
High Performance MRAM-Based Stateful Logic
Hiwa Mahmoudi, Thomas Windbacher, Viktor Sverdlov, and Siegfried Selberherr

Institute for Microelectronics, TU Wien, Gußhausstraße 27–29/E360, A–1040 Wien, Austria
E-mail: {mahmoudi|windbacher|sverdlov|selberherr}@iue.tuwien.ac.at

Abstract—Static power due to the leakage currents has
become a major concern in CMOS logic circuits as the tech-
nology is scaled down. Introducing non-volatility into logic
circuits is a promising solution offering zero standby power
and instant-on applications. Recently, spin-transfer torque
magnetoresistive random-access memory (STT-MRAM) circuits
have been presented to enable stateful logic by implementing
reprogrammable- and implication-based magnetic tunnel junc-
tion logic operations. In this work we describe tradeoffs in
the design of MRAM-based stateful logic architectures. It has
been shown that although the implication logic outperforms
the reprogrammable architecture, a combination of these two
architectures reduces the number of required logic steps and the
energy consumption, however, at the cost of reduced reliability.
MRAM-based logic is also well suited for high performance
parallel non-volatile computations as it is shown by an example.

Index Terms—magnetic tunnel junction (MTJ), material im-
plication (IMP), non-volatility, magnetoresistive random-access
memory (MRAM), reprogrammable logic, spin transfer torque
(STT), stateful logic

I. INTRODUCTION

Fundamental physical limitations such as leakage, high
power densities, process variability, and soaring costs will
bring the scaling of the classical CMOS devices to an end [1].
Therefore, investigating possible alternative technologies to
replace or at least to supplement CMOS is important to
further enhance the performance of logic devices and circuits.
Distributing non-volatile memory elements over a CMOS
logic-circuit is expected to address some of the above-
described limitations by providing ultra-low power and fast
operation as it eliminates the static leakage (standby) power
dissipation and reduces interconnection delay [2].

Spintronic devices, especially MgO-based magnetic tunnel
junctions (MTJs), are strong candidates to replace CMOS-
based memory due to their non-volatility and compatibility
with CMOS technology [3]. The spin-transfer torque (STT)
switching technique eliminates the physical mismatch be-
tween reading and writing of the MTJs and allows more
scalable and smaller switching energies [4]. Magnetoresistive
random-access memory (MRAM) with STT-MTJs as memory
elements combines the speed of static RAMs (SRAMs), the
density of dynamic RAMs (DRAMs), and the non-volatility
of flash memory and has all the characteristics of a universal
memory [5]. Furthermore, MTJ technology is attractive for
building logic configurations which combine non-volatile
memories and logic circuits (so-called logic-in-memory ar-
chitecture) to overcome the leakage power issue [6], [7].

Recently, it has been demonstrated that direct communi-
cation between STT-MTJs enables intrinsic logic-in-memory

(also known as “stateful” logic [9]), for which the MTJs are
used as the main devices for logic computations [10], [11]
and the need for intermediate sensing amplifiers is eliminated.
This allows to reduce the power consumption, interconnection
delay, as well as the device count. In [10] and [11] MTJ-
based implication (Fig. 1a) and reprogrammable (Fig. 1b)
logic gates are used to realize fundamental Boolean logic
operations. In these gates the initial resistance states of the
MTJs act as logic inputs. The final resistance state of the
target/output MTJs represents the logic result of the gates.
Depending on the input logic state, each gate provides a
state dependent (conditional) STT switching behavior of
the output MTJs. This conditional switching behavior cor-
responds to a fundamental logic operation provided by the
gate as a basic operation. Due to an easy integration of
MTJs on top of a CMOS circuit into a one transistor/one
MTJ (1T/1MTJ) cell (Fig. 1c), the MTJ logic gates can be
extended to MRAM-based logic arrays for large-scale non-
volatile applications [12]. In [13] we showed that, for com-
plex logic functions, the implication logic outperforms the
reprogrammable architecture from both reliability and power
consumption point of views. In this work, we demonstrate that
although the implication logic is computationally complete,
its combination with the reprogrammable gate reduces the
number of required logic steps as complex logic functions

RG

Iimp
VA

Source
Target

Inputs

Output

(a) (b)

(c)

Fig. 1. MTJ-based implication (a) and reprogrammable (b) logic gates. (c)
One-transistor/one-MTJ (1T/1MTJ) structure used in common STT-MRAM
architecture [8].

WL3 WL2 WL1 WL1 WL2 WL3

Array 1 Array 2

a1a2a3

b1 b2 b3

Fig. 2. MRAM logic architecture including two common STT-MRAM arrays [8] connected in series. The stored data (resistance state) in the MTJs are
represented as ai and bi for Array 1 and Array 2, respectively.

are designed based on the basic operations from both archi-
tectures. Thus, the total time and the energy consumption are
decreased. However, the total error probability increases due
to the lower reliability of the reprogrammable architecture. It
is shown that the time performance of the MRAM-based logic
architectures is significantly improved by the parallelization
of computations.

II. MRAM-BASED STATEFUL LOGIC

In the common STT-MRAM architecture [8], the 1T/1MTJ
cells are coupled in parallel between the current-carrying
source lines (SLs) and bit lines (BLs) (Fig.2). Each cell
contains one MTJ to store binary data and an access transistor
to control the current flowing through the MTJ. In order
to select a specific MTJ for read/write operations, a proper
voltage signal is applied to the gate terminal of the corre-
sponding access transistor through a word line (WL). In a
memory (read/write) mode, a selecting voltage (Vs) is applied
to an arbitrary WL and a proper current (or voltage) signal
is applied to the current-carrying lines to readout/switch the
resistance state of the selected MTJ.

In the implication logic mode [12], a selecting (Vs) and
a pre-selecting (Vps < Vs) are applied to two arbitrary
WLs in one array. As Vps is lower, its access transistor
exhibits a higher channel resistance and thus provides the
structural asymmetry required for the implication gate (RG

in Fig. 1a). In the reprogrammable logic mode [14], two
MTJs are simultaneously selected as inputs in one array and
one MTJ is selected as the output in the other array. Due to
the serial connection of the arrays, the three simultaneously
selected MTJs form the circuit topology required for the
reprogrammable gate shown in Fig.1b. By applying a proper
voltage difference (VA) to the BLs of the arrays, the result
of a basic reprogrammable logic operation is written in the
output MTJ.

In combination with writing logic ‘0’ and logic ‘1’ op-
erations, both implication and reprogrammable logic archi-
tectures are computationally complete. Thus, any Boolean
logic function can be computed in a series of sequential steps
using these architectures. In fact, as only one operation at a
time can be performed in this logic framework, complex logic

functions are implemented by using a set of subsequent op-
erations. As an example, in the implication logic architecture
the implementation of an XOR function (a3 ← a1 XOR a2)
includes:

TRUE : a3, a4 = 1

NIMP : a3 → a1 ≡ {a′3 = a3.a1 = a1}
NIMP : a4 → a2 ≡ {a′4 = a4.a2 = a2}
NIMP : a2 → a1 ≡ {a′2 = a2.a1}
NIMP : a4 → a3 ≡ {a′4 = a4.a3 = a2.a1}
TRUE : a1 = 1

NIMP : a1 → a2 ≡ {a′1 = a1.a2 = 1.(a2.a1) = a2 + a1}
NIMP : a1 → a4 ≡ {a′1 = a1.a4 = (a2 + a1).(a2 + a1)}
TRUE : a3 = 1

NIMP : a3 → a1 ≡ {a′3 = a1 = a2.a1 + a2.a1}
≡ {a3 ← a1 XOR a2} (1)

NIMP (negated IMP) is the basic logic operation of the
implication logic. According to (1), when multiple non-
volatile logic fan-out is required, a set of TRUE and NIMP
operations (performing NOT and COPY functions) allows
to copy the information in the array without the need for
intermediate sensing/writing operations.

Reliability-based design of an XOR function in the repro-
grammable architecture requires the following steps [15]:

Preset : b1 = 1

AND : b1 ← a1.a2

Preset : a3 = 0, b2 = 1

NAND : a3 ← b1.b2 ≡ b1

Preset : b1 = 0

NAND : b1 ← a1.a3,

Preset : b2 = 0

NAND : b2 ← a2.a3,

Preset : a3 = 0

NAND : a3 ← b1.b2 ≡ a1 XOR a2, (2)

where AND and NAND are the most reliable basic logic
operations of the reprogrammable architecture [15].

data1

data2

data3

10
−5

10
−4

10
−3

10
−2

(a)

(b)

10

20

30

40

50 CRI
IMP
Rep.

10-2

10-3

10-4

10-5

E
n

er
g
y

E
rr

o
r

P
ro

b
a
b

il
it

y

XOR HA FAXOR HA FA

Fig. 3. (a) Energy consumption for complex logic functions. The y-axis is
normalized by the amount of energy required for high-to-low MTJ resistance
switching. (b) Ef for different MRAM-based implementations of functions
XOR, half adder (HA), and full adder (FA).

III. PERFORMANCE IMPROVEMENT AND RESULTS

For the performance analysis, we follow the 1T/1MTJ
model presented in our previous work [13] and the STT-MTJ
Spice model [16] for the energy calculations. The average
error probability of a complex Boolean logic function (f),
which is implemented as a sequence of the basic implication
or reprogrammable logic operations, is defined as [15]

Ef = 1−R(f) = 1−
nf∏
i=1

[1− Eb(i)], (3)

where R(f) shows the reliability of f , nf is the total
number of required basic logic operations for implementing
f , and Eb(i) denotes to the average error probability of
the i−th basic logic operation. For example, implication or
reprogrammable-based XOR function includes seven NIMP
(nf = 7) or one AND and four NAND (nf = 5) basic
functions.

Fig. 3 shows the energy consumptions and the error prob-
abilities (Ef) for MRAM-based XOR, half adder, and full
adder logic functions. It demonstrates that the implication-
based implementation of complex functions exhibits a better
performance with respect to power consumption (Fig. 3a). It
also provides about two orders of magnitude higher reliability
than the reprogrammable architecture (Fig. 3b). Therefore, the
implication logic outperforms the reprogrammable logic and
is expected to be the implementation of choice for MRAM-
based stateful logic circuits. However, in the following we
discuss more design tradeoffs by combining these logic
architectures.

A. Combining Reprogrammable and Implication Logic

Due to computational completeness, implication and re-
programmable MRAM-based stateful logic architectures can
be used independently to design any Boolean logic function.
However, their combination can minimize the number of
required logic steps as it provides more degrees of freedom
by utilizing more fundamental logic operations of several
gates. Therefore, it reduces the execution time and the energy

consumption of complex logic functions. For example, in the
combined reprogrammable-implication (CRI) architecture the
XOR function can be designed as:

TRUE : a3, a4 = 1

NIMP : a3 → a1 ≡ {a′3 = a3.a1 = a1}
NIMP : a4 → a2 ≡ {a′4 = a4.a2 = a2}
Preset : b1 = 0

NAND : b1 ← a1.a4

Preset : b2 = 0

NAND : b2 ← a2.a3

Preset : a5 = 1

AND : a5 ← b1.b2 ≡ a1 XOR a2, (4)

According to Fig. 3a, the CRI design provides a lower
energy consumption compared to both implication and re-
programmable designs. However, its error probabilities is
higher that the implication design since it employs basic
reprogrammable operations.

B. Parallel MRAM-Based Computation

Parallelization of several MRAM arrays can be used to
perform simultaneous operations on the same WLs to de-
crease the number of required serial steps. For example, in
the implication architecture by applying the selecting and
pre-selecting voltage signals to two WLs in Fig.4, the cor-
responding MTJs are selected and pre-selected in all arrays.
Therefore, by applying corresponding current signals (Iimp)
simultaneously to all current-carrying lines, implication oper-
ations are simultaneously performed in all arrays. Similarly,
reprogrammable operations can be parallelized when the two
group of coupled arrays are connected in series.

For logic functions in which intermediate results have to
be used as input of next logic steps (e.g. a two-bit full adder
shown in Fig.5) only some parts of the computations can be
performed in parallel. As the carry output from the first full
adder (cout) is required as an input for the second full adder
(c′in) it is not possible to parallelize all computations.

We assume that a1 (a2) and a′1 (a′2) are stored in the first
(second) MTJs in the MRAM arrays 1 and 1′ which have
coupled WLs. The AND and the XOR functions between

BL1 BL1SL1 SL1
' '

WL1

WL2

WLn

Fig. 4. Coupled MRAM arrays suited for parallel MRAM-based stateful
computations.

a1

a2

a1

a2

'

'

cin

cout

cin

s1

s1'

cout
'

'

Fig. 5. Logic diagram of a two-bit full adder.

(a1, a2) and (b1, b2) can be performed in parallel as ex-
plained before. Afterwards, cout (c′in) is calculated without
parallelization. This part of the calculations is performed in
Array 1. Then by using a read/write operation the result is
written into the MTJ in Array 1′ which is in the same WL
as the MTJ that holds cin in Array 1. After that, the XOR
functions are performed in parallel to calculate s1 and s2
and finally the calculations are continued to compute c′out
in Array 1′. As a result, by parallelization of the MRAM-
based logic arrays, the total calculation time required for the
implication-based and CRI-based implementations of a two-
bit full adder are decreased by about 40% and 50% (Fig.6).

IV. CONCLUSION

We have described the possible tradeoffs to optimze the
execution time, energy consumption, and the reliability of
the MRAM-based stateful logic architecture. It has been
shown that a combined reprogrammable-implication logic
architecture minimizes the total number of the required
logic steps and thus the energy consumptions. However, it
decreases the reliability of the MRAM-based computations.
It is demonstrated that the parallelization of MRAM-based
computations can significantly reduce the execution time.
Since MRAM-based computing systems merge logic and
memory, the necessary communication between separate units

data1

data2

data3

data4

IMP

CRI

S-IMP

P-IMP

50

40

30

20

10

XOR FA 2Bit-FA

N
u

m
b

er
 o

f
S

eq
u

en
ti

a
l

S
te

p
s

Fig. 6. Required sequential steps for serial (S-IMP) and parallel (P-IMP)
MRAM-based implication and combined reprogrammable-implication (CRI)
architectures.

is largely decreased. It also features a simple circuit structure
and delocalizes computational execution, which opens the
door for innovation in computational paradigms.

ACKNOWLEDGMENT

The work is supported by the European Research Council
through the grant #247056 MOSILSPIN.

REFERENCES

[1] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, “Limits
to Binary Logic Switch Scaling - a Gedanken Model,” Proc. IEEE,
vol. 91, pp. 1934–1939, 2003.

[2] S. Matsunaga, J. Hayakawa, S. Ikeda, K. Miura, T. Endoh, H. Ohno, and
T. Hanyu, “MTJ-Based Nonvolatile Logic-in-Memory Circuit, Future
Prospects and Issues,” Proc. Des. Autom. Test Eur. Conf. (DATE), pp.
433–435, 2009.

[3] B. N. Engel, J. Akerman, B. Butcher, R. W. Dave, M. DeHerrera,
M. Durlam, G. Grynkewich, J. Janesky, S. V. Pietambaram, N. D.
Rizzo, J. M. Slaughter, K. Smith, J. J. Sun, and S. Tehrani, “A 4-
Mb Toggle MRAM Based on a Novel Bit and Switching Method,”
IEEE Trans. Magn., vol. 41, no. 1, pp. 132–136, 2005.

[4] C. Chappert, A. Fert, and F. N. V. Dau, “The Emergence of Spin
Electronics in Data Storage,” Nat. Mater., vol. 6, pp. 813–823, 2007.

[5] C. Augustine, N. Mojumder, X. Fong, H. Choday, S. P. Park, and
K. Roy, “STT-MRAMs for Future Universal Memories: Perspective
and Prospective,” Proceedings of the 28th International Conference on
Microelectronics (MIEL), pp. 349–355, 2012.

[6] W. Zhao, E. Belhaire, C. Chappert, F. Jacquet, and P. Mazoyer, “New
Non-Volatile Logic Based on Spin-MTJ,” Phys. Status Solidi (a), vol.
205, pp. 1373–1377, 2008.

[7] M. Natsui, D. Suzuki, N. Sakimura, R. Nebashi, Y. Tsuji, A. Morioka,
T. Sugibayashi, S. Miura, H. Honjo, K. Kinoshita et al., “Nonvolatile
Logic-in-Memory Array Processor in 90nm MTJ/MOS Achieving 75%
Leakage Reduction using Cycle-Based Power Gating,” Proceedings of
the International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pp. 194–195, 2013.

[8] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-
mane, H. Yamada, M. Shoji, H. Hachinoa, C. Fukumoto, H. Nagao,
and H. Kano, “A Novel Nonvolatile Memory with Spin Torque Transfer
Magnetization Switching: Spin-RAM,” IEDM Tech. Dig., pp. 459–462,
2005.

[9] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “Memristive Switches Enable Stateful Logic Operations
via Material Implication,” Nature, vol. 464, no. 7290, pp. 873–876,
2010.

[10] H. Mahmoudi, T. Windbacher, V. Sverdlov, and S. Selberherr, “Im-
plication Logic Gates using Spin-Transfer-Torque-Operated Magnetic
Tunnel Junctions for Intrinsic Logic-in-Memory,” Solid-State Electron.,
vol. 84, pp. 191–197, 2013.

[11] A. Lyle, S. Patil, J. Harms, B. Glass, X. Yao, D. Lilja, and J. P.
Wang, “Magnetic Tunnel Junction Logic Architecture for Realization of
Simultaneous Computation and Communication,” IEEE Trans. Magn.,
vol. 47, pp. 2970–2973, 2011.

[12] H. Mahmoudi, T. Windbacher, V. Sverdlov, and S. Selberherr, “MRAM-
based Logic Array for Large-Scale Non-Volatile Logic-in-Memory
Applications,” Proceedings of the 2013 IEEE/ACM International Sym-
posium on Nanoscale Architectures (NANOARCH), pp. 26–27, 2013.

[13] H. Mahmoudi, T. Windbacher, V. Sverdlov, and S. Selberherr, “Perfor-
mance Analysis and Comparison of Two 1T/1MTJ-based Logic Gates,”
Proceedings of the 18th International Conference on Simulation of
Semiconductor Processes and Devices (SISPAD), pp. 163–166, 2013.

[14] H. Mahmoudi, T. Windbacher, V. Sverdlov, and S. Selberherr, “STT-
MRAM-Based Reprogrammable Logic Gates for Large-Scale Non-
Volatile Logic Integration,” Proceedings of the International Confer-
ence on Nanoscale Magnetism (ICNM), p. 208, 2013.

[15] H. Mahmoudi, T. Windbacher, V. Sverdlov, and S. Selberherr, “Reli-
ability Analysis and Comparison of Implication and Reprogrammable
Logic Gates in Magnetic Tunnel Junction Logic Circuits,” IEEE Trans.
Magn., vol. 49, pp. 5620–5628, 2013.

[16] J. D. Harms, F. Ebrahimi, X. F. Yao, and J. P. Wang, “SPICE Macro-
model of Spin-Torque-Transfer-Operated Magnetic Tunnel Junctions,”
IEEE Trans. Electron Devices, vol. 57, no. 6, pp. 1425–1430, 2010.

