Exploring the Design Space of Non-Planar Channels: Shape, Orientation, and Strain
Zlatan Stanojević*, Markus Karner†, and Hans Kosina*
*Institute for Microelectronics, TU Wien, Vienna, Austria; †Global TCAD Solutions GmbH, Vienna, Austria

Abstract
We conduct a comprehensive simulation study of non-planar n-type channels based on consistent, physical models containing measurable quantities rather than fit-parameters. This contrasts empirical thin-body models used in classical/quantum simulation with empirical models for planar technologies, part of GTS Framework (5).

Introduction
As MOSFET channels have gone 3D, new degrees of freedom in design and fabrication have appeared, raising several questions: What is the best combination of channel/substrate orientation? How does surface roughness affect carrier transport? What strain conditions will enhance channel mobility? Is there any performance to be gained from tapered tri-gate channels?

State of the Art – Empirical Modeling
The questions are typically addressed using classical TCAD simulation with empirical models for planar technologies which brings up the following problems: (i) Quantum correction models like density gradient need to be calibrated for each doping and oxide thickness and fail for very thin channels. (ii) Mobility models like the Lombardi model (1) and even more advanced ones including 2DEG scattering in inversion/accumulation (IALMob) (2), (3) are calibrated using planar MOS or UTB data of one particular surface orientation, requiring one set of parameters for each orientation. (iii) Strain is incorporated in post processing by empirical piezo-resistivity models, practically demanding re-calibration for every device and stress configuration.

Physical Modeling
In this work, we address the aforementioned questions on a physical level. To this end, we have developed a novel set of modeling and simulation tools that yields a consistent picture for all device variations, allowing direct and consistent comparison of designs. Our approach relies on a minimal set of material properties, that are either well known or measurable, instead of fit-parameters, while still being as efficient as state-of-the-art TCAD device simulation. The implementation is realized within the Vienna Schrödinger-Poisson (VSP) simulator (4), part of GTS Framework (5).

A. Schrödinger-Poisson
We assume two-dimensional quantum confinement inside the non-planar channel and model the electronic structure in the cross section solving the 2D Schrödinger equation in the effective mass approximation (EMA) as well as with a k·p band structure (4). The use of unstructured grids and anisotropic discretization naturally captures the effects of channel shape and orientation (6). For the electronic band structure, a two-band k·p Hamiltonian is used (7) that has been validated using ab-initio calculations (8). The effect of strain is included via deformation potentials for EMA and k·p.

B. Carrier Scattering
The low-field conductivity/mobility of the channels is computed from the linearized Boltzmann transport equation (LBTE) and serves as a metric to rate and compare device performance. It represents the diffusive limit or worst case for transport, i.e. a real, short-channel device will have a higher current. Phonon and surface roughness scattering (SRS) are considered the dominant scattering mechanisms at 300 K. A novel SRS model (9) is used; it extends the model of Prange and Nee (10) with respect to non-planar geometries and band anisotropy. Axial and lateral momentum transfer are accurately taken into account. Central to the SRS model are matrix elements that vary across the surface, called form functions \(f_{n,n';k,k'}(s) \) with \(s \) being the surface coordinate. The transition rate is calculated using

\[
S_{n,n'}(k;k') = \frac{1}{\hbar L} \int \frac{d^2q}{\mathbb{R}} |F_{n,n';k,k'}(q)\|^2 C(q)dq\perp \delta(E_{n'}(k') - E_n(k)),
\]

where \(F_{n,n';k,k'}(q) \) are the Fourier transformed form functions and \(C(q) \) is the roughness power spectrum \(q = \sqrt{(k-k')^2 + q_\perp^2} \). The procedure is outlined in Fig. 2.

Results
We start by investigating the transfer characteristic of Intel’s tri-gate device (11) (Fig. 3) for different combinations of channel and substrate orientation. We find that channel conductivity severely degrades (Fig. 4) for the orientations \([110]/(001) \) and \([110]/(111) \) but not for \([110]/(110) \) and \([100]/(010) \), the latter being the traditional channel orientation for Si MOSFET devices. To find the reason and whether
tapering has any influence, we conduct a systematic study on an ensemble of different channel shapes, ranging from triangular via trapezoidal to rectangular (Fig. 5). A differential analysis of the contributing scattering mechanisms in Fig. 6 reveals that SRS is the source of mobility degradation: In the rectangular channel electrons interact with both top and sidewall roughness; in the triangular channel they are squeezed between the inclined sidewalls. Proximity to rough sidewall roughness; in the triangular channel they are In the rectangular channel electrons interact with both top and sidewall roughness; in the triangular channel they are squeezed between the inclined sidewalls. Proximity to rough sidewall roughness; in the triangular channel they are squeezed between the inclined sidewalls. Proximity to rough sidewall roughness; in the triangular channel they are squeezed between the inclined sidewalls. Proximity to rough sidewall roughness; in the triangular channel they are squeezed between the inclined sidewalls. Proximity to rough sidewall roughness; in the triangular channel they are squeezed between the inclined sidewalls. Proximity to rough sidewall roughness; in the triangular channel they are squeezed between the inclined sidewalls. Proximity to rough sidewall roughness; in the triangular channel they are squeezed between the inclined sidewalls. Proximity to rough sidewall roughness; in the triangular channel they are squeezed between the inclined sidewalls.

While [110]/⟨110⟩ appears merely as good as [100]/⟨010⟩ in the EMA approximation, k-p-analysis of the subband structure (Fig. 8) reveals that [100]/⟨010⟩ has reduced mobility due to increased transport effective mass; the mass increase is due to confinement and cannot be mitigated by strain. [110]/⟨110⟩ on the other hand not only shows little to no transport mass increase but its mass can be reduced below bulk level using tensile stress along the channel (Fig. 9), resulting in an mobility enhancement of ≈ 30% for 600 MPa which is in excellent agreement with experimental data (13).

Conclusion

We present a comprehensive modeling approach for investigating the design space of non-planar MOSFET channels, spanned by channel shape, crystal orientation, and strain, based on physical modeling.

We observe a complex interplay between orientation and surface roughness that in many cases leads to severe degradation of device performance. Our study shows [110]/⟨110⟩ as only alternative orientation to ⟨100⟩ that does not suffer from mobility degradation through SRS and moreover allows additional mobility enhancement of 30% and possibly more.

Acknowledgment

This work has been supported by the Austrian Science fund through contracts F025 and I841-N16.

References

(3) “Synopsys TCAD News Apr.”, April 2013.
Fig. 3. Left: TEM image of an NMOS fin structure fabricated by Intel (11), (14); segments of the simulation domain are overlaid. Right: electron concentration in the fin under gate bias $V_G = 1\, \text{V}$ from a self-consistent Schrödinger-Poisson calculation; the computational grid is shown.

Fig. 4. Fin channel transfer characteristics for four different channel/substrate orientations of the device shown in Fig. 3; degradation of the characteristic can be observed for $[110]/(001)$ and $[110]/(1\bar{1}1)$ orientations, but not for $[110]/(1\bar{1}0)$ which has about the same drive current as $[100]/(010)$, the traditional orientation in Si MOSFET fabrication.

Fig. 5. To shed light on what influences current degradation, an ensemble of channel cross-section shapes is generated, ranging from a triangular fin to rectangular one. Transfer characteristics are calculated for each shape and orientation; electron concentration is shown for the $[110]/(001)$ orientation (degraded) at $V_G = 1\, \text{V}$ (strong inversion). We note that electrons preferably occupy the top of the fin and the device corners with slight inversion close to the sidewalls.

Fig. 6. Breaking down the mobility into the contributing scattering mechanisms reveals that surface roughness scattering (SRS) is mainly responsible for the orientation-dependent behavior. SRS-limited mobility increases with thinning of the fin top for $[100]/(010)$. In $[110]/(001)$ direction the picture is quite different: SRS-limited mobility increases with tapering, reaching a local maximum and then plummeting as the triangular shape is approached; $[110]/(1\bar{1}0)$ does not appear to suffer from increased SRS and exhibits almost the same behavior as $[100]/(010)$. The explanation for this is that electrons scatter more off rough $[110]$ and $\{111\}$ surfaces than they do off $\{100\}$ surfaces (12). In the $[100]/(010)$ and $[110]/(1\bar{1}0)$ channels electrons face the rough sidewalls roughly at $\{100\}$, while in the $[100]/(001)$ channel sidewall are approximately $\{110\}$-oriented.
and strain. In the description for different orientations of the $8n$ m

Fig. 7. One way to increase mobility is valley re-population which can be achieved by confinement or strain. Valleys experience different energy shifts from strain depending on their orientation, which alters their population. Enhancement through re-population is possible for (100) channels only, where tensile stress causes the heavy-transport-mass valley (double-primed) to shift upwards and become less populated. In non-planar channels such as fins the heavy-transport-mass valley is already shifted almost out of reach due to confinement and the mobility is close to its maximum possible value. Thus, mobility enhancement by re-population is diminished in fins compared to planar MOS and UTB channels.

Fig. 8. Another way to affect channel mobility is through subband engineering. Shown are the subband structures as computed using a $\mathbf{k}\cdot\mathbf{p}$ band structure description for different orientations of the $8n$ m top width fin. Geometrical and electrostatic confinement both affect the subband structures as do orientation and strain. In the [100]/(010) channel electrons appear heavier than in bulk, whereas in [110]/(001), and [110]/(110) channels effective mass is about the same as in bulk but with increased non-parabolicity.

Fig. 9. The key figure is the transport effective mass; a lighter effective mass directly results in higher mobility due to a $\mu \propto m_{e}^{-3/2}$ relation in one-dimensional electron gases (15). The increased transport mass in the [100]/(010) channel results in a mobility reduction of $\approx 25\%$ which cannot be reversed using strain. Channels in (110) direction do not have this penalty; in fact, their transport mass can be reduced below the bulk value by tensile stress along the channel. The resulting mobility enhancement can be as big as $\approx 30\%$ for 600 MPa which is in excellent agreement with experimental observations from (13).