# Relevance of non-exponential single-defect-induced threshold voltage shifts for NBTI Variability

Jacopo Franco\*, Ben Kaczer, Philippe J. Roussel,
Maria Toledano-Luque, Pieter Weckx
imec
Leuven, Belgium
\*Jacopo.Franco@imec.be

Abstract—We report statistical NBTI datasets of nanoscale Si/SiON pMOSFETs. Weibull-distributed single-defect-induced  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast with literature reports of exponential distribution. We discuss the (ir)relevance of a correct description of the single-defect-induced  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast with literature reports of exponential distribution. We discuss the (ir)relevance of a correct description of the single-defect-induced  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients, in contrast  $\Delta V_{th}$  are observed in the NBTI relaxation transients  $\Delta V_{th}$  are observed in the NBTI relaxation transients  $\Delta V_{th}$  are observed in the NBTI relaxation t

predicted based on time-zero  $V_{th\theta}$ -variability only. Keywords—NBTI, pMOSFETs, Variability.

# I. INTRODUCTION

 $\Delta V_{th}$  steps for describing the total BTI induced  $\Delta V_{th}$  distribution.

We show that the BTI induced  $V_{th}$  variance can be correctly

Due to the ever decreasing device dimensions, the number of dopant atoms, as well as the number of defects in each device is being reduced to a enumerable level [1]. This results in intrinsic time-zero  $V_{th0}$ -variability, but also considerable time-dependent variability. Each nominally identical nanoscale transistor shows a different  $V_{th}$ -shift after identical BTI stress. Hence the deterministic degradation curve and time-to-failure measured on large area devices need to be replaced by distributions [2,3].

A correct description of the BTI induced variability is crucial for robust circuit design, in order to ensure circuit functionality at product end of life by including sufficient margins for the  $V_{th0}$ -variability, the median  $V_{th}$  shift, and the additional  $V_{th}$ -variance induced by BTI. The BTI induced  $\Delta V_{th}$  distribution has been recently described as the convolution of a Poisson-distributed number of charged defects per device, with exponentially distributed single-defect-induced  $\Delta V_{th}$ 's [4].

In this paper we report NBTI datasets measured on lowly-doped nanoscale Si/SiON pMOSFETs. Weibull-distributed single-defect-induced  $\Delta V_{th}$  are observed in the NBTI relaxation transients. We extend the previously proposed model of BTI variability to a convolution of Poisson and Weibull distributions, and we discuss the (ir)relevance of a correct description of the single-defect  $\Delta V_{th}$  distribution. We show that, for a given median  $V_{th}$ -shift, the additional  $V_{th}$  variance induced by BTI can be correctly predicted based on  $V_{thO}$  variability only; therefore, circuit design margin for BTI variability can be directly derived from the typically available info about the  $V_{thO}$  variability of the considered technology. This finding lowers the importance of an accurate description of the distribution of single-defect-induced  $V_{th}$  shifts in a given technology, which would typically require a significant experimental effort.

Tibor Grasser

Technische Universität Wien, Wien, Austria

# II. EXPERIMENTAL

NBTI measurements [4] were performed on nanoscale Si/SiON pMOSFETs, with channel width and metallurgical length of 90 and 35 nm respectively, and a capacitance equivalent thickness of ~2.75 nm. Each device was stressed for 100 s at a gate overdrive voltage of -1.6 V. Subsequently NBTI relaxation was monitored from 1 ms up to 1000 s in order to observe the emission of single holes trapped in oxide defects during the stress phase and to obtain the  $\Delta V_{th}$  distribution as a function of the relaxation time, i.e. including the impact of a varying number of charged defects.

# III. RESULTS AND DISCUSSION

Fig. 1 shows the  $V_{th0}$  distribution measured on fresh devices at room temperature and at 125°C. Normal-distributed  $V_{th0}$  are observed, with standard deviation  $\sigma_{Vth0} \sim 23.4$  mV. We have previously observed [5,6] that the average single-defect-induced  $\Delta V_{th}$  ( $\equiv \eta$ ), which determines the BTI induced  $V_{th}$  variance, can be roughly derived from  $V_{th0}$  variability since the two phenomena are related to the same root cause—the percolative nature of current flow in nanoscale devices mainly due to Random Dopant Fluctuation [1]. The variance of the BTI  $V_{th}$  shift in a device population can be expressed as [7]

$$\sigma_{\Delta V th}^2 = 2 \eta \langle \Delta V_{th} \rangle. \quad (1)$$



**Figure 1:** Measured initial threshold voltage distributions, for T=25°C and 125°C. The estimated  $V_{th0}$  standard deviation ( $\sigma_{Vth0}$ ) is ~23.4mV, which projects to an average impact per single charged defect  $\eta \approx \sigma^2_{Vth0}/0.2V=2.74$ mV, cf. Eqs. (1-2).



**Figure 2:** Complementary CDF of the single-charge-induced  $\Delta V_{th}$  experimentally observed on 92 devices at room temperature, and on other 100 devices at 125°C. The same distribution is observed, with a total of 635 hole emission events observed in the 192 devices. The plot was constructed by collecting the discrete  $\Delta V_{th}$  steps observed in the NBTI relaxation transients (inset).

In [6], by comparing experimental data from different technologies, we have observed that the variance of the BTI induced  $\Delta V_{th}$  distribution equals the  $V_{th0}$  variance when the median BTI shift is  $\langle \Delta V_{th} \rangle \approx 100$ mV. We can therefore express  $\eta$  as a function of the initial  $V_{th0}$  variability as:

$$\eta = \frac{\sigma_{\Delta V t h}^2}{2\langle \Delta V_{t h} \rangle} = \frac{\sigma_{V t h 0}^2}{200 m V}$$
 (2)

From the experimental  $V_{th0}$  distribution shown in Fig. 1 we can estimate an average single-defect-induced shift  $\eta \approx 2.74$  mV. We note that this  $\eta$  value is comparable to the charge sheet approximation for a single charge (= $q/C_{ox}$ ), while typically larger  $\eta$  values have been reported [4-6], possibly due to different channel doping profiles. In the following we compare the predicted BTI induced  $\Delta V_{th}$  distribution based on this estimate from  $V_{th0}$  variability and based on an accurate characterization of the single-defect-induce impacts at the single device level.

Fig. 2 shows the experimental distribution of single-defect-induced  $\Delta V_{th}$ 's observed as discrete steps in the NBTI relaxation transients (inset). Each device shows a different number of charging/discharging defects, with average value  $\langle N_T \rangle$ , and each charged defect causes a different  $\Delta V_{th}$  impact, with median value  $\eta$  [4]. While more defects are charged at elevated temperature, the same distribution of individual defect impacts is observed in the device stressed at 25°C and 125°C, suggesting a negligible effect of the temperature on the percolation path configuration in the channel [8].

Typically the single charge  $\Delta V_{th}$ 's have been observed to follow an exponential distribution with median value  $\eta$ : a Maximum Likelihood fit to the data yielded the best estimate  $\eta$  ~2.9 mV [Fig. 3 (a)]. Note that this value is very close to the estimate based on the  $V_{th0}$  distribution [see Eq. (2)]. However, a significant deviation from the exponential model is observed at low percentiles. In contrast, a Weibull distribution with  $\eta$  ~4.12 mV and  $\beta$  ~1.51 was found to describe significantly better the

experimentally observed single-defect  $\Delta V_{th}$  [Fig. 3 (b) and (c)] down to low percentiles.

Fig. 4 shows the  $\Delta V_{th}$  distribution measured on 92 devices (±2.5 $\sigma$ ), as a function of the relaxation time (1 ms  $\rightarrow$  1000 s). Note the  $\Delta V_{th}$  measured on each device is due to the cumulative effect of a varying number (*zero* or more) of charging defects. For increasing relaxation times, hole emission events from the defect sites reduce the average number of defects remaining charged (i.e.,  $\langle N_T \rangle$  depends on the considered relaxation time).

In [4] we have shown that the number of charged defects per device is Poisson distributed, with the probability mass function (PMF) being

$$PMF = \frac{\left\langle N_T \right\rangle^{N_i}}{N_i!} \exp\left(-\left\langle N_T \right\rangle\right), \quad (3)$$

where  $N_i$  is the actual number of charged defects in each device. Each charged defect cause a different  $\Delta V_{th}$ , described by the Cumulative Density Function (CDF):



**Figure 3:** (a) Complementary CDF of the observed single charge induced  $\Delta V_{th}$  (25°C and 125°C) fitted with a Maximum Likelihood procedure to an exponential distribution. The fit yields  $\eta \sim 2.9$  mV, and an average number of charged defects per device  $\langle N_T \rangle \sim 5.5$ . However a significant deviation of the experimental data is observed at low percentiles. (b) and (c) A significantly better description of the experimental data is obtained with a Weibull distribution. In this case the fitted parameter are  $\eta \sim 4.1$  mV,  $\beta \sim 1.51$ , and  $\langle N_T \rangle \sim 4.1$ .

70 2013 IRW FINAL REPORT

$$CDF: 1 - \exp\left(-\frac{\Delta V_{th_{-}i}}{\eta}\right)^{\beta}, \tag{4}$$

with  $\beta$ =1 for an exponential distribution. To describe the experimental  $\Delta V_{th}$  we used a Monte Carlo approach to compute the convolution of the Poisson distributed number of defects [Eq. (3)], with exponential- or Weibull-distributed impacts [Eq. (4)]. The simple Monte Carlo loop is schematically depicted in Fig. 5.

The experimental data appear equivalently well described by using either exponential- [Fig. 4 (a)] or Weibull-distributed  $\Delta V_{th}$  impacts [Fig. 4 (b)], with  $\eta$  and  $\beta$  parameters obtained from the Maximum Likelihood fits to the measured distribution of single-defect impact of Fig. 3. Note the  $\langle N_T \rangle$  parameter was fitted in order to match the experimentally observed median shift  $\langle \Delta V_{th} \rangle$ ; for the approach based on the exponential distribution the fitted value of  $\langle N_T \rangle$  was equal to  $\langle \Delta V_{th} \rangle / \eta$ , as derived in [7].



Figure 4: Measured  $\Delta V_{th}$  distribution after 100 s of NBTI stress at  $V_{ov}$ = $V_{Gstress}$ - $V_{th0}$ = -1.6 V, T=25°C, for increasing relaxation times (1 ms→1000 s). (a) The experimental data are well described by a convolution of Poisson-distributed number of charge defects with exponentially distributed impacts (η=2.9mV). The average number of defects  $\langle N_T \rangle$  was obtained as  $\langle \Delta V_{th} \rangle / \eta$  [4]. Note the decreasing  $\langle N_T \rangle$  for increasing relaxation times due to hole emission. (b) The same data are equally well described by using a Weibull-distributed impact per defect (η~4.1mV, β~1.51). Note the ~22% lower  $\langle N_T \rangle$  and the only slightly lower  $\Delta V_{th}$  at high percentiles (2σ values are demarcated by the arrows).

**Figure 5:** Schematic representation of the simple Monte Carlo loop implemented to calculate the distribution of  $\Delta V_{th}$  in a device population, based on the Poisson distribution of charged defects per device, with exponential- or Weibull-distributed impacts (note:  $\beta$ =1 for the exponential distribution).

To compare the two approaches ('Poisson+exponential' vs. 'Poisson+Weibull'), we computed the expected  $\Delta V_{th}$  distribution for increasing  $\langle \Delta V_{th} \rangle$  up to ~100mV, i.e. up to product end of life (Fig. 6). No significant difference in the  $\Delta V_{th}$  variance predicted by the two approaches is observed up to  $\pm 3\sigma$ . We note that the approach based on the Weibull distribution seems to predict a slightly narrower  $\Delta V_{th}$  distribution beyond  $3\sigma$ . However, an analytic formulation of the convolution of Poisson and Weibull distributions would be needed to accurately compare the two predictions at higher percentiles of relevance for, e.g., SRAM applications [9] (note: the analytic formulation of the convolution of Poisson and Exponential distributions was derived in [7]).

Furthermore we found that a  $\Delta V_{th}$  distribution computed as the convolution of Poisson and exponential with  $\eta$  directly derived from  $V_{th0}$  variability [see Eq. (2)], also describes the NBTI induced variance sufficiently well (Fig. 6, dashed line). This finding lowers the importance of an accurate description of the distribution of single-defect-induced  $V_{th}$  shifts at very low percentiles, which typically requires a significant experimental effort.



**Figure 6:**  $\Delta V_{th}$  distribution computed with the Monte Carlo approach by convoluting a Poisson distribution of charged defect per device, with the Weibull (solid) or exponential (dotted) distribution of single-defect-induced  $\Delta V_{th}$ . No significant difference is observed up to ±3σ. Note that in order to yield the same median  $\langle \Delta V_{th} \rangle$  value, a ~22% reduced average number of defect per device  $\langle N_T \rangle$  has been used in the former case (since  $\eta_{Weib.} > \eta_{Exp.}$ ). The computed distribution based on Poisson+exponential, with  $\eta$  derived from  $V_{th0}$  variability (dashed) is shown to predict the NBTI induced variance and to match the other descriptions sufficiently well.

2013 IIRW FINAL REPORT 71

In Fig. 7 the measured  $\Delta V_{th}$  distribution after NBTI stress at T=25°C and 125°C (fixed overdrive voltage and stress time) are compared. The high temperature stress induced larger  $\langle \Delta V_{th} \rangle$  due to increased average number of charged defects  $\langle N_T \rangle$ . Notice that the typical BTI dependences on stress voltage, stress time and temperature can be included in  $\langle N_T \rangle$  as we discussed in [10], e.g. as:

$$\langle N_T \rangle \propto \exp\left(\frac{-E_A}{k_B T}\right) \left(\frac{V_G - V_{th0}}{t_{ox}}\right)^{\gamma} t_{stress}^{n},$$
 (5)

where  $E_A$  is the activation energy (typical apparent value for NBTI ~60 meV),  $\gamma$  is the voltage acceleration (typical NBTI value ~3 in Si devices), and n is the time exponent (typical apparent value ~0.15). The measured distributions for the stress at room temperature and at elevated temperature are well described by the model independently of the used description of the single-defect  $\Delta V_{th}$ , by simply adjusting the parameter  $\langle N_T \rangle$  in order to match the observed  $\langle \Delta V_{th} \rangle$  (see Fig. 7 inset).

We conclude that the  $V_{th}$  distribution after a BTI stress inducing a given  $\langle \Delta V_{th} \rangle$  can be well predicted based on  $V_{th0}$  variability only, as shown in Fig. 8. Therefore, design margin to cope with the BTI induced variability can be evaluated at an early design stage, based on the  $V_{th0}$  variability information which is typically available to circuit designers for the used technology.

# IV. CONCLUSIONS

We have reported NBTI datasets of nanoscale Si/SiON pMOSFETs. Weibull-distributed single-defect  $\Delta V_{th}$  were observed in the NBTI relaxation transients, in contrast with typical reports of exponential distribution. We have discussed the (ir)relevance of an accurate description of the single-defect  $\Delta V_{th}$  to correctly describe the total BTI  $\Delta V_{th}$  distribution. While differences might arise in the tails of the total  $\Delta V_{th}$  distribution, these tails are typically experimentally inaccessible, and the experimental data (which represents mainly the bulk of the distribution) can be well described irrespectively of the assumed single-defect  $\Delta V_{th}$  distribution. Finally we have confirmed that the BTI induced  $V_{th}$  variance can be directly



**Figure 7:** Measured  $\Delta V_{th}$  distribution after 100s of NBTI stress at  $V_{ov}$ =-1.6 V,  $t_{relax}$ =1 ms, T=25°C or 125°C. A good description of the spread of the experimental data is obtained independently of the used description of the single-defect-induced  $\Delta V_{th}$ : Weibull (solid) or Exponential (dotted) distributions with parameters obtained by fitting experimental single defect  $\Delta V_{th}$ , or Exponential (dashed) with  $\eta$  derived from  $V_{th0}$  variability ( $\eta \approx \sigma^2_{Vth0}/0.2$ V). The inset reports the fitted  $\langle N_T \rangle$  values.

derived from  $V_{th0}$  variability only. This finding allows circuit designers to include margins for BTI induced variability based on the typically available information about the  $V_{th0}$  variability of the used technology.

# ACKNOWLEDGMENT

This work was performed as part of imee's Core Partner Program. It has been in part supported by the European Commission under the 7<sup>th</sup> Framework Programme (Collaborative project MORDRED, contract No. 261868).

# REFERENCES

- A. Asenov, R. Balasubramaniam, A. R. Brown, and J. H. Davies, "RTS Amplitude in Decananometer MOSFETs: 3-D Simulation Study", in *IEEE* Trans. Electron Devices, Vol. 50, no. 3, pp. 839-845, 2003;
- [2] T. Grasser *et al.*, "Recent Advances in Understanding the Bias Temperature Instability", in *IEEE Proc.* International Electron Device Meeting (IEDM), pp. 82-85, 2010;
- [3] A. Kerber and T. Nigam, "Challenges in the characterization and modeling of BTI induced variability in metal gate / High-k CMOS technologies", in *Proc. IEEE* International Reliability Physics Symposium (IRPS), pp. 2D.4.1-6, 2013;
- [4] B. Kaczer et al., "Origin of NBTI Variability in Deeply Scaled pFETs", in Proc. IEEE International Reliability Physics Symposium (IRPS), pp. 26-32, 2010:
- [5] J. Franco et al., "Reduction of the BTI Time-Dependent Variability in Nanoscaled MOSFETs by Body Bias", in *IEEE Proc.* International Reliability Physics Symposium (IRPS), pp. 2D.3.1-6, 2013;
- [6] M. Toledano-Luque et al., "Degradation of time dependent variability due to interface state generation", in Proc. Symp. VLSI Tech., pp. T190-191, 2013:
- [7] B. Kaczer, Ph.J. Roussel, T. Grasser, and G. Groeseneken, "Statistics of Multiple Trapped Charges in the Gate Oxide of Deeply Scaled MOSFET Devices—Application to NBTI", in *IEEE* Electron Device Letters, Vol. 31, no. 5, pp. 411-413, 2010;
- [8] M. Toledano-Luque et al., "From Mean Values to Distributions of BTI Lifetime of Deeply Scaled FETs through Atomistic Understanding of the Degradation", in *Proc.* Symp. VLSI Tech., pp. T152-153, 2011;
- [9] P. Weckx et al., "Implications of BTI induced time-dependent statistics on yield estimation of digital circuit", submitted;
- [10] J. Franco et al., "SiGe Channel Technology: Superior Reliability toward Ultra-Thin EOT devices-Part II: Time-Dependent Variability in Nanoscaled Devices and Other Reliability Issues", IEEE Trans. Electron Devices, Vol. 60, no. 1, pp. 405-412, 2013.



**Figure 8:** Measured  $V_{th}$  distribution in fresh devices (open) and after NBTI stress (solid,  $t_{relax}$ =1ms), at T=25°C (diamonds) or 125°C (triangles). Notice that NBTI induces both an average  $V_{th}$ -shift and an additional  $V_{th}$ -variability. The  $V_{th}$  distribution after NBTI stress are well described by the model we proposed in [4], based on the convolution of Poisson-distributed charged defect per device causing exponentially distributed  $\Delta V_{th}$  steps, with average value  $\eta \approx \sigma^2_{Vth0}/0.2V$ .