voltage drops
rapidly and the p-channel device now yields substrate current and

the p-well current vanishes. Increasing the input voltage
further, the p-channel finally comes into the subthreshold region
(Ue>3.8V) and the substrate current again decreases. The p-MOST

exhibits larger leakage current than the n-MOST as its doping
level is in general smaller. However, as dark space phenomena
/123/ are not accounted for in the model, the substrate current
level may be considerably smaller than computed.
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Fig. 4.5-8: Substrate currents

Fig. 4.5-9 shows substrate currents for a fixed drain
voltage

(Ui)Sn=UsDp=5V).
These operating points are not part of

the transfer characteristic and cannot occur in the steady state
case. However, they may occur during a logic sweep. As holes

exhibit less ionization activity than electrons, substrate
currents in the p-MOST are smaller by at least one decade
compared to the substrate currents in the n-MOST.
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Fig. 4.5-9: Substrate currents for fixed drain voltage

Substratecurrent is important in CMOS technology as it
initiates current injection from source into substrate. Thus the
parasitic n+pnp+ thyristor (which consists of n-MOST source,

p-well, n-substrate, and p-MOST source of a nearby inverter, cf.
Fig. 4.5-1) may be triggered. The so called \"latch-up\" may

result in the burn out of the entire circuit. Critical values of

the substrate current for triggering the parasitic thyristor are

about 10-5a-10~4A /125/. Contacts to the the p-well and the

substrate result in improved latch-up performance /125/.
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5. CONCLUSION

In this paper we tried to sketch the state of the art in

modeling MOS transistors with numerical methods. The underlying

physics has been discussed and the importance of increasingly
sophisticated numerical methods has been briefly outlined. It
has becomeevident that only progress in basic semiconductor
physics will lead to the development of models which are capable
of simulating device behaviour more reliably and which will match
the technological advancesof the recentdevice miniaturisation.
One highly important objective of a model, its ability to predict
the performance of a new device prior to having built the actual
device, can only be reached if the physical parameters of the
basic equationsare analyzed even more thoroughly. This possibly
implies a complete re-evaluation of some commonly accepted

assumptions and approximations and it also seemsto be the only

way to get rid of the enormous amount of fitting parameters and
the heuristic formulae which just simulate more or less precisely
some complex physical phenomena. The inherent physics has to be
analyzed very carefully before one can begin to synthesize a
modelwhich is able to simulate reality better. The power of a
numerical model to predict device behaviour has been demonstrated

using our MOS-transistor simulation program MINIMOS.

However, still much effort in analysis and simulation will
have to be spent to make device miniaturisation and integration

keep pace with the speed of recent days.
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