
Solid-State Electronics 90 (2013) 34–38
Contents lists available at SciVerse ScienceDirect

Solid-State Electronics

journal homepage: www.elsevier .com/locate /sse
Subband splitting and surface roughness induced spin relaxation
in (001) silicon SOI MOSFETs
0038-1101/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.sse.2013.02.055

⇑ Corresponding author at: Institute for Microelectronics, TU Wien, Gußhaus-
straße 27–29, A–1040 Wien, Austria.

E-mail address: osintsev@iue.tuwien.ac.at (D. Osintsev).
Dmitri Osintsev a,b,⇑, Oskar Baumgartner a, Zlatan Stanojevic a, Viktor Sverdlov a, Siegfried Selberherr a

a Institute for Microelectronics, TU Wien, Gußhausstraße 27–29, A–1040 Wien, Austria
b Volgograd State Technical University, Lenin Avenue 28, 400131 Volgograd, Russia
a r t i c l e i n f o

Article history:
Available online 26 March 2013

Keywords:
Thin silicon films
Spin relaxation
k � p model
Shear strain
a b s t r a c t

Properties of semiconductors provided by the electron spin are of broad interest because of their poten-
tial for future spin-driven microelectronic devices. Silicon is the main element of modern charge-based
electronics, thus, understanding the details of the spin propagation in silicon structures is key for novel
spin-based device application. We use a generalized perturbative k � p approach to take the spin degree of
freedom into consideration. We investigate (001) oriented SOI films for various parameters including the
film thickness, the band offset, and strain. We demonstrate that shear strain dramatically influences the
intersubband spin relaxation matrix elements opening a new opportunity to boost spin lifetime in SOI
MOSFETs.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Since modern microelectronic devices are nearing their funda-
mental scaling limits, further boost of their performance could be
eventually provided by changing their operation principles. Prom-
ising results can be achieved by utilizing the spin properties of
electrons. Indeed, the spin of an electron provides two different
states (spin-up and spin-down), which could be easily incorpo-
rated into the current binary logic. In addition, silicon, being the
main material currently used in semiconductor manufacturing,
possesses several properties attractive for spin-driven applica-
tions: it is composed of nuclei with predominantly zero spin and
it is characterized by weak spin–orbit interaction, which should re-
sult in a longer spin lifetime as compared to other semiconductors.
Spin transfer in silicon over long distances has already been dem-
onstrated experimentally [1]. Spin propagation at such distances
combined with a possibility of injecting spin at room [2] or even
elevated [3] temperature makes the fabrication of spin-based
switching devices quite plausible in the near future. However,
the relatively large spin relaxation experimentally observed in
electrically-gated lateral-channel silicon structures [4,5] may be-
come an obstacle in realizing spin driven devices [6], and a deeper
understanding of fundamental spin relaxation mechanisms in sili-
con is urgently needed [7].

In this work we investigate the influence of the intrinsic spin–
orbit interaction on the subband structure, subband wave func-
tions, and spin relaxation matrix elements due to surface rough-
ness scattering in thin silicon films. Following [6], a k � p
approach [8,9] suitable to describe the electron subband structure
in the presence of strain is generalized to include the spin degree of
freedom. In contrast to [6], our effective 4 � 4 Hamiltonian consid-
ers only relevant [001] oriented valleys, with spin included, which
produce the low-energy unprimed subband ladder. Without strain
the unprimed subbands are degenerate. This degeneracy produces
a large mixing between the spin-up and spin-down states, result-
ing in spin hot spots characterized by strong spin relaxation due
to the spin–orbit coupling. These hot spots should be contrasted
with the spin hot spots appearing in the bulk system [6,10]. Their
origin lies in the unprimed subband degeneracy in a confined elec-
tron system and is not related to the degeneracy of the two oppo-
site valleys appearing along certain directions from the X-point at
the edge of the Brillouin zone. Shear strain is able to efficiently lift
the degeneracy between the unprimed subbands [9]. The energy
splitting between the otherwise equivalent subbands removes
the origin of the spin hot spots in a confined silicon system, which
should substantially improve the spin lifetime in gated silicon
systems.
2. Method

We investigate numerically the subband splitting, the subband
wave functions, and the matrix elements responsible for surface
roughness induced scattering and spin relaxation in silicon transis-
tors as a function of shear strain, the silicon film thickness, and the
height of the potential barrier at the silicon interface. The film is
modeled by a square well potential. The electric field due to the ap-
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Fig. 1. Empirical pseudopotential calculations of the spin–orbit interaction strength
by evaluating the gap opening at the X-point between X1 and X2 for finite kx.
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Fig. 2. Splitting between the lowest electron subbands as a function of the
conduction band offset at the interface for kx = 0.25 nm�1, ky = 0 nm�1, exy = 0.
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plied gate voltage modulates the bottom of the potential. The
dependence of the splitting and the wave functions on the electric
field is also investigated. For [001] oriented valleys in a (001) sil-
icon film the Hamiltonian is written in the vicinity of the X point
along the kz-axis in the Brillouin zone. The basis is conveniently
chosen as ½ðX1; "Þ; ðX1; #Þ; ðX20 ; "Þ; ðX20 ; #Þ�, where " and ; indicate
the spin projection at the quantization z-axis.

The Hamiltonian is then written as

H ¼
H1 H3

Hy3 H2

� �
ð1Þ

where H1, H2, and H3 are

Hj ¼ �h2k2
z

2ml
� ð�1Þj�h2k0kz

ml
þ �h2 k2

xþk2
yð Þ

2mt
þ UðzÞ

h i
I; ð2Þ

H3 ¼
Dexy � �h2kxky

M ðky � kx iÞDso

ð�ky � kx iÞDso Dexy � �h2kxky

M

2
4

3
5: ð3Þ

Here j = 1,2, I is the identity 2 � 2 matrix, U(z) is the confinement
potential. In the Hamiltonian (1) mt = 0.19 m0 and ml = 0.91m0 are
the transversal and the longitudinal effective masses m0 is the elec-
tron rest mass, k0 = 0.15 � 2p/a0 is the position of the valley mini-
mum relative to the X point in unstrained silicon, exy denotes the
shear strain component, M�1 � m�1

t �m�1
0 , and D = 14 eV is the

shear strain deformation potential.
The spin–orbit term sy � Dso(kxrx � kyry) with

Dso ¼
�h2

2m3
0c2

X
n

hX1jpjjnihnj½5V � p�jjX20 i
En � EX

�����
�����; ð4Þ

couples the states with the opposite spin projections from the oppo-
site valleys. In the perturbation theory expression for Dso En is the
energy of the nth band at the X point, EX is the energy of the two
lowest conduction bands X1 and X02 degenerate at the X point, p is
the momentum operator, V is the bulk crystal potential, rx, ry,
and rz are the spin Pauli matrices, sy is the y-Pauli matrix in the val-
ley degree of freedom and c is the speed of light.

For zero value of the confinement potential the energy disper-
sion of the lowest conduction bands is given by

EðkÞ ¼ �h2k2
z

2ml
þ

�h2 k2
x þ k2

y

� �
2mt

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2kzk0

ml

 !2
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�h2kxky

M

 !2

þ D2
so k2

x þ k2
y

� �vuut : ð5Þ

This expression generalizes the corresponding dispersion rela-
tion [6] by including shear strain.

In order to evaluate the strength Dso of the effective spin–orbit
interaction we use (5). Close to the X point in the unstrained sam-
ple the gap between the X1 and X 02 conduction bands can be opened
by Dso alone if one evaluates the dispersion for kx – 0 but ky = -
kz = 0. The band splitting along the x-axis is then equal to the 2jDso-

kxj. We used the empirical pseudopotential method (EPM) [9,11] to
obtain the splitting numerically. The result is shown in Fig. 1. The
dependence on kx is indeed linear at small values of kx. By fitting
this dependence with a linear function (shown in Fig. 1) at small
kx we found the value Dso = 1.27 meV nm which is close to the
one reported in [6].

3. Results and discussion

To find the unprimed subband energies and the eigenfunctions
in (001) SOI films we use the Hamiltonian (1) for a numerical solu-
tion. We replace kz with � i@z and we approximate the thin film by
a square well with a finite potential barrier corresponding to
the film surrounded by a dielectric or another material
(SixGe1�x=Si=SixGe1�x structure, for example) with the same band
parameters. The resulting Schrödinger differential equation is dis-
cretized along the z-axis and solved using efficient numerical algo-
rithms available through the Vienna Schrödinger–Poisson
framework (VSP) [12]. We investigate the two lowest unprimed
subbands which are completely equivalent within the effective
mass approximation dispersion used to describe each of the
[001] valley in the bulk. Because of coupling between the valleys
induced by strain and spin–orbit interaction the dispersion (5) be-
comes non-parabolic. If now a confinement is taken into account,
this non-parabolicity results in a pronounced energy splitting be-
tween the two lowest otherwise degenerate unprimed subbands.

Fig. 2 displays the dependence of the subband splitting on the
value of the potential barrier at the silicon interfaces, for shear
strain exy = 0. For low values of the conduction band offset the sub-
band splitting increases for the considered thicknesses, while we
see a saturation at values of the conduction band offset larger than
2 eV, for all thicknesses. The value of the subband splitting at sat-
uration depends strongly on the quantum well thickness. For the
10 nm thick structure the saturation value of the subband splitting
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Fig. 4. Splitting of the lowest unprimed electron subbands as a function of the
unstrained film thickness for different values of the effective electric field for
kx = 0.1 nm�1, ky = 0, DEc = 10 eV.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
field

 [MV/cm] 

10

20

30

40

50

60

70

80

Su
bb

an
d 

sp
lit

tin
g 

[m
eV

] 

ΔE
c
 = 1eV

ΔE
c
 = 2eV

ΔE
c
 = 10eV

Fig. 5. Subband splitting between the lowest unprimed electron subbands as a
function of the electric field, for different conduction band offset values for
kx = 0.25 nm�1, ky = 0, exy = 0.5%, t = 4 nm.
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is only 2.3 leV, while for the quantum well of 4 nm width the
splitting saturates at 0.04 meV. For thinner films the saturation va-
lue may reach several hundred leVs.

The subband splitting dependence on the silicon film thickness
is analyzed in Fig. 3. Theoretical values for the subband splitting in
an infinite potential square well

DE ¼ 2y2B

k0t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� y2 � g2Þð1� y2Þ

p � sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2 � g2

1� y2

s
k0t

 !�����
�����; ð6Þ

are also shown in Fig. 3 demonstrating good agreement
between (6) and k � p simulation results. Here B ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
so k2

x þ k2
y

� �
þ Dexy � �h2kxky

M

� �2
r

; y ¼ p
k0t ;g ¼

mlB
k2

0�h2, and t is the film

thickness. To obtain (6) we have generalized the theory [13] for
the valley splitting by including the spin–orbit coupling. It is inter-
esting to note, that because the spin–orbit interaction provides cou-
pling between the states with the opposite spin projections but
from the opposite valleys, the spin–orbit coupling term in (6) also
leads to a subband splitting (lower curve in Fig. 3) in presence of
a confining potential. However, because of the two possible ways
of coupling the state with spin up (down) from one valley to the
spin down (up) state in the opposite valley are allowed, the dou-
ble-spin degeneracy of the eigenstates is not lifted. This spin degen-
eracy is preserved in a general case for arbitrary kx, ky, when shear
strain exy is introduced.

The subband splitting oscillates with the film thickness in-
creased (Fig. 3). The value of the subband splitting is drastically en-
hanced by introducing shear strain. We also note that the period of

oscillations depends on strain through j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y2�g2

1�y2

q
k0.

The subband splitting as a function of the quantum well width
for different values of the effective electric field applied perpendic-
ular to its interface is demonstrated in Fig. 4. Without electric field
the subband splitting oscillates as shown in Fig. 4. With the electric
field the oscillations are not observed in thicker films. According to
Friesen et al. [14] the condition for the independence of the sub-

band splitting from the quantum well width is t3 > 2p2�h2

mleEfield
. For thin-

ner structures, the quantization is provided by the second interface
barrier of the quantum well, and the shape of the oscillations be-
comes similar to that in the absence of an electric field. For an elec-
tric field of 0.1 MV/cm the quantum well width should be larger
than 5.5 nm in order to observe the independence of the subband
splitting on the quantum well width. This value is in a good agree-
ment with the simulation results shown in Fig. 4.
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Fig. 3. Splitting of the lowest electron subbands as a function of the silicon film
thickness for several values of shear strain and ky for kx = 0.25 nm�1, DEc = 10 eV.
Fig. 5 shows the subband splitting as a function of the electric
field in a thick film (when the splitting does not depend on the film
thickness). The shape of the well is triangular and the quantization
is provided not by the conduction band offset at the second inter-
face but by the linear potential due to electric field. This is the rea-
son, why for small values of the electric field, no significant
difference in the splitting is observed. For large electric field, how-
ever, the subband energies are pushed up closer to the edge of the
potential well and become comparable to the conduction band off-
set barrier. This results in a lower subband splitting for smaller val-
ues of the effective field. This result is also in agreement with that
shown in Fig. 2 indicating that the subband splitting is always
smaller for smaller values of the potential barrier at the interface.

Fig. 6 shows the dependence of the subband splitting on the va-
lue of shear strain in a 4 nm thick film. Without electric field the-
subband splitting passes through a zero around the strain value 1%
and is relatively small, however, for larger shear strain values it in-
creases. With the electric field applied the subband splitting keeps
increasing for the whole range of the shear strain values consid-
ered. The value of the subband splitting is considerably larger as
compared to the case without field. This is due to the fact that
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the electric field pushes the carriers against the interface, making
them effectively more confined, which leads to the increase in
splitting in energy between the lowest unprimed subbands.

The surface roughness scattering matrix elements are taken to
be proportional to the product of the subband function derivatives
at the interface [15]. A (001) silicon film of 4 nm thickness is con-
sidered. The surface roughness at the two interfaces is assumed to
be equal and statistically independent. It is described by a mean
and a correlation length [15]. Figs. 7 and 8 show the dependences
on strain of the matrix elements for intrasubband and intersub-
band scattering normalized to the value of the intrasubband scat-
tering at zero strain, for two values of the effective electric field.
The intrasubband scattering matrix element within the lowest un-
primed subband only marginally depends on shear strain. Indeed,
it shows a few percent increase which becomes smaller at high
shear strain, where it starts approaching unity again. This is ex-
pected in the limit of high stress. In this limit both valleys merge
at the common minimum in the X point and the band dispersion
is well described by a parabolic approximation [9]. Thus the lowest
subband energy and the intrasubband scattering matrix element
must approach their respective values in unstrained film where
the dispersion is also parabolic.
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The intrasubband scattering matrix element in the second sub-
band displays a slight decrease with strain increased, which satu-
rates at high strain. In the high strain limit the second subband,
which was equivalent to the first unprimed subbands in the un-
strained film, transforms into the second subband of the triangular
well potential. Thus the carriers are located effectively further
away from the interface. This reduces the value of the intrasub-
band scattering matrix elements as compared to the unstrained
case, in agreement with Fig. 7. The dependence on the electric field
is explained by a slight reduction of the derivative of the wave
function at the interface due to its stronger penetration under
the potential barrier for higher effective fields.

As shown in Fig. 8, the intersubband matrix scattering element
is zero in an unstrained film, in agreement with the general rule
that elastic scattering does not produce transitions between the
equivalent subbands originating from the opposite equivalent val-
leys [16]. Shear strain lifts the subband degeneracy and thus re-
sults in a sensible intersubband scattering. Because of the
subband splitting, the intersubband scattering depends strongly
on the kinetic energy within the lowest subband: if the kinetic
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energy becomes lower than the subband splitting, the scattering
vanishes. The intersubband splitting is larger at stronger effective
electric fields, therefore, the intersubband scattering is suppressed
already at weaker strain provided the kinetic energy within the
subband is the same, in agreement with Fig. 8.

We now discuss the matrix elements mixing up- and down-spin
states and their responsibility for the spin relaxation. The mixing
depends on the strength of the spin–orbit interaction as well as
on the wave vectors kx, ky and thus the kinetic energy within the
subband. The dependence of the intersubband spin relaxation ma-
trix element mixing the up- and down-spin states from the two
different subbands is shown in (Fig. 9) in the case, when the two
wave vectors before and after collision are anti-parallel and aligned
along the x axis. The spin relaxation value decreases rapidly with
increasing strain due to the intersubband splitting increase with
strain. As soon as the intersubband splitting becomes larger than

the spin–orbit interaction strength characterized by Dso

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
,

the mixing of up- and down-spin states caused by this spin–orbit
interaction is reduced.

The splitting between the subbands depends on Dexy � kxky/M
and their degeneracy is lifted by the kinetic-like term kxky/M even
without shear strain. This results in a strong dependence of the
surface roughness induced spin relaxation matrix elements on
the angle between the incident and outgoing wave vectors.
Fig. 10 shows the dependences of the relaxation matrix elements
on this angle for different values of shear strain and energy of
the wave. However, as follows from Fig. 10, shear strain leads to
the reduction of the spin relaxation matrix element in a good
agreement with Fig. 9.

4. Conclusion

We have investigated the lowest unprimed electron subband
splitting in a SOI film in a wide range of parameters, including
the film thickness, the shear strain, the potential barrier at the
interface, and the effective electric field value. We have included
the spin–orbit interaction effects into the effective low-energy
k � p Hamiltonian to investigate the surface roughness induced
spin relaxation. We have demonstrated that, due to the intersub-
band splitting increase, the matrix elements for the inter subband
spin relaxation decrease rapidly with shear strain. Thus, shear
strain used to enhance electron mobility can also be used to boost
spin lifetime.

This work is supported by the European Research Council
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