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The electron spin properties provided by semiconductors are of immense interest because of their
potential for future spin-driven microelectronic devices. Modern charge-based electronics is dominated
by silicon, and understanding the details of spin propagation in silicon structures is key for novel
spin-based device applications. We performed simulations on electron spin transport in an n-doped
silicon bar with spin-dependent conductivity. Special attention is paid to the investigation of a possible
spin injection enhancement through an interface space-charge layer. We found substantial spin transport
differences between the spin injection behavior through an accumulation and a depletion layer. However,
in both cases the spin current density can not be significantly higher than the spin current density at
charge neutrality. Thus, the maximum spin current in the bulk is determined by its value at the charge
neutrality condition - provided the spin polarization at the interface as well as the charge current are
fixed.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The tremendous increase of computational power of integrated
circuits is supported by the continuing miniaturization of semicon-
ductor devices’ feature size. However, with scaling approaching its
fundamental limits the semiconductor industry is facing the neces-
sity for new engineering solutions and innovative techniques to
improve MOSFET performance. Spin-based electronics (spintron-
ics) is a promising successor technology which facilitates the use
of spin as a degree of freedom to reduce the device power con-
sumption [1,2]. Moreover, the spintronic devices are expected to
be faster and more compact.

Silicon, the main material of microelectronics, possesses several
properties attractive for spintronics [3]: it is composed of nuclei
with predominantly zero spin and it is characterized by weak
spin–orbit interaction, which should result in a low relaxation rate
accompanied by a longer spin lifetime as compared to other semi-
conductors. Since silicon technology is well established, it will help
bringing silicon spin-driven devices to the market. Spin transfer in
silicon over long distances has been demonstrated experimentally
[4], and a large number of devices utilizing spin has already been
proposed [5].
Regardless of the indisputable advantage in realizing spin injec-
tion, detection, and the spin transport in silicon at ambient tem-
perature, several difficulties not explained within the theories are
pending. One of them is an unrealistically high amplitude of the
voltage signal corresponding to the spin accumulation in silicon
obtained within the three-terminal spin injection/detection
scheme [3]. Recently, an explanation based on the assumption that
the resonant tunneling magnetoresistance effect and not the spin
accumulation causes the electrically dependent spin signal in local
three-terminal detection experiments, was proposed [6,7]. It
remains to be seen, if the theory is able to explain all the data
including the spin injection experiments through a single graphene
layer, where the amplitude of the signal is consistent with the spin
accumulation in silicon [8]. Alternatively, an evidence that a proper
account of space-charge effects at the interface may boost the spin
injection signal by an order of magnitude was presented [9].

In this paper we investigate the influence of the space-charge
effects to boost spin injection in semiconductors. Considering
charge accumulation and depletion at the spin injection boundary,
we observe major differences in the spin current behavior. The
existence of the upper threshold spin current under high spin accu-
mulation [10] is confirmed. We demonstrate that the threshold
spin current in the bulk is determined by the spin current value
injected at the charge neutrality condition under the assumption
that the spin polarization and the charge current are fixed. We
show that in accumulation the ratio of the spin density s to the
charge concentration n, or the spin polarization P ¼ s=n, remains
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practically unchanged due to the narrow accumulation layer.
Therefore, the spin and the spin current densities decay fast
through the accumulation layer determined by the decrease of
the charge concentration from its high value at the interface to
the equilibrium value determined by the bulk donor concentration.
The spin current in the bulk is determined by the spin polarization
and the charge current density at the end of the accumulation
layer, where the charge neutrality condition is fulfilled. In deple-
tion, however, the situation can be more complex. In the case when
the spin diffusion is against the electric field, the spin current
remains constant through the depletion region. But, due to the
large influx of the minority spins into the depletion layer the spin
polarization decreases drastically which causes a significant reduc-
tion of the spin current in the bulk as compared to that at the
charge neutrality condition. Thus, in both cases of spin transport
through the depletion and accumulation region the spin current
density cannot be significantly higher than the spin current density
at the charge neutrality condition, the value of which is deter-
mined by the spin polarization at the interface and the value of
the electric field.

We begin with a short review of the spin and charge drift–dif-
fusion equations in the next section. In contrast to the highly non-
linear set of equations describing the transport in the language of
chemical potentials [10] suitable for metals, we use the employed
equations to describe the transport properties in semiconductors
[11,12]. Due to its importance, the solution at the charge neutrality
condition is presented next. The system of equations for the elec-
trostatic potential, charge density, spin density, and currents are
solved numerically to investigate the spin injection in depletion
and accumulation. The boundary conditions used to introduce
the non-equilibrium charge density at the interface and thus a
nonzero total charge in the system distinguish our approach from
the one employed in [12]. The analytical solution at the charge-
neutrality condition is used in order to validate the numerical solu-
tion. Finally, a discussion of the numerical results is presented.

2. Model

The spin drift–diffusion model is successfully used to describe
the classical transport of charge carriers and their spins in a semi-
conductor. The expression for up (down)-spin current, J"ð#Þ, can be
written as [11]:

J"ð#Þ ¼ en"ð#ÞlEþ eDrn"ð#Þ; ð1Þ

where D is the electron diffusion coefficient, l is the electron mobil-
ity, E denotes the electric field, and e is the absolute charge of an
electron. The up (down)-spin concentration is expressed as n"ðn#Þ.
The electron concentration is thus represented as n ¼ n" þ n# and
the spin density s ¼ n" � n#. The electron (spin) current is defined
as [11] JnðJsÞ ¼ J" � J#.

The steady-state continuity equation for the up (down)-spin
electrons including the spin scattering reveals [11]:

r � J"ð#Þ ¼ �e
n" � n#

s

� �
; ð2Þ

where ss ¼ s
2 is the spin relaxation time. The Poisson equation,

defining the electric field, reads:

r � E ¼ �e
n" þ n# � ND

�Si
; ð3Þ

where �Si is the electric permittivity of silicon and ND is the doping
concentration. We denote Vth as the thermal voltage: Vth ¼ KBT

q ,
where KB is the Boltzmann constant, T the temperature
(T ¼ 300 K), q ¼ e. The intrinsic spin diffusion length is defined as
L ¼

ffiffiffiffiffiffiffiffi
Dss
p

and the diffusion coefficient D is related to the mobility
by the Einstein relation D ¼ lVth. The charge current and the spin
currents are:

Jn ¼ enlEþ eD
dn
dx
; ð4Þ

Js ¼ eslEþ eD
ds
dx
: ð5Þ

The spin density affirms:

d2s

dx2 þ
1

Vth

� �
dðsEÞ

dx
� s

L2 ¼ 0; ð6Þ

where both s and E are position dependent. The spin drift–diffusion
equation must be solved self-consistently with the Poisson and
charge transport equation.

2.1. Spin injection at charge neutrality

Eq. (6) as well as the charge drift–diffusion equation and the
Poisson equation must be supplemented with appropriate bound-
ary conditions. We consider charge and spin transport through a
bar of length W. We assume that the spin density is zero at the
right interface while the charge concentration is equal to ND:

sðx ¼WÞ ¼ nW
" � nW

# ¼ 0;

nðx ¼WÞ ¼ nW
" þ nW

# ¼ ND:

Here, nw
"ð#Þ is the up (down)-spin concentration at the right contact.

At the left boundary the spin value is kept constant:

sðx ¼ 0Þ ¼ s0 ¼ n0
" � n0

# : ð7Þ

Here, n0
"ð#Þ is the up (down)-spin concentration at the spin injection

point. The electron concentration n0 at the interface is defined by:

nðx ¼ 0Þ ¼ n0
" þ n0

# ¼ n0: ð8Þ

These boundary conditions are different from the von Neumann
boundary conditions used in [10] and allow to describe the spin
current not only for an accumulation layer but also for a depletion
layer. The set of the boundary conditions must be supplemented by
defining the electrostatic potential difference Uc between the left
and right boundary of the semiconductor bar, which defines the
electrostatic field obtained by the Poisson equation.

By this, the same spin density value s0 at the interface can be
provided for different n0. Therefore, the total charge at the inter-
face n0 offers an additional degree of freedom and allows to study
the influence of the space-charge layer at the interface on the effi-
ciency of the spin injection and transport in a semiconductor. If we
affix n0 ¼ ND, the charge neutrality at the interface (and as a con-
sequence throughout the whole sample) is preserved. In this case,
the electric field E will be constant throughout the bar and the
expression for the electron charge current (4) is Jc ¼ eNDlE, where
E is defined by the applied voltage and W as E ¼ Uc=W . The general
solution for the spin density is [11,10]:

s ¼ A1 exp
�x
Ld

� �
þ A2 exp

x
Lu

� �
: ð9Þ

The constants A1 and A2 are defined by the boundary conditions.
Here, the electric field dependent up (down)-spin diffusion length
is given by:

LuðLdÞ ¼
1

� jeEj
2 KBT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE

2KBT

� �2
þ 1

L2

r : ð10Þ

Therefore, LuðLdÞ monotonically decreases (increases) with the
applied electric field and its direction.



Fig. 2. Comparison of the spin current density between the numerically simulated
results and the analytical expression (12) under charge neutrality, corresponding to
Fig. 1 (Lines! Theory, Dots ! Simulation).

Fig. 3. Spin current density depending upon the boundary spin polarization (P0)
and under charge neutrality condition. The charge current is kept zero.
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For fixing the spin concentration s0 at the left boundary, one
obtains:

A1ð2Þ ¼ �s0
exp �W

LuðdÞ

� �
exp W

Lu

� �
� exp �W

Ld

� � : ð11Þ

The corresponding expression for the spin current reads as:

Js ¼ qlE 1þ Vth

ELu

� �
A2 exp

x
Lu

� �
þ 1� Vth

ELd

� �
A1 exp

�x
Ld

� �� �
: ð12Þ

We used the analytical results to check our simulation frame-
work, which was later used to study the spin injection through a
space-charge layer. Under the charge neutrality condition, a good
agreement between the numerically simulated results and the ana-
lytical expressions are obtained for the spin density (Fig. 1) for sev-
eral values of the applied voltage Uc . The presence of the electric
field modifies LuðLdÞ (cf. (10)) and hence the spin density. A com-
parison of the simulated spin current density to (12) is shown in
Fig. 2.

In Fig. 3, we show the variation of the spin current for different
boundary spin polarizations under the charge neutrality condition
(CN). No voltage is applied, hence, the charge current is absent. The
spin current through the bar monotonically increases with the spin
polarization P0, reaching its maximum when P0 is maximum (i.e.
P0 ¼ 1). This is in agreement with the results from [10]. One has
to note that although the spin polarization is 100% at P0 ¼ 1, we
do not observe any enhancement of the spin diffusion length as
predicted in [10]. Even at P0 ¼ 1, and at the charge neutrality con-
dition where the spin is completely decoupled from charge, the
spin diffusion length is only determined by the intrinsic spin diffu-
sion length L and the value and the direction of the electric field E
as it follows from (10).

In the following we study spin injection in the presence of
space-charge effects, when analytical results are not available.

2.2. Spin injection through the space-charge layer

In a semiconductor the up (down)-spin chemical potential is
related to its concentration via [11]:

l"ð#Þ ¼ Vth ln
n"ð#Þ
neql
"ð#Þ

: ð13Þ

neql
"ð#Þ represents up (down)-spin concentration at equilibrium (0:5ND

for silicon).
Fig. 1. Comparison of the spin density between the numerically simulated results
and the analytical expression (9) under charge neutrality. The spin polarization
P ¼ 0:5 is fixed at the left boundary (Lines! Theory, Dots ! Simulation).
To study the effects of the space-charge layer on spin transport
we consider the maximal spin polarization P0 ¼ s0=n0 ¼ 1 at the
injection boundary. In this case the spin and charge density at
the interface can be fixed through the single parameter
lChem ¼ Vth lnðs0=NDÞ. The spin polarization at the left boundary is
kept maximal through the following boundary condition for up
(down) concentrations:

n0
"

n0
#

" #
¼ ND

exp lChem
Vth

� �
0

" #
: ð14Þ

Here, lChem defines the charge chemical potential. We can inject
(release) up-spin and hence the charge at the same time. We there-
fore can describe:

� spin injection at charge neutrality (lChem ¼ 0),
� spin injection at charge accumulation (lChem > 0),
� spin injection at charge depletion (lChem < 0).

Simulations were performed by the finite volume method
(FVM) [13] for an n-semiconductor bar with an intrinsic spin diffu-
sion length of L = 1 lm. A bar length of several microns, a doping
concentration of ND ¼ 1016 cm�3, and an electron mobility of
1400 cm2 V�1 s�1 were assumed, and a voltage Uc is applied.
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3. Results and discussion

Via (14) a considerable spin and charge accumulation (deple-
tion) at the interface can be introduced and hence a spin current
can diffuse out of this region. The spin and the charge current
through the bar can be tuned by varying the chemical potential
and the applied voltage. Charge injection or charge release always
cause a non-zero charge current in the device, even at the absence
of an external electric field. This charge current can be compen-
sated by applying an external voltage, given by the equation:

Uc ¼ �Vth ln
n0
" þ n0

#

ND

 !
: ð15Þ
Fig. 5. Variation of the spin current density under boundary condition (14),
depicting the presence of an upper saturation at charge accumulation. Charge
current is fixed to 11:9MA=m2.

Fig. 6. Spin current density for up to 5 times the Debye length kD from the left
boundary under charge neutrality (CN) and charge accumulation. The charge
current is zero. The left boundary for ð1Þ is set with n0 ¼ 1000ND .
3.1. Accumulation: spin current saturation

First, we investigate the carrier distribution and current varia-
tion along the bar considering charge accumulation and a fixed
charge current. The charge current density in the bar has been
set to 11:9 MA=m2. The dependence of the charge current density
on the chemical potential (lChem) at varied electric field is depicted
in Fig. 4. The voltage applied has to be adjusted in order to keep the
current density constant. Strong nonlinear effects due to the con-
ductivity variation in the space-charge layer close to the left
boundary cause deviations of the compensating voltage from
(15), when the bar moves from accumulation to deep depletion.
An abundance of spin carriers during the accumulation enhances
the spin current close to the interface, while a lack of spin carriers
in depletion causes a very strong diminution of the spin current.
Fig. 5 reveals that under charge accumulation, the spin current
shows an upper threshold [10]. The amount of the spin current
which leaks from the accumulation region almost does not change
in high accumulation, regardless of the high value of spin density
and spin current at the interface. This means that an effort to boost
the spin current by increasing the spin concentration at the inter-
face to inject more spin polarized electrons does not result in a
substantial spin current increase [10].

In order to further investigate the spin current enhancement (at
the boundaries or in the bulk) due to a charge accumulation, we
show the variation of the spin current for different boundary spin
polarizations. Fig. 6 reveals that for P0 ¼ 1 the spin current close to
the spin injection interface is significantly higher at charge accu-
mulation compared to that at CN. However, at a distance of about
kD from the interface, the spin current becomes similar to that at
Fig. 4. The variation of the charge current density (Jc) as a function of the chemical
potential defined by (14) and the external voltage (Uc). One extra line also indicates
a constant Jc . The device length is 4 lm.
the interface under CN and the same spin polarization. If P0 < 1,
our results indicate that it is not possible to obtain a spin current
in the bulk as high as for P0 ¼ 1, even under higher charge accumu-
lation at the interface, and the current is close to that under the
charge neutrality condition with the same P0.

In order to explain this behavior we plot the spin polarization,
the charge, and the spin density close to the interface (Fig. 7).
The spin polarization remains approximately constant through
the accumulation layer, while the charge decrease from its high
value at the interface to the equilibrium value is determined by
the doping concentration ND. Therefore, the spin density also
decreases substantially. Thus, the spin current in the bulk is deter-
mined by the spin density at the end of the accumulation layer,
where the charge neutrality condition is restored and is thus deter-
mined by the spin current density at the charge neutrality condi-
tion with the same spin polarization.
3.2. Depletion: spin current reduction

At depletion, when the spin diffusion is along the current, we
observe a substantial decrease of the spin and the spin current den-
sities, both at the interface and the bulk (Fig. 8) as compared to



Fig. 7. Electron concentration and spin density distribution over the line under
charge accumulation with the boundary as in (14), (lChem ¼ 100 mV,
Uc ¼ �300 mV). The spin polarization (inset figure) is almost unchanged in the
charge screening region. The charge current is 11:9 MA=m2. The device length is
4 lm.

Fig. 9. Spin up (down) current densities and the total spin current density, when
the device is in depletion. We keep lChem ¼ �100 mV, with Uc ¼ 270 mV for
Jc ¼ �7:9 MA=m2 and Uc ¼ �24:6 mV for Jc ¼ 7:9 MA=m2.

Fig. 10. Spin current density for accumulation, charge neutrality, and depletion
with the boundary condition (14). The charge current is fixed at �7:9 MA=m2.
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their values at the charge neutrality condition. This behavior is cor-
related with a significant increase of the minority spin current in
the depletion layer, cf: Fig. 9. This current is due to two contribu-
tions, drift and diffusion, which add constructively in this case
and cause the spin polarization to decrease substantially over a
very short distance close to the interface. At the same time, the
spin current density remains nearly constant through the depletion
layer. Indeed, in this case the spin diffusion length is increased due
to the high electric field at the depletion region. At the end of the
space-charge layer the spin polarization is thus significantly smal-
ler than the one at the interface explaining the spin current degra-
dation in the bulk as compared to the one at the charge neutrality
condition. We emphasize again that the sharp decrease of the spin
polarization is due to the high spin minority current close to the
interface. Should this current be reduced, for instance by applying
a voltage of opposite polarity and inverting the current, cf Fig. 9,
the spin current in the bulk is enhanced, but still remains below
the level determined by the charge neutrality condition (Fig. 10).

Therefore, our results indicate that the spin injection through
the space-charge layer and proper inclusion of screening does
not result in a spin current enhancement in the bulk in comparison
to the situation under the charge neutrality condition, when the
Fig. 8. Spin and spin current density in depletion
(lChem ¼ �100 mV;Uc ¼ �140:4 mV) and the charge neutrality (CN) condition
(lChem ¼ 0 mV, Uc ¼ �204:1 mV). The fixed charge current is 11:9 MA=m2. The
inset figure shows the spin polarization. The device length is 4 lm.
space-charge layer is absent, provided the spin polarization at
the interface and the charge currents are kept the same. Compared
to [9] we have ignored here the effective magnetic field in the
semiconductor generated by the injected spins. However, due to
its smallness, it is unlikely that this field can drastically alter the
results.

4. Summary and conclusion

Spin injection in a semiconductor structure from a space-charge
layer is considered. At a fixed interface spin polarization, the inter-
face spin current is enhanced through injecting more charge, but is
almost unchanged from that obtained at the charge neutrality con-
dition in the bulk. In depletion the spin current in the bulk is sup-
pressed. Thus, inclusion of the space-charge effects does not result
in a higher spin injection efficiency as compared to the spin injec-
tion at the charge neutrality condition, when the spin polarization
at the interface and the charge current are the same. Hence, at a
fixed polarization, the charge neutrality determines the value of
the maximum spin current possible provided the charge current
is fixed. Accordingly, the largest spin current at charge neutrality
is obtained at maximum spin polarization of the injected carriers,
as intuitively expected.
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