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Abstract The Vienna Schrödinger-Poisson (VSP) sim-

ulation framework for quantum-electronic engineering

applications is presented. It is an extensive software

tool that includes models for band structure calculation,

self-consistent carrier concentrations including strain,

mobility, and transport in transistors and heterostruc-
ture devices. The basic physical models are described.

Through flexible combination of basic models sophis-

ticated simulation setups for particular problems are

feasible. The numerical tools, methods and libraries

are presented. A layered software design allows VSP’s

existing components such as models and solvers to be

combined in a multitude of ways, and new components

to be added easily. The design principles of the software

are explained. Software abstraction is divided into the

data, modeling and algebraic level resulting in a flexi-

ble physical modeling tool. The simulator’s capabilities

are demonstrated with real-world simulation examples

of tri-gate and nanoscale planar transistors, quantum

dots, resonant tunneling diodes, and quantum cascade

detectors.
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1 Introduction

Several software packages exist dealing with some as-

pects of quantum-electronic computation. Early codes

began to appear in the late 1990s as one-dimensional

Schrödinger-Poisson codes for the analysis of heterostruc-

tures, gate stacks, Schottky contacts, or surfaces. Some

of these early codes still see active use today, such as

Schred [1] or “1D Poisson” by Gregory Snider [2,3]. The

functionality and usability of these early tools proved

to be quite limited, and during the last decade different

groups have embarked on a quest for codes that allow

a more general treatment of quantum-electronics and

create a nanoelectronic technology computer-aided de-

sign (TCAD) software (Fig. 1). One of the well known

software packages is nextnano3 [4, 5] which solves ef-

fective mass and k·p Schrödinger equations using the

finite difference method in up to three dimensions. The

software also includes drift-diffusion transport and ex-

traction of optical parameters. NEMO 5 [6] is a solver

based on the tight-binding method that focuses on multi-

scale physics. It provides simple models to be run at

personal workstations as well as heavily parallelized,

multi-million atom calculations of quantum states [7].

The tool tiberCAD [8,9] combines continuum and atom-

istic models for electronic transport, heat transport and

optical simulations. Another finite element based solver

for k·p Hamiltonians and transport in optical devices is

tdkp/AQUA [10,11]. ATLAS Quantum [12] is a commer-

cial effective mass Schrödinger solver. Sentaurus Device

provides similar capabilities [13].

Based on the experiences with classic TCAD and

above simulators we developed a unique basic set of

design concepts. Following these rules we aim to pro-

vide the first consistent quantum-mechanical modeling

platform suitable for nanoelectronic TCAD engineering

http://dx.doi.org/10.1007/s10825-013-0535-y
mailto:baumgartner@iue.tuwien.ac.at
mailto:baumgartner@iue.tuwien.ac.at
mailto:stanojevic@iue.tuwien.ac.at
mailto:kosina@iue.tuwien.ac.at
http://www.iue.tuwien.ac.at
mailto:k.schnass@globaltcad.com
mailto:m.karner@globaltcad.com
http://www.globaltcad.com


2 Oskar Baumgartner et al.

Simple Bandstructure
no complex features

Parabolic Effective Mass

Nonparabolic Kane Model

Complex Bandstructure
strain/orientation effects

Effective Mass Models

Multi-Band k·p

Tight Binding

EPM

Dissipative Quantum Transport

Green’s Function / Dyson Equation

Density Matrix / Liouville Equation

Wigner Function / Wigner Equation

Ballistic Quantum Transport

Wave Function /
Schrödinger Equation
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Fig. 1 Evolution from the classical TCAD approach with simple band structure models and semi-classical transport to a
TCAD environment for nanoscaled devices. The implementation of an advanced band structure model including strain and
orientation effects as well as quantum transport models are the major challenges in realizing a nanoelectronic TCAD simulator.
Models that are in the scope of this review are marked.

applications. Here, we introduce our quantum electronic

simulation framework VSP and explain our approach to
nanoelectronic TCAD. VSP has been developed since

2004 [14] and a first major release was made available

recently [15]. The paper is structured as follows: In Sec-

tion 2 we lay out the basic design concepts that guide

the development of VSP. In Section 3 we demonstrate
the typical VSP-work flow that allows to rapidly define

a simulation setup in a flexible way. In Section 4 we

describe the architecture of VSP, its abstraction levels

and software components. Section 5 summarizes the

most important physical models currently available, and

Section 6 gives some insight into the numerical back-
bone of the simulator. Finally, we introduce new ways

to customize and extend VSP in Section 7 and demon-

strate VSP’s capabilities using representative real-world

simulation examples in Section 8.

2 Design Concepts

The software design of VSP is based on five concepts
which shall be elaborated in detail in the next section:

1. Flexibility

2. Automation

3. Efficiency

4. Consistency

5. Customization

From a user point of view Flexibility means that VSP

can be conveniently and intuitively configured to per-

form a vast multitude of simulation tasks. Models serve

as building blocks of a simulation flow. Automation

is closely related to Flexibility and means providing

interfaces for parameterizing the simulation flow, in-

cluding scriptable input decks, parameter sweeps, and

interfacing with meshing tools, device simulators etc.

Automation also allows VSP to be used in automated

device design optimization and parameter calibration.
Efficiency is an enabling concept for Automation; strong

emphasis has been put on Efficiency in the design of

VSP. The model design in VSP is based on broad gen-

eral approaches to solving certain classes of problems

and avoids special cases. Consistency is ensured when
dimensionality, materials, or computational methods are

varied in the simulation. Finally, Customization allows

the VSP to be extended in several ways, like adding new

models, materials, or numerical libraries.

3 Work Flow and Interaction

3.1 Models and Attributes

The core design philosophy in VSP can be summarized

as follows: Everything is a model. In the sense of VSP’s

design a model is an object similar to a class in com-

puter programming. A model can be instantiated and

the instance can be invoked, which may result in equa-

tions being solved, expressions evaluated and so forth.

A model may have submodels for certain sub-tasks; the

model may invoke its submodels during execution. Ev-

ery model instance can store data relevant to the model

and may expose the data, so that it can be passed to

and from other model instances. Figure 2 shows the

architecture of a VSP model.

Model data is organized into attributes. Three types

of attributes occur: parameters, properties, and quanti-

ties. Parameters represent numerical, or non-physical

entities: error tolerance, number of iteration steps, and

so on. Properties represent concentrated physical quanti-

ties: contact voltages, subband energies, etc. Quantities

represent distributed physical quantities – in real space

(electrostatic potential, charge density) and k-space (e.g.
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Fig. 2 Conceptual schematic of a model in VSP; solid arrows
represent data flow, double arrows control flow.

SCLoop
Base

EffMassClassic
carrier

Poisson
poisson

ϕ

n, p, dn,dp
%,d%

δϕ

Simulation {

model = "SCLoop";

Base {

ccmodels = " EffMassClassic :carrier";

poisson { ... }

carrier { ... }

} }

Fig. 3 Upper part: model configuration with a self-consistent
loop involving a Poisson model and a model for classical
equilibrium carrier distributions; indicates submodel invo-
cation, indicates data flow; lower part: the corresponding
IPD configuration; each (sub-)model instance has its own
(nested) section;

band/subband structure). All attributes have identi-

fiers that can be used to access them. Properties and

quantities have physical units.

Most models represent physical models – a Poisson
solver, a carrier concentration model – but they are also

used for representing numerical and logical algorithms –

a self-consistent loop or nested execution.

3.2 Controlling VSP – the Input Deck Language

VSP is controlled by files written in the IPD language

[16]. IPD is a hierarchically structured configuration

language organized in sections. Each section may con-

tain nested sections and variables. Variables can have

physical quantities. IPD allows the use and evaluation of

mathematical and logical expressions that are evaluated

when needed. Any section may be derived from one or

more parent sections by which it inherits all the parent

sections’ content.

VSP-IPDs contain three sections at the top level:

Device, Materials, and Simulation. Device defines

SCLoop
Base

Poisson
poisson

%, d%
δϕ

EffMassQuantum
carrier

ϕ

n, p, dn,dp

Schroedinger
schroedinger c 0
schroedinger c 1
. . .

V,m˜ ∗
En, ψn

Simulation {

model = "SCLoop";

Base {

ccmodels = " EffMassQuantum :carrier";

poisson { ... }

carrier {

schroedinger_c_0 { ... }

schroedinger_c_1 { ... }

schroedinger_c_2 { ... }

schroedinger_v_0 { ... }

schroedinger { ... }

} } }

Fig. 4 Same as Fig. 3 but with an equilibrium distribution of
confined carrier states; the carrier model instance invokes one
closed-boundary Schrödinger model for every conduction/va-
lence valley (c 0, c 1, . . . , v 0, . . . ); The model instances can
be configured via their respective sections (schroedinger c 0,
. . . ) or the common schroedinger section.

the base (real-space) device; additional devices (also

k-space) can be specified in their respective sections.

Materials contains a nested section for each material

known to VSP. A material database (see Section 3.5)

is included with VSP and contains parameter values

for common semiconductors (Si, Ge, GaAs, . . . ) and
insulators (SiO2, HfO2, . . . ) as well as metals. The

Simulation section contains all the data and control

flow information of the simulation work flow.

3.3 Simulation Flow Control

In the Simulation section both the control flow and

the data flow can be specified. Each model instance is

configured via a section with submodels corresponding
to nested sections. A base model is specified that is

instantiated at the start of the simulation. Further model

instances are necessarily submodels of the base model.

The example in Fig. 3 illustrates this: The base

model is SCLoop and its instance is referred to as Base

and configured by a nested section of the same name.

The SCLoop instantiates two submodels, poisson and

carrier ; the poisson instance is “hard-wired” into the

model SCLoop, whereas the carrier model class and

instance name are chosen by the user. Any model can
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SCLoop
Base

EffMassClassic
carrier 1

EffMassQuantum
carrier 2

on poly-Si

on bulk Si

Simulation {

model = "SCLoop";

Base {

ccmodels = [" EffMassClassic :carrier_c ",

" EffMassQuantum :carrier_q "];

carrier_c_segments = "PolyGate";

carrier_q_segments = "Bulk";

carrier_c { ... }

carrier_q { ... }

} }

Fig. 5 Different carrier models can be used on different seg-
ments, where appropriate; here, a classic carrier distribution
is sufficient to model the accumulation/depletion effects in
the poly-Si gate, while quantum confinement is accounted for
in the channel.

be used as a carrier model, as long as it provides a

suitable interface, i.e. an input quantity phi/ϕ and

output quantities ccn/n, ccp/p, dccn/dn, and dccp/dp.

Since the interface is predefined, the SCLoop instance

takes care of transferring the quantities.

In Fig. 3 we have used a model providing a classical

carrier distribution; in Fig. 4 we have exchanged the
carrier model to a more sophisticated one including car-

rier confinement. The general procedure is the same as

before, only the carrier model has submodels of its own,

i.e. instances of the Schroedinger model that calculate

the bound states for each conduction band valley and

valence band (c_0, c_1, c_2, v_0, . . . ). The interface

to the Schroedinger instance is predefined: it takes

the potential V/V and effective mass inv mass/(m˜ ∗)−1as input quantities, and returns the energies E/En and

wavefunctions psi/ψn. Multiple carrier models can be

used, each run on a different portion of the simulation

domain (cf. Fig. 5). Different models can be instantiated

and their instances configured separately.

3.3.1 Stepping and Logging

Stepping lets VSP run multiple simulations with one or

more attributes being stepped through a list of values,

while logging writes specified data to a file for each step.

A basic application of this feature is the calculation

of characteristics, such as capacitance-voltage (C/V)

and current-voltage (I/V). Stepping and logging are

demonstrated in the following example where charge is

computed as function of temperature:

SCLoop
sc quantum

EffMassQuantum
cc quantum

SCLoop
sc classic

EffMassClassic
cc classic

Model
chain

SCLoop
sc kp

KdotPQuantum
cc kp

ϕinit

ϕinit

Simulation {

model = "Chain";

Base {

models = ["SCLoop: sc_classic ",

"SCLoop: sc_quantum ",

"SCLoop:sc_kp"];

sc_classic {

ccd = "~Device. AcceptorConcentration ";

... }

sc_quantum { phi = "^ sc_classic .phi";

... }

sc_kp { phi = "^ sc_quantum .phi";

... }

} }

Fig. 6 A chain instantiates a list of models and invokes
each of them in sequence when run; attributes can be passed
between the model instances.

Simulation {

model = "SCLoop";

Base {

T = step ([77 K, 120 K, 200 K,

250 K, 300 K], pri = 10);

}

Logging {

file = "cv -curve";

variables = [

"~ Simulation .Base.T",

"~ Simulation .Base.Gate.charge"];

} }

3.3.2 Chains

The Chain is an abstract model that is used to run a

sequence of submodels. Chains can be nested and give

the user complete control over model execution. Figure 6

demonstrates the usage of a chain; here the base model is

a Chain and instantiates the three SCLoop submodels,

sc classic, sc quantum, and sc kp. Also shown is the

passing of attributes between model instances which

will be discussed in the next section.
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3.4 Data Flow Control

Data flow between models is either intrinsic or user-

defined. The former can be found in the examples in

Figs. 3 to 5; here the attributes that are exchanged

between the SCLoop model and the carrier model are

part of the predefined interface. In Fig. 6 we can see an

example of user-defined data flow; Through the setting

phi = "^sc_classic.phi" in the sc quantum section, we

instruct the model instance to fetch the quantity phi

from instance sc classic and store it in its own quantity

phi. Such assignments allow data to be transferred be-

tween any two model instances in the configuration tree.

The same way data can be transferred from the input

device: cca = "~Device.AcceptorConcentration" gets the

quantity AcceptorConcentration that has been read

with the input geometry and writes it to cca.

Any model instance can have its data redirected to a

file for visualization or debugging. Every model configu-

ration section can have a WriteQuans and WriteParams

section nested within; the former is for quantities only,

the latter for properties and parameters.

WriteQuans {

file = "some/output/file";

variables = ["phi", "ccn", "ccp"];

format = ["dev", "vtk", "crv"];

}

WriteParams {

file = "other/output/file";

variables = "*";

}

The variables parameter is a list of attributes to be

written to a specified file, setting variables = "*" causes

output of all attributes suitable for output. The path

definition is platform independent. The file format can

be specified for quantity output; supported formats
are the proprietary GTS DEV format, the VTK XML

format for unstructured grid data [17], or a text file

(CRV format, 1D only).

3.5 Material Database

The top-level Materials section in the IPD contains

information for each material supported by VSP and is

referred to as material database. Materials contains one

subsection for each material, e.g. Materials.Si, or ma-

terial combination, e.g. Materials.GaAsSb. Each mate-

rial subsection contains one subsection for each material

property such as MaterialTypeModel, PoissonModel,

ElasticityModel, EffectiveMassModel, and KPModel.

Each of the property sections is read by the correspond-

ing material model, which provide a standardized inter-

face for material parameters and serve the information

suitably to VSP’s models as C++ data structures.

interior
nodes

interface
nodes

boundary
nodes

Segment 3

Segment 1 Segment 2

vertex

Fig. 7 The role of nodes in VSP becomes clear when look-
ing at devices with more than one segment. Every segment
contains its own set of vertices, rather than sharing one set of
vertices for the whole domain. At the interface between two
segments we may have two (or more) vertices representing
the same point in space. Nodes resolve this ambiguity by
referencing the interface nodes.

4 Software Architecture – Levels of Abstraction

VSP is a monolithic simulation program written in C++.

The VSP software architecture is divided in three lev-

els of abstraction: (i) the data and topology level, (ii)

the modeling level, and (iii) the algebraic level. While

the first two are dependent on each other, the third is

independent to allow a maximum of flexibility.

4.1 Data and Topology Level

Data and topology form the foundation of numerical

modeling and simulation. This level can be regarded

as the low level of VSP’s infrastructures, whereas the

modeling level to be described in the next section would

be the high level.

The simulation domains of VSP (in real space or

k-space) are called devices. A device is organized in

segments. Segments are filled with elements which are

simplices spanned between their vertices – also contained

in the respective segment. Each segment is independent,

i.e. no elements or vertices are shared between segments.

Global, i.e. device-wide connectivity is provided by nodes.

Figure 7 shows a sketch of a VSP device, highlighting

the role of nodes. Figure 8 displays the topological rela-

tions between segment, element, vertex, and node. Note

that most relations are bidirectional, allowing to go

from any topological entity to any other by following

the references; some additional references that serve as

shortcuts (e.g. Element Node) have been omitted for

clarity.

VSP can store structured data on all of the afore-

mentioned topological entities, except on nodes, in the
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Fig. 8 Topological relations between objects in VSP; seg-
ments contain both elements and vertices. Vertices contain
their location in real/k-space, while elements contain geo-
metrical data for computing couplings; elements and vertices
reference each other. Nodes reference one or more vertices
along with their corresponding segments. Quantities can be
defined on vertices, elements, or segments.

Attribute UnitAttribute

Parameter Property

Quantity

Fig. 9 Relations between attribute types in VSP; the base
type for data storage and exchange is the Attribute; Parameter
is a direct descendant of Attribute; UnitAttribute stores a
physical unit along with the raw data; Property and Quantity
are its descendants.

form of quantities. Quantities are one form of model

attributes, the other two being parameters and prop-

erties – discussed already in Section 3.1. The relation

between different kinds of attributes is shown in Fig. 9.

All attributes of a model are available for data exchange;

the user can instruct VSP to transfer attributes between

model instances, demonstrated in Section 3.3.2.

Quantities may store any kind of position-dependent

or k-dependent data; the data may be be scalar (double,

complex16, int), vector-valued (Tuple<T>), or tensor-val-

ued (Transform<T>). A quantity may be represented in

arrays of any number of dimensions: zero-dimensional

(e.g. potential, carrier concentration), one-dimensional

(e.g. single-band wavefunctions), two-dimensional (e.g.

multi-band wavefunctions), four-dimensional (e.g. multi-

band wavefunctions, k-resolved), and so on.

On construction, every attribute must be provided

with a data type, an identifier, a brief description, and a

tag indicating the attribute’s usage such as input, output,

and internal. Properties and quantities must also be

provided with a physical unit. The given information

(type, identifier, description, tag, and unit) is used to

refer to the attribute, verify data flow, and as part of the

ModelExtended

Problem

Assembler

matrix

Solver

Fig. 10 Typical algorithmic layout of a
VSP model; a Problem instance is gener-
ated that uses the topological structure
provided by the ModelExtended instance.
The topology of boundary conditions is
handled by the Problem instance. An
Assembler instance uses the information
provided by the Problem instance along
with geometrical information from the
model to discretize the equation and as-
semble a matrix. The matrix is processed
by a solver instance.

automated model documentation generation referred to

as literate-modeling (cf. Section 4.4).

4.2 Modeling Level

The previous section introduced terms such as topology,

data, and model attributes. On the modeling level we are
concerned with higher-level items, such as mathematical

expression, (differential/integral) equations, or boundary

conditions. VSP provides a high-level interface to deal

with these items – the ModelExtended class.

A model derived from ModelExtended inherits all the

required infrastructure required for translation between

the modeling and the topology or data levels. A typical

model layout is shown in Fig. 10. It shows two addi-

tional modules: Problem and Assembler; they are required

when partial differential equations need to be solved

numerically, but are optional otherwise. Problem takes

topological information about the boundary conditions,

i.e. where and of what type they are. The information

is processed using the low-level topological information

provided by ModelExtended to pre-determine the size and

structure of the discrete equation system. The bound-

ary conditions are passed to the Assembler instance in

equation form, along with the equations for the interior

points of the domain. The Assembler instance can then

generate a system matrix, which may be passed to a

numerical solver.

VSP allows the use of symbolic math for specifying

equations, expression evaluation, integration, and similar

tasks. The following code lines serve as illustration:

// vector potential

A = 0.5 * B0 * cross(ez, position );

// density from wavefunction

rho = magsq(psi);

// electric field

E = -grad(phi);

// calculating the centroid

Tuple <> center =

integrate(position) / integrate (1.0);
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EvalType Location

Expression

double,
Tuple,
. . .

Vertex,
Element,
Segment

EvalType Location

EvalType Location

Operand

Unary operator

EvalType Location

EvalType Location

Operand 1

EvalType Location

Operand 2

Binary operator

Fig. 11 Expression typing scheme in VSP; each expres-
sion contains its evaluation type (double, complex16, Tuple,
Tensor, . . . ) and location tag (Vertex, Element, Segment) as
nested types. Unary and binary operations derive their eval-
uation type and location based on the operands’ evaluation
and location types.

Every combination of terms has its own C++ type as

shown in Fig. 11; nested within are the type to which

the expression evaluates, EvalType, and a tag to rep-

resent the location of evaluation, Location. Operators

or functions applied to expressions are aware of both

evaluation and location type and may modify them ac-

cording to specific rules. For instance magsq(...), the

square-magnitude function will change the EvalType from

double, complex16, or Tuple<T> to double, while grad(...)

will change EvalType to Tuple<EvalType> and Location

from Vertex to Element. The static typing system in C++

serves as a formal correctness check for all expressions.

4.3 Algebraic Level

The algebraic level is detached from the low-level pic-

ture of the topological and data level and the high-level

picture of the modeling level. It provides abstraction

of entities such as matrices, solvers, and projections

to a generic finite-dimensional linear operator, called

MatrixInterface. A MatrixInterface object has the prop-

erty of dimension and provides various methods for

multiplication by a vector (or multiple vectors) from

left and right, as well as evaluation of bilinear forms.

Derivate classes of MatrixInterface are required to at

least implement left and right multiplication as a mini-

mal set of operations. The remaining methods can be

constructed by MatrixInterface automatically. Figure 12

shows all the algebraic operator classes and their relation

to MatrixInterface.

MatrixInterface Full

Band

TridiagonalProjector

ConstSparse
(CSR/CSC)

ConstSparseTerm

MatrixProduct

Solver

SparseSolver

SuperLU

SuperILU

DenseSolver

FullLU

BandLU

IterativeSolver

CG GMRES

BiCGStab

Fig. 12 Relation map of the algebraic operators in VSP; the
base type is MatrixInterface. The common interface allows
to represent dense or sparse matrices, projections, solvers
(direct, sparse direct, iterative), and combinations of these as
generic algebraic operators.

4.4 Literate Modeling

In [7] the authors of NEMO5 point out: “Being a research
code employed by changing generations of students,

documentation, clarity, and modularity of the code are

essential. Only when all these criteria are fulfilled, can

junior researchers act as builders of individual modules

and the code endure multiple generations of developers.”

In VSP we go even further by introducing the notion

of literate modeling. It borrows from the concept of liter-

ate programming by D. Knuth [18] in which the program

and its description are written as one document from

which code and documentation can be extracted. The

VSP code provides facilities to embed documentation

into the models themselves. Their structure is based on

topic-oriented authoring [19]. The following code snippet

serves as illustration:

struct Schroedinger : ModelExtended {

...

};

EXTERN_DOCUMENT(Topic , models_unstr)

DECLARE_DOCUMENT(

ModelNode <vsp:: Schroedinger >,

Schroedinger)

DOCUMENT(Schroedinger ,

topic = &models_unstr ,

description = "This model solves the "

"closed boundary single band "

" Schroedinger  equation ...")

The example only shows how to add a brief description

to a model but the model description can be structured

into several paragraphs. The documentation is organized

in nodes representing sections and subsections of the
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documentation. The node for the Schroedinger model is

added to the Topic node models_unstr which represents

the section containing descriptions of all VSP models op-

erating on unstructured grids. The information provided

with the model’s attributes (cf. Section 4.1) is automati-

cally compiled into its documentation node. Also, every

of the important IPD sections (Device, Simulation,

Logging, WriteQuans, WriteParams) are documented

in this manner.

The documentation is contained within the VSP bi-

nary and can be accessed by the user. The user can

obtain formatted output for any documentation node

by running VSP in documentation mode. This is useful

as a quick reference for models and IPD sections and

lowers the learning barrier of VSP especially for new

users. Another usage is the output of the entire doc-

umentation that can then be compiled into a manual

using a document preparation system such as LATEX.

Additionally, the documentation system features auto-

mated generation of IPD defaults that can be included

in simulation IPDs.

5 Physical Models

In this section we present some of the physical models

available in the VSP. A concise overview of the models

capabilities and properties is given.

5.1 Self-Consistent Loop

The self-consistent loop model SCLoop is used to it-

erate between the Poisson model and the carrier mod-

els until the electrostatic potential converges. The self-

consistent loop model takes care of setting the correct
parameters, properties, and quantities of the submodels

and getting the calculated quantities to update the po-

tential and the space charge density, respectively. The

potential is updated according to

ϕn = ϕn−1 + dδϕn, (1)

where d is the damping by the parameter d ∈ [0, 1].

Different schemes are available for computing d: (i) the

simple damping scheme, where the parameter d is con-

stant, (ii) the mmnt (or alternatively potential) scheme,

ported from the device simulator Minimos-NT [20, 21],

which takes the exponential relation between poten-

tial and carrier concentration into account and (iii) the

cosine scheme defined by

d = min

(
1.0, 1.0 +

〈δϕn, δϕn−1〉
‖δϕn‖2

∥∥δϕn−1∥∥2
)
, (2)

which prevents oscillatory updates. In all cases, the

range of d can be restricted to a user-specified interval

[dmin, dmax]. The system is considered convergent if the

calculated potential update norm drops below a given

threshold value (tolerance).

The SCLoop model also defines the settings of the

contact regions through the Contact model. In the

Contact model the Voltage or Fermi (i.e. Dirichlet

or Neumann) boundary conditions are set to the user-

defined values. The model also includes the work func-

tion difference for metals. A contact also defines the
region where space charge is summed up and thereby

allows the calculation of C/V characteristics.

5.2 Poisson Model

Self-consistent simulations necessitate the solution of

the Poisson equation

∇ ·
(
ε˜∇ϕ)+ % = 0, (3)

where ϕ is the electrostatic potential, ε˜ is the electric

permittivity tensor, and % is the free space charge. In

semiconductors charge consists of ionized dopants of

acceptor (NA) and donor type (ND), and of electrons

and holes.

%(ϕ) = −q0
(
n(ϕ)− p(ϕ) +NA −ND

)
(4)

Charge itself depends on the electrostatic potential since

electron and hole concentrations are influenced by the

band edge energy and the Fermi level producing an

non-linear Poisson equation.

For a stable iteration towards self-consistency the

Poisson equation needs to be linearized to give

∇ ·
[
ε˜∇(ϕ0 + δϕ)

]
+ %+

d%

dϕ
δϕ = 0. (5)

The derivative can be expressed analytically only for a

3D carrier gas, while approximations can be found for

confined carriers [22,23].

5.3 Carrier Models

Carrier models take the electrostatic potential and the

(quasi-)Fermi level as input and calculate the carrier

concentration and its derivative for a given geometry

and material configuration. Any model fulfilling the ba-

sic interface depicted in Figs. 3 and 4 can be used as

a carrier model within a self-consistent loop (by the

SCLoop model). VSP allows the combination of dif-

ferent carrier models within a self-consistent loop, for

example classically calculated carriers in the contact re-

gions and quantum-mechanically confined carriers in the
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Table 1 The supply function SF, the effective density of
states NC and the density of states mass mdos are summarized
for carrier gases of dimension d.

d SFd Nd
C md

dos

0D
1

1 + exp
(

Es−EF

kBT

) g 1

1D F− 1

2

(
−Es−EF

kBT

)
g

(
m1D

doskBT

2π~2

) 1

2

m‖

2D ln

(
1 + e

EF−Es

kBT

)
g
m2D

doskBT

2π~2
√

det(m˜ ‖)
3D F 1

2

(
−Ec−EF

kBT

)
g

(
m3D

doskBT

2π~2

) 3

2
3

√
det(m˜ )

channel region. The currently available carrier models

are outlined in the following sections.

5.3.1 Classical Carrier Model

The classical carrier model (EffMassClassic) assumes

that the electrons and holes behave like a free carrier

gas. Assuming a Fermi distribution of the carriers the

total concentration can be expressed in terms of the

effective density of states N3D
C and the complete Fermi

integral F 1
2
. The effective density of states also includes

degeneracy g = 2gV due to spin and equivalent valleys

gV. It depends on the density of states mass m3D
dos. A

summary is given in Table 1.

The classical carrier model extracts the necessary ma-
terial parameters from the material database and sums

up the contributions to the total carrier concentration

from all relevant valleys.

5.3.2 Parabolic EMA Quantum

For confined systems we provide the carrier model Eff-

MassQuantum which involves solving the single-band

Schrödinger equation with constant effective mass. Geo-

metric confinement can be in one, two, and three dimen-

sions which translates to the treatment of two-, one-,

and zero-dimensional carrier gases, respectively. The

time-independent m-dimensional single-band effective

mass Schrödinger equation is solved with closed (i.e.

Dirichlet) boundary conditions at the quantum domain

boundaries. For that purpose EffMassQuantum in-

stantiates and invokes Schroedinger submodels.

Carrier concentration is obtained by summation/in-

tegration of states up to a certain truncation energy

Etrunc which is set to several kBT above the Fermi level

EF. After calculating all the confined states with eigen-

energy Es below Etrunc the total carrier concentration

shallow
confinement

EcElim

Etrunc

EF
bound states

free states

deep
confinement

EcElim

bound
states

Fig. 13 Shallow (left) and deep (right) confinement regime;
in the former mobile charge is comprised of bound carriers
with energies up to Elim and free carrier above Elim modeled
as classic 3D carrier gas. Shallow confinement is typical of
carrier accumulation. In deep confinement Elim lies above
truncation energy Etrunc and charge only consists of bound
carriers. Deep confinement is typical of inversion and fully-
depleted channels.

is obtained by

n(r) =
∑
v

∑
s

∣∣ψmD
vs (r)

∣∣2N3−mD
C,vs SF3−mD

vs . (6)

In some cases not all the states between the band edge

and Etrunc are confined as outlined in Fig. 13. In the case

of shallow confinement confined carriers are obtained
only bound up to Elim and the remainder is treated as

free carrier gas

n(r) =
∑
v

∑
s

∣∣ψmD
vs (r)

∣∣2N3−mD
C,vs SF3−mD

vs

+N3D
C F 1

2

(
−Ec−EF

kBT
,−Elim−EF

kBT

)
,

(7)

making use of the incomplete Fermi integral for the free

carrier concentration.

The transition energy between bound and unbound

states, Elim is automatically determined by the model

based on the device topology. As sketched in Fig. 14

the minimum of the band edge is computed across the

bounding segments that constitute open boundaries and

assigned to Elim. Dielectrics are considered barriers and

are omitted in the Elim calculation, hence carriers can

become confined next to dielectric segments.

The d = 3 − m dimensional effective densities of

states Nd
C and corresponding supply functions are sum-

marized in Table 1. The summation is carried out over

all subbands s and valleys v. If bound states penetrate

into barriers, a weighted average of the mass is used

in Eq. (6), m˜−1s = 〈m˜−1〉s. In a 1D carrier gas we

project m˜−1s along the axis of free movement e‖ to ob-
tain the transport and density-of-states effective mass

m‖ = e‖ · m˜ s · e‖. In a 2D carrier gas the transport

effective mass is a tensor. The density-of-states mass is

obtained from
√

det(m˜ ‖), with

m˜ ‖ = τ˜‖ ·m˜ s · τ˜‖ + ι˜− τ˜‖, (8)
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Semiconductor

Dielectric
(barrier)

Surface boundary (open)

Metal
contact
(open)

Fig. 14 The transition energy Elim between bound and free
states is determined by looking at the problem topology. The
segments surrounding the region where carrier concentration
need to be computed, i.e. semiconductor segments, are broken
down into barriers and open boundaries. Since carriers can
escape the region via open boundaries only, Elim is computed
as the potential minimum along the open boundary segments.

τ˜‖ and ι˜ being the projection onto the free movement

axes and the identity tensor, respectively. This way the

model can deal with truly arbitrary crystal orientations.

5.3.3 Parabolic EMA NEGF

For nanoscaled devices, numerical simulations based on

the non-equilibrium Green’s function (NEGF) formal-
ism are commonly performed [24–27]. A very efficient

implementation of this method has been achieved by

means of a recursive algorithm [28]. Proper numerical

integration methods are vital for the stability and accu-

racy of NEGF simulations.

The retarded and advanced Green’s functions are

determined by the equation

GR(r, r′, E) = GA†(r, r′, E) (9)

= [EI −H(r, r′, E)−ΣR(r, r′, E)]−1,

where H(r, r′, E) is the Hamiltonian of the system

and ΣR(r, r′, E) is the retarded self-energy. The lesser

Green’s function is calculated as

G<(r, r′, E) = GR(r, r′, E)Σ<(r, r′, E)GA(r, r′, E).

The lesser self energy of the left and right contact is given

by Σ<
l,r(E) = i=

{
ΣR

l,r(E)
}
fl,r(E) with the occupation

function fl,r(E) of the left and right lead, respectively.

The Green’s functions allow the calculation of physical

quantities of interest such as the local density of states,

N(r, r, E) = − 1
π=
{
GR(r, r, E)

}
, and the electron and

current density

n(r) = −2i

∫
G<(r, r, E)

dE

2π
, (10)

j(r) = − ~q
m∗

∫ [
(∇−∇′)G< (r, r′, E)

]∣∣∣
r′=r

dE

2π
. (11)

The numerical evaluation of these quantities requires

a discretization of the energy space. A simple approach

using an equidistant energy grid suffers from two prob-

lems. A small number of grid points will not correctly

resolve narrow resonances, whereas a vast number can

lead to an unpredictable summation of numerical er-

rors and to intractable memory requirements. These

effects can lead to instability or poor convergence of

a self-consistent iteration loop [29]. Adaptive energy

integration (AEI) on a non-equidistant grid is required

to increase accuracy, numerical stability, and memory
efficiency. Section 6.4 outlines the different approaches

that were implemented and tested for applicability to

the NEGF formalism [30].

The NEGF carrier models (EffMassNEGF) are

currently available for 1D and 2D orthogonal geometries

in the ballistic regime. In the 2D case, we implemented

the Svizhenko algorithm [28]. For 1D simulations we

additionally provide the algorithm presented by Lake

[24] which models equilibrium contact regions.

5.3.4 k·p Quantum

The k·p method is a popular method for describing

band structure in the vicinity of high-symmetry points.

The resulting effective Hamiltonians consists of matrices,

or systems of coupled Schrödinger equations, in which

states are expressed as envelope functions of each band’s

basis states [31]. In that sense, the single-band effective

mass Schrödinger equation itself can be seen as special

case of the multi-band k·p theory, where all interactions

with the other (remote) bands are described by a single

parameter, namely the effective mass.

In VSP the k·p method is implemented within the

KdotPQuantum model. The model behaves analo-

gously to the EffMassQuantum model described in

Section 5.3.2 and they share the same IPD interface. In-

stead of using analytical formulae for carrier population

KdotPQuantum performs a numerical k-space integra-

tion of the k·p (sub-)band structure. The eigenenergies

and wavefunctions are obtained for each k-grid point by

invoking instances of the SchroedingerMulti model.

The consideration regarding bound and unbound states

mentioned in Section 5.3.2 also applies here. To save

computational resources the KdotPQuantum model

applies a heuristic search algorithm to efficiently deter-

mine which k-grid points contribute significantly to the

carrier concentration and omits those that don’t.

VSP’s k·p capabilities have been used for investi-

gating properties of a variety of nanoelectronic devices:

p-type silicon ultra-thin-body (UTB) channels [32] and

quantum dots [32] using the six-band Luttinger-Kohn

model [33], n-type silicon UTB [34] and nanowire chan-
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nels [35,36] using the two-band model in ref. [37], quan-

tum cascade lasers devices [38] using two-band [39] as

well as four- and eight-band models for III-V materi-

als [40], or lead-salt based nanostructures using the

four-band Hamiltonian from ref. [41].

VSP provides the generic KPModel interface in the

material database that allows users to specify multi-band

Hamiltonians. A general model is used for the diagonal

and coupling k·p-Hamiltonian components up to second

order in k:

H =

H11 H12 · · ·
H22 · · ·

c.c.
. . .

 ,
Hlm =

~2

2
k ·m˜−1lm · k

+ ~vlm · k + Ulm

(12)

The second order contributions are controlled by the

inverse (coupling) effective mass tensor m˜ lm, the first

order contributions by the (coupling) group velocities

vlm, and the zero-order contributions through the (cou-

pling) potentials Ulm. One way to specify the Hamil-

tonian elements Hlm is via a Cartesian coordinate sys-

tem (symmetry = "G"), with ex, ey, ez as base; m˜ lmand vlm are specified via mXX, mYY, mXY, . . . , and vX,
vY, and vZ, respectively. In case the k·p-Hamiltonian

expands around one of the boundary points X or L

(symmetry = "X" or "L"), the coefficient may be defined

using a basis of longitudinal and transversal directions

el, et, et′ and ml/mt and mlt/mtt are used for diagonal

and off-diagonal elements of m˜ lm, and vl and vt for
vlm. VSP replicates and rotates the Hamiltonian for

every occurrence of the same symmetry point, i.e. [100],

[010], and [001] for X and [111], [1̄11], [11̄1], and [111̄]

for L.

Strain is included via deformation potentials Dij
lm

for each strain component. The resulting potentials are

added to Ulm,

Ulm 7→ Ulm + εijDij
lm. (13)

Deformation potentials Dij
lm are specified using the same

notation as the components of m˜ lm.
Any conceivable k·p-Hamiltonian that fits the repre-

sentation in Eq. (12) may be be specified and multiple

models for different symmetry points and bands may be

combined. As an example we give the complete specifi-

cation of the two-band k·p Hamiltonian for the silicon

conduction band from ref. [37].

TwoBandConduction {

symmetry = "X";

degeneracy = 2; // spin

a = 5.431 "Angstrom";

Eg = 1.12 "eV";

H = [["H1", "HC"],

["HC", "H2"]];

H1 { type = " conduction ";

ml = 0.916;

mt = 0.196;

vl = 0.15 * 2.0 * pi / ^a / ml;

U = 0.5 * ^Eg;

Dl = 9.0 "eV"; }

H2 : H1 { vl = -^H1.vl; }

HC { type = "coupling";

inv_mtt = 2.0 * (1.0 / ^H1.mt - 1.0);

Dtt = 7.0 "eV"; }

}

The general structure of the 2×2 Hamiltonian is specified

in the variable H. Each of the referenced components H1,

H2, and HC is defined in its individual section below using

expressions for masses, velocities, and (deformation)

potentials.

5.4 Pauli Master Equation

Theoretical studies have shown that in many practi-
cal cases the steady state transport in quantum cas-

cade lasers (QCLs) is incoherent and a semi-classical

description was found to be sufficient [42, 43]. Follow-

ing this approach, we developed a transport model for

QCLs based on the Pauli master equation (PME) [44].

Transport is described via in and out-scattering between
quasi-stationary basis states, which are found by solving

the Schrödinger equation. The Hamiltonian includes the

band edge formed by the heterostructure, thus, tunnel-

ing is accounted for through the delocalized eigenstates.

Transport occurs via scattering between these states.

The transport equations are derived from the Liou-
ville-von Neumann equation in the Markov limit in com-

bination with the diagonal approximation. This means

that off-diagonal elements of the density matrix are ne-

glected and one arrives at the Boltzmann-like PME [45].

dfk,n(t)

dt
=
∑
k′,m

{
Γm,n (k′,k) fk′,m (t)

−Γn,m (k,k′) fk,n (t)} (14)

The transition rate from state |k, n〉 to state |k′,m〉
for an interaction Hint follows from Fermi’s golden rule

Γn,m (k,k′) =
2π

~
|〈k′,m|Hint|k, n〉|

2

δ (En(k)− Em(k′)∓ ~ω) . (15)

We make use of the translational invariance of the

QCL structure and simulate the electron transport over

a single stage only. The wave function overlap between

the central stage and spatially remote stages is small.
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Therefore, the assumption that interstage scattering is

limited only to the nearest neighbor stage holds and

interactions between basis states of remote stages can

be safely neglected. The electron states corresponding

to a single stage of the QCL are determined by solving

the multi-band k·p Schrödinger equation. The states

of the whole QCL device structure are assumed to be

a periodic repetition of the states of a central stage.

This approach ensures charge conservation and allows

to impose periodic boundary conditions on the PME.

Band nonparabolicity in cross-plane direction is es-
sential to determine the subbands in QCLs. We provide

a two-band k·p [39] and a four-band k·p Hamiltonian

including the conduction, heavy-hole, light-hole, and

split-off bands. The periodic wavefunctions are picked

automatically by a reliable algorithm [38,46].

Since transport is simulated over a central stage only,

every time a carrier undergoes an interstage scattering

process the electron is reinjected into the central stage

with an energy changed by the voltage drop over a

single period. The corresponding electron charge then

contributes to the total current.

The transport equations are solved using a Monte

Carlo (MC) approach. We developed an algorithm and

devised several new numerical methods to reduce the

computational cost of the simulation [38,46].

The total scattering rate in a two-dimensional elec-

tron gas for a carrier in state |k, n〉 for a specific scatter-

ing process is obtained by integration over all possible

final wave vectors k′ and summation of all states m

Γn(k) =
A

(2π)2

∫
BZ

∑
m

Γn,m(k,k′)dk′ (16)

Currently the following scattering mechanisms are in-

cluded in the model:

– electron-phonon scattering due to acoustic and opti-

cal phonons modeled by a deformation potential

– polar-optical electron-phonon scattering

– alloy scattering

– intervalley scattering

– interface roughness scattering

– stimulated emission and absorption of photons

For the calculation of the rates the effect of in-plane

nonparabolicity can be included using Kane’s relation.

For in-plane transport we developed three approaches:

1. parabolic effective (density of states) mass as input

parameter

2. parabolic effective mass averaged as 〈ψi| 1
m(z) |ψi〉 for

each subband

3. non-parabolic dispersion E(1 + αE) = ~2k2

2m fitting

the mass m and nonparabolicity coefficient α to

the numerical subband structure determined by the

Schrödinger equation

Table 2 Continuous operators and operands with their dis-
crete counterparts

Continuous Discrete, element l

Gradient ∇ Zl =
[
−Yl[1 1 . . .]T , Yl

]
Divergence dV div Al = [Al

i, Al
j , . . .]

T

Control
volume

dV Vl = diag(V l
i , V

l
j , . . .)

Scalar
quantity q

q(r) ql = diag(qi, qj , . . .)

Table 3 Second-order PDE terms in their discretized form

Continuous Discrete, element l

Laplacian dV∇2 AlZl

Anisotropic
Laplacian

dV∇ · τ˜ ·∇ Alτ lZl

6 Numerical Methods

6.1 Discretization

VSP uses a finite volume discretization scheme, thus

avoiding the weak formulation fundamental to finite

elements and relying instead on a formulation based on
the conservation of fluxes in each of the finite volumes.

Unlike to most finite volume codes, the fluxes are treated

in their full vectorial form and not as projections along

the edge between two points of the mesh. This is impor-

tant because it is the only way material anisotropy can

be introduced within a finite volume scheme. The dis-
cretization was demonstrated in [47], where the valence

band states of a quantum dot were calculated using a

highly anisotropic six-band k·p Hamiltonian.

Most physical laws are laws of conservation. Con-

servativity, therefore, serves as a common basis for the

numerical modeling in our simulation framework. The

finite volume method (FVM) possesses the inherent

property of conservativity and is therefore well-suited

as a common discretization formalism for all problems

occurring in nanophysical devices.

Traditional FVM codes (Fig. 15 left) are edge-based

(see e.g. [48]); a mesh node (i) couples to its neighbors (j)

via the edges of the mesh graph. Each edge stores a

length dij and a coupling area Aij , each node stores

its Voronoi cell volume Vi. The projection of the field,

i.e. the derivative of a quantity ϕ along an edge, is

approximated by (ϕj −ϕi)/dij . Some material property

(permittivity, effective mass, . . . ) relates the field to a

flux density which is multiplied by Aij to obtain the

partial flux leaving the cell. This approach has one

major shortcoming: The field obtained by (ϕj −ϕi)/dij
is not the gradient of ϕ but only its projection along eij
which implicitly assumes that the flux density caused
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i

Aij

jδij
Box

i

Al
i

j

k

dij

dik

Box

Fig. 15 Comparison of edge-based and element-based finite
volume methods; in element-based FVM both gradient and
coupling surface area are vector-valued entities, while in edge-
based FVM they are scalar, assuming implicit projection along
the edge.

i

Al
i

V l
i

Al
j

V l
j

Al
k

V l
k

jj

k

dij

dik

Fig. 16 Element-centric discretization; partial fluxed are
evaluated according to one of the rules in Table 3. The resulting
nv × nv (nv = number of vertices per simplex) partial fluxes
are added to the system matrix in their appropriate rows and
columns.)

by the field is parallel to eij as well. This restricts the

discretization to isotropic media, i.e. ones with scalar

field-flux relations.

The FVM approach we use in the VSP is element-

based [47]. Instead of looking at the neighbor nodes (j)

of node i we look at its neighbor elements (l) as shown

in Fig. 15 (right). The field is now calculated inside the

element l in its vectorial form. For a simplex element

(a triangle in two dimensions, a tetrahedron in three

dimensions) the approximate gradient of a quantity ϕ

is constant within the element and can be obtained by

[∇ϕ]
l ≈ Yl

ϕj − ϕiϕk − ϕi
...

 , Yl := Ul
(

(Ul)TUl
)−1

, (17)

where Ul := [dij , dik, . . .] is a matrix containing the

edge vectors of the element with respect to node i as

columns. To obtain the flux density the vectorial field is

multiplied with a second order tensor. The dot product

of flux density and coupling area vector Al
i gives the

partial flux leaving the cell i via element l.

i
k

lm

j

boundary
point not

in equation
system

i

Si

outer area
element

inner
areas Al

i

Fig. 17 Topological treatment of boundary nodes; Dirichlet
nodes (left) are not represented in the system matrix but the
coupling to their neighbor nodes is computed nevertheless.
Neumann and Robin nodes (right) are kept in the system
adding an outer self-coupling area element.

6.2 Assembly

In a 2D or 3D mesh the number of elements is several

times greater than the number of nodes. To reduce

the number of times a particular element has to be

evaluated when building the system matrix the assembly

is element-centric: A loop iterates over the elements

of the simulated structure and has the partial fluxes

between the element’s vertices evaluated. These are then

added to the appropriate elements of the system matrix.

This kind of assembly also allows the discretization of

the problem’s constitutive partial differential equations

(PDE) to be broken down on a per-element basis. Contin-

uous operators and operands can be directly translated

into discrete ones which are represented by matrices.

Table 2 shows how continuous vector-analytic opera-

tors (gradient and divergence) as well as continuous

quantities are related to their discrete per-element rep-

resentations as matrices. Operand matrices are diagonal

and each diagonal entry corresponds to the operand’s

value at each of the element’s vertices, hence for an

n-dimensional simplex with nv = n + 1 vertices, the

element operands are nv-dimensional diagonal matrices.

Operators in contrast are full matrices; Al is a nv × 3

matrix and contains the area vectors of the coupling

surfaces between the element’s vertices (see Fig. 16) as

rows; Zl is a 3 × nv matrix and relates the values at

nodes to the gradient vector on the element.

Second order operators are discretized by multiply-

ing the corresponding matrices (Table 3). This also al-

lows the assembly of mixed derivatives such as ∂2/∂x∂y

which are just a special case of an anisotropic Laplacian

with τ˜ = ex⊗ey. First order derivatives are constructed

using the relation

∇ =
1

2
[∇2, r] =

1

2
(∇2r− r∇2) (18)

which is guaranteed to have an anti-symmetric discrete

representation. In quantum mechanical problems even-
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order operators must be symmetric and odd-order oper-

ators anti-symmetric in their discretized form.

The assembly process is automated by the Assembler

module discussed in Section 4.2. The Assembler allows

specification of the PDE system as a set of discrete

operator equations for each device segment. Boundary

conditions can be defined as shown in Fig. 17. The

Assembler object can then extract a sparse matrix from

the defined equation. The following code snippet illus-

trates the process for a simple Poisson equation:

Assembler <double > assembler(problem );

Variable var_phi;

assembler.defineEquation(partvol * rho +

eps0 * area(epsr * grad(var_phi )));

Sparse <double > matrix(problem.size ());

Full <double > rhs(problem.size(), 1);

assembler.assembleLinear(matrix , rhs);

The symbolic Sparse matrix is converted to a CSR/CSC
format [49] (ConstSparse) which can be processed using

matrix operations and solvers displayed in Section 4.3.

6.3 Numerical Solvers

Two classes of numerical solvers are crucial for quantum-

electronic simulation: linear solvers and eigenvalue sol-

vers. Both are provided by a number of software packages

that are stable and efficient. VSP links to several nu-

merical libraries and tries to select the most appropriate

solver for a problem at hand during run-time.

Available linear solvers in VSP are divided into (i)

dense solvers provided by LAPACK or an interface-
compatible library, (ii) direct sparse solvers such as

SuperLU [50] or PARDISO [51], and (iii) iterative solvers

such as CG, GMRES, or BiCGStab [49]. The linear

solver selection follows the rules:

– Full LAPACK for very small systems

– Banded LAPACK for 1D problems

– Direct sparse for 2D problems

– ILU-preconditioned iterative for 3D problems

Available eigenvalue solvers fall into two categories:

“direct” solvers provided by LAPACK and subspace

solvers such as IRAM provided by ARPACK or Jacobi-

Davidson [52]. The efficiency of the eigenvalue solver is

crucial, since most of the simulation time in quantum

problems is spent there. The eigenvalue solver is selected

based on the following rules:

– Full LAPACK for very small systems (e.g. bulk k·p)

– Banded LAPACK for 1D systems with few variables

– ARPACK (shift-invert) for 1D/2D problems

– ARPACK (plain) for definite 3D problems

0σ(A)
(1)

λmax

σ(A− λshift)
(2)

λmax − λshift

σ(P1(A− λshift))
(3)

σ(P2(A− λshift))
(4)

Fig. 18 Searching for eigenvalues up to to λmax; (1) shows
the spectrum of a positive definite Hermitian matrix A. A
is first shifted to the left by λshift > λmax (2) and the first
nev = 3 eigenvalues computed by a subspace solver (e.g.
ARPACK); a projection matrix P1 = I−vivH

i is constructed
from the eigenvectors vi. The subspace solver is invoked again
on the projected system P1(A− Eshift). The projection (3)
moves the found eigenvalues to 0 and effectively prevents the
solver to converge on already found eigenvalues. The process
is repeated (4) until all eigenvalues < λmax are found.

– Jacobi-Davidson for large/indefinite 3D problems

One challenge in quantum-electronic carrier models

described in Section 5.3.2 and Section 5.3.4 is that the

exact number of eigenvalues that is needed is unknown

beforehand; instead, the carrier model requires all eigen-

values within an energy interval up to Elim as indicated

in Fig. 13. While this can be done using direct solvers

with hardly any performance penalty, subspace solvers

require the number of sought eigenvalues to be known.

We resolve this issue using a technique called subspace

deflation explained in Fig. 18. The method extends the

operation of existing subspace-based eigenvalue solvers

without the need to alter their code.

6.4 Numerical Integration

We researched various (adaptive) integration methods

for the use of energy integration in the NEGF formalism.

These methods are outlined in the following sections.
The Clenshaw-Curtis integration also proved useful for

k-space integration of electronic subbands [34].

6.4.1 Polynomial Interpolation

Simpson’s rule is based on equidistant grid points and an

interpolation polynomial of second order. As an alterna-

tive, a more general approach with non-equidistant grid

points and polynomials of arbitrary degree can be con-
sidered. For a monomial power basis the interpolation

polynomial on N nodes takes the form

p(x) =

N∑
i=1

aix
i−1. (19)
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To obtain the coefficient vector a = [a1, a2, a3, . . . , aN ]
T

an equation system of rank N needs to be solved
1 x1 · · · xN−11

1 x2 · · · xN−12
...

. . .
...

1 xN · · · xN−1N


︸ ︷︷ ︸

V


a1
a2
...

aN

 =


y1
y2
...

yN

 , (20)

where V is called the Vandermonde matrix. Unfortu-

nately this system is often ill-conditioned and its so-

lution may become numerically unstable. Björck and

Pereyra [53] developed an algorithm that is able to cal-

culate the coefficient vector in a fast and stable manner.

After the coefficients of the polynomial are obtained

the integral of the interpolation function in the interval

[x1, xN ] can be calculated. For an arbitrary odd number

N of grid points, a subset of (N + 1)/2 grid points may

be used to obtain a second polynomial and consequen-
tially a second approximation of the integral. These two

results are then compared to yield the error criterion

for the adaptive integration algorithm. Unfortunately,

polynomial interpolation functions on equidistant points

suffer from Runge’s phenomenon for a higher degree.

This can be avoided using non-equidistant grid points

as done by the Clenshaw-Curtis rule.

6.4.2 Clenshaw-Curtis Integration

Fejér [54] proposed to use the zeros of the Chebyshev

polynomial Tn = cos(n arccosx) in the interval ]−1, 1[

as quadrature points of the integral of f(x),

1∫
−1

f(x)dx =

n∑
k=0

wkf(xk). (21)

For Fejér’s second rule, the n − 1 extreme points of

Tn are used. Clenshaw and Curtis [55] extended this

open rule to a closed form which includes the boundary

points x0 = −1 and xn = 1 of the interval. The n + 1

quadrature points are xk := cos(ϑk) with ϑk := k
π

n
and

k = 0, 1, . . . , n. The weights wk in equation (21) are to

be obtained by an explicit expression or by means of

discrete Fourier transforms [56]. The explicit expressions
of the Clenshaw-Curtis weights are:

wk =
ck
n

(
1−

bn/2c∑
j=1

bj
4j2 − 1

cos(2jϑk)

)
. (22)

The coefficients bj and ck are given by

bj =

{
1, if j = n/2

2, if j < n/2
, ck =

{
1, if k = 0 mod n

2, otherwise.

A useful property of the Clenshaw-Curtis rule is the

option to create subsets of the quadrature nodes. To

move from n+ 1 to 2n+ 1 points only n new function

values need to be evaluated.

6.4.3 Extended Doubly Adaptive Quadrature Routine

So far the presented methods used a fixed rule with inter-

val refinement for adaptive energy integration. A differ-
ent approach, which comprises two refinement strategies,

has been presented by Espelid [57]. A global error crite-

rion is used to find the most erroneous subinterval. This

interval is then treated locally either by subdivision and

applying a smaller order Newton-Cotes rule, or by in-

serting additional energy grid points and using a higher

order rule, depending on the estimated error. The local

integral and error of the superior method for a given

subinterval are then added to the global values. This

procedure is repeated until the global error is below a

given tolerance.

6.5 Performance and Parallelization

The simulator’s infrastructure and its models are de-

signed to run on workstation computers. VSP makes

use of parallelization on shared-memory systems. Run-

time naturally depends on device size and mesh density,

number of variables, and the number of usable cores. It

has been taken care to achieve optimal scaling although

this is strongly problem-dependent: most models have a

linear and a (typically small) quadratic run-time contri-

bution with respect to overall problem size.

7 Customization – Software Development Kit

Next to the customization of the work flow through

the Chain model and user extensions of the material

database we provide a means of customization on the

model level through the VSP software development kit

(SDK). The user implemented model needs to fulfill a

minimal interface to be compatible with VSP

class ModuleTemplate : public ModelExtended {

// quantities

Quan <double > quanDouble;

Quan <double , Segment > quanDoubleOnSegment;

...

public:

ModuleTemplate(ObjectUnstructured *obj);

void solve (); // called at a model run

const static string classId; // model name

};
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The ModuleTemplate inherits the necessary func-

tionality from the ModelExtended. The user can add

quantities, properties, and parameters and manipulate

them at input through the device file and the IPD.

When the model is run either as submodel, through

the Chain or the IPD, the solve method gets called.

There the functionality of the model is implemented.

All the standard C++ language features including use

of third-party libraries are available to the developer.

Furthermore, the user has full access to the VSP numer-

ical libraries and the modeling language comprised of
functionals for compile-time calculations. It is possible

to obtain quantities from other models, add and run

submodels, access and use the linear and eigenvalue

solvers, access the device information and so on. Models

implemented with the SDK get compiled into a library

file, that is loaded by the VSP at run time.

An exemplary application would be a user-defined

carrier model that takes the potential as input and

has the carrier densities as output. Such a model is

compatible with the SCLoop model and can be used

the same way as carrier models already provided with

VSP.

8 Simulation Examples

As shown in the previous sections VSP is controlled

through the input deck. The typical work flow consists

of device generation, setting the simulation parameters,

running VSP, and visualization. A convenient graphical

user interface for the complete work flow including the

manipulation of the IPD is provided by the GTS Frame-

work [58]. In the following we present some simulation

examples of the VSP.

8.1 Conductivity in Fin FETs

The GTS framework [58] was used to create a device

structure and mesh from a transmission electron mi-
croscope (TEM) image of an nMOS fin FET by In-

tel [59] (Fig. 19). We calculated the low-field conduc-

tivity of the channel from the linearized Boltzmann

transport equation (L-BTE) solved using the Kubo-

Greenwood formalism. Isotropic phonon and surface

roughness scattering (SRS) are included at 300 K. A

novel SRS model [60, 61] is employed; it extends the

model of Prange and Nee [62,63] with respect to non-

planar geometries and band anisotropy and thus gives
results consistent with planar geometries.

The transfer characteristic of the device for different

combinations of channel and substrate orientation is

shown in Fig. 20. The channel conductivity severely

Fig. 19 Left: TEM image of nMOS fin structure fabricated
by Intel [59]; segments of simulation domain are overlaid.
Right: electron concentration in fin under gate bias VG =
1 V from self-consistent Schrödinger-Poisson calculation; the
computational grid is shown.
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Fig. 20 Fin channel transfer characteristic for four different
channel/substrate orientations of the device in Fig. 19; degra-
dation of the characteristic can be observed for [110]/(001)
and [110]/(11̄1) orientations, but not for [110]/(11̄0) which
has about the same drive current as [100](010), the traditional
orientation in Si MOSFET fabrication.

degrades for the orientations [110]/(001) and [110]/(11̄1)

but not for [110]/(11̄0) and [100]/(010). A Coulomb scat-

tering model is also available; it handles both screened

ionized impurities in the channel and unscreened charges

in the oxide. However, Coulomb scattering has not been

included in the study shown in Fig. 20.

Although the perturbative Kubo-Greenwood method

has its shortcomings (lack of carrier heating, short chan-

nel effects) the model has low computational demands

while taking care of a good number of factors that in-

fluence transport (confinement, strain, orientation, tem-

perature, etc.). This allows quick evaluation of channel

designs for engineering purposes while maintaining run-

time below a minute per bias point on a workstation

computer even for problems of considerable size.
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(a) (b) (c)

(d) (e) (f)

Fig. 21 Contours of densities corresponding to quantized
hole states in a silicon quantum dot calculated with the six-
band k·p model; densities of degenerate states are summed
in this figure; (a) states 0 through 5, (b) states 6 through 11,
(c) states 12 through 15, (d) states 16 through 21, (e) states
22 through 27, (f) states 28 and 29

8.2 Confined States in Quantum Dots

To demonstrate the 3D capabilities of VSP we simulated

a silicon quantum dot embedded in a SiO2/Si3N4 ma-

trix, a structure commonly found in photoluminescence

experiments [64]. The dot has the geometric shape of

a rhombicuboctahedron and measures 5 nm along its

〈100〉 axes. Closed (Dirichlet) boundary conditions were

applied around the dot.

Most of the calculated states are degenerate due to
the symmetric structure geometry. The most common

degeneracy multiplicity is six which corresponds to the

number of bands (three) times spin polarizations (two).

Multiplicities other than six are due to non-parabolicity

effects. Spin-orbit coupling partially lifts the six-fold

degeneracies and breaks them into two- and fourfold.

Figure 21 shows the densities corresponding to each

cluster of degenerate states. The states develop very

unusual forms due to the non-parabolicity of the Hamil-

tonian. The densities are almost unaffected by spin-orbit

coupling; the densities with and without spin-orbit cou-

pling are visually indistinguishable.

8.3 Non-Equilibrium Green’s Functions

A well known example for a multi-physics and multi-

scale simulation is the RTD model of NEMO-1D [24,65].

It is comprised of extended contact regions with semi-

classical carriers, an equilibrium quantum region around

the barriers and a small non-equilibrium region where

transport is calculated through the barriers and the well.

Such a model can be easily set up in VSP.
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Fig. 22 I/V characteristics of a simple RTD; Comparison of
VSP result to default example of NEMO5 on nanohub [65,66]
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Fig. 23 Conduction band edge and energetically resolved
current density of the RTD in Fig. 22 biased at 0.25 V

We calculated the I/V of a GaAs/Al0.3Ga0.7As RTD

with 5 nm barrier and well width (Fig. 22). This is the de-

fault example template provided by [66] and the results

of NEMO5 are given for comparison. The conduction

band edge and energetically resolved current density

in Fig. 23 show the first current-carrying quasi-bound

state. The whole I/V calculation takes less than 30 s on

a single CPU core.

A very interesting application of VSPs NEGF model

is the investigation of metal-oxide-semiconductor (MOS)

devices. To model the broadening of the quasi-bound

states we use an optical potential [65]. Multiple runs

of the NEGF base model are carried out to consider

all the material’s valleys and sum up the contributions.

The model gives insight to macroscopic and microscopic

properties of high-k metal gate stacks in a consistent

manner [38]. The local density of occupied states of an

exemplary nMOS device with tox = 1.2 nm and bulk

doping NA = 3× 1017 cm−3 at a gate voltage of 1 V is
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Fig. 24 Self-consistent calculation of the local density of
occupied states in an nMOS device with tox = 1.2 nm at a
gate voltage of 1 V with the 1D NEGF model
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Fig. 25 Capacitance-voltage characteristics of an nMOS de-
vice calculated with different carrier models available in VSP

shown in Fig. 24. The calculated C/V (Fig. 25) of this

device for all the carrier models presented in Section 5.3

show excellent agreement for all quantum-mechanical

models considering their different physical aspects.

The ballistic 2D NEGF model has multi-terminal

support and relies on the recursive Green’s function

algorithm by Svizhenko [28]. It is well suited for inves-

tigation of nano MOS devices. An nMOS with 25 nm

effective gate length and tox = 1.5 nm was used as exam-

ple device. The self-consistently calculated conduction

band edge and electron concentration at VG = 1 V and

VSD = 0.3 V are shown in Fig. 26. Calculated quanti-

ties were visualized with the graphical user interface

GTS Vision [58]. The I/V characteristics of the device

are depicted in Fig. 27. Two-terminal devices such as a

quantized resonant tunneling diode can be modeled the

same way. Figure 28 shows the local density of states
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Fig. 27 I/V characteristics of the nMOS in Fig. 26

Fig. 28 Self-consistently calculated density of states of a
quantized resonant tunneling diode calculated with 2D NEGF

of such a device with a clearly visible resonant state in

the well.

The 1D/2D NEGF calculations are shared-memory

parallelized with respect to the energy grid. This results

in near linear scaling and is especially useful in 2D.

8.4 Quantum Cascade Detector

One of the essential technologies in modern photonic

systems are semiconductor heterostructures. The first

use of a QCL as a photo-detector has been reported by

[67] and was since then refined for infrared and terahertz

wavelengths [68] leading to the current quantum cascade

detector (QCD). The operating principle of a QCD is as

following. A ground level electron is excited to a higher

state by absorbing a photon. Due to the asymmetric

design, the electron relaxes in a preferred direction into

the quantum well of the next cascade. This concept

reduces dark current and noise.
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Fig. 26 Self-consistent conduction band edge (left) and electron concentration (right) of a 2D nMOS with 25 nm gate length
calculated with NEGF at VG = 1 V and VSD = 0.3 V; Visualization is done with the graphical user interface from GTS [58]

We use the semi-classical Pauli master equation as

outlined in Section 5.4 to model electron current trans-

port through the multi-layer semiconductor heterostruc-

ture. The incorporated model for stimulated emission

and absorption of photons is essential for the description

of a QCD. As an example device we use a mid-infrared

QCD operating at a wavelength of 4.7 µm. The design

of the InGaAs/InAlAs QCD is taken from [68] (device

N1022) and all simulation results are compared to the

measurements therein. We calculate the responsivity,

which relates the incoming photon flux to the detected

current with the four-band k·p model including in-plane

nonparabolicity [69]. It shows excellent agreement with

measurement (cf. Fig. 29).

For QCL and QCD devices we use a Poisson solver

with periodic boundary conditions, thereby only consid-

ering a single device period for the calculation of the

potential. We provide self-consistency of the potential

with an equilibrium occupation of the subbands as an

initial guess for the MC solver. Full self-consistency of

the subband populations from the PME, the Schrödinger

solver and the electrostatic potential is available too. As

expected for QCDs the fully self-consistent calculation

only has a small impact on the results (Fig. 30).

9 Availability

VSP is developed collaboratively by the Institute for

Microelectronics, TU Wien and Global TCAD Solutions

LLC (GTS). VSP can be freely tested and evaluated

online through the MyGTS web portal [70]. Commer-

cial and academic licenses of VSP are distributed by

GTS [71]. The executable is available for Linux and

Windows platforms. An extensive graphical user inter-

face for 2D/3D device generation, simulation setup, and

visualization is provided through the GTS framework.
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10 Conclusion

In this paper we present VSP (Vienna Schrödinger-

Poisson), a simulation framework for quantum-electronic

and nano-physical applications. We developed a flexible

tool with a high level of automation. Individual models

can be easily combined to create a specific work flow.

Data can be transfered and shared between the models.

VSP provides access to efficient numerical methods and

libraries. The development effort was guided by the

objective of a consistent treatment of nanoelectronic

TCAD problems. An abstract modeling language enables

the simultaneous definition of problems in 1D, 2D, and

3D. User customization through a software development

kit allows a simple integration of new models with full

access to the VSP core functionality, abstract modeling,

solvers, and input/output functions.

We demonstrate the self-consistent calculation of

carriers and states in MOS and RTD devices using
different physical models. Transport calculations were

carried out for these devices using NEGF. Semi-classical

transport modeling with the Pauli master equation is

shown for quantum cascade detectors.

The outstanding features of VSP include the user-

defined model structure with fully configurable control

and data flow and the problem separation in data, topol-

ogy and modeling levels. It is accessible through a soft-

ware development kit shipped with VSP. We provide

in-source documentation based on literate modeling. The

tool makes use of unstructured meshes and operates with

arbitrary geometries to provide consistent models in all

dimensions. VSP is able to treat arbitrary crystal ori-

entations and provide automated detection of confined

and free carriers in closed-boundary problems.

VSP is aimed at researchers, engineers and students

in the field of nanoelectronics. With VSP, we wish to

provide a simulation framework that is extensible and

adjustable to a wide range of engineering problems.
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