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Abstract.We study the impact of positive bias temperature stress (PBTS) and hot carrier stress (HCS)
on lateral 4H-SiC nMOSFETs. These degradation mechanisms are prominent in silicon (Si) based
devices where both create oxide (OT) as well as interface traps (IT) [1, 2]. For SiC MOSFETs only
limited information regarding these mechanisms is available [3–5]. We transfer the charge pumping
(CP) technique, known from Si MOSFETs, reliably to SiC MOSFETs to learn about the nature of the
stress induced defects.

Details of the experiment:

The measurements were performed on dedicated lateral nMOSFET test structures on 4H-SiC with
an 80nm thick NO-annealed deposited oxide with 100µm channel width and 2µm length. We analyze
interface traps with CP [6] because this technique allows to resolve very low trap densities compared to
capacitance or conductance methods (in Si down to≈ 109cm−2eV−1). We do not observe a geometric
component which recently questioned the applicability of CP for SiC MOSFETs [7]. Further, CP can
be applied to SiC MOSFETs directly, alleviating the problem of having to draw conclusions from
capacitance-voltage measurements obtained on large area MOS capacitors.

CP is performed by repeatedly switching (f = 100kHz) the gate voltage between full inversion
(VG = 25V) and full accumulation (VG = −25V). The rising and falling slopes are 13.33V/µs. The
resulting CP current (ICP) between the source/drain and the bulk is proportional to the mean density
of interface traps (DIT) in an energy range (2.9 ± 0.1)eV symmetrically around mid-gap (at room
temperature). This energy range is calculated [6] by

∆ECP = 2kBT ln
(

∆VG

vthσni(VTH − VFB)
√
trtf

)
, (1)

where kBT is the Boltzmann constant times the temperature and ∆VG/(VTH − VFB) = 50V/6.5V
is the ratio between the pulse amplitude and the difference between the threshold and the flat-band
voltage. The remaining parameters depend on the type of semiconductor and are not unambiguously
determined for 4H-SiC. However, we defined a range of possible values and calculated the propagating
maximum error for the CP energy range and theDIT. The used values are vth = (0.75 . . . 2)×107cm/s
for the thermal drift velocity [8], σ =

√
σnσp = (10−18 . . . 10−16)cm2 for the geometric mean of the

electron and hole capture cross-section of the interface traps, respectively [9] and ni = (0.5 . . . 1) ×
10−8cm−3 for the intrinsic carrier density [10].
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Fig. 1: Bulk IB and drain ID current as a function
of gate voltage VG for several high drain volt-
ages VD. The substrate current peak increases
and shifts towards larger VG values with increas-
ing VD. We observed a destructive breakdown
for VD = 60V.
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Fig. 2: Constant base level CPmeasurement be-
fore and after HCS. A large increase in the num-
ber of interface traps is observed.

Hot carrier degradation:

To test whether hot carriers can be created in the channel of the device under test, we measure the
bulk current as a function of the VG for high drain bias, as depicted in Fig. 1. We indeed observe a
bulk current because the electrons accelerated from the source gain sufficient kinetic energy such that
they cause impact ionization at the interface region near the drain junction [2]. This impact ionization
creates electron-hole pairs which are separated by the space charge region of the reverse biased drain-
bulk pn-junction and may cause interface degradation. The mechanism is most efficient (peak in IB)
for large drain bias and VG ≈ 1/α × VD with α = 2–3, as expected for long channel devices of Si
technology [2]. As depicted in Fig. 2, the CP current increases considerably due to HCS. In terms of
DIT: from (1.9± 0.1)× 1011cm−2eV−1 to (6.0± 0.4)× 1011cm−2eV−1 after 1ks stress. These newly
created IT decrease the drain current of the device as visible in the transfer characteristic, see Fig. 3.
The induced threshold voltage shift depends strongly on the readout bias.

Positive bias temperature stress:

To study the impact of BTS on 4H-SiC nMOSFETs, we subjected a device to VG = 50V (≈ 6MV/cm),
VD = 0V at 200°C chuck temperature to accelerate the degradation. The transfer characteristic of the
device is shifted parallel along the voltage axis towards larger VG values as depicted in Fig. 4. This
indicates the creation of 1.9 × 1011cm−2 OT after 1ks stress when assuming the charges at the SiC-
SiO2 interface. The readout bias independence indicates that the defects created through PBTS are
located within the SiO2 and cannot exchange charge with the carriers in the channel during the transfer
characteristic measurement. I.e. charge exchange with these defects occurs only on larger timescales.
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Fig. 3: Transfer characteristics after HCS in lin-
ear and logarithmic scale. The stress decreases
the drain current of the device largely.
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Fig. 4: Change of the transfer characteristic (up-
per plot) with increasing PBTS time. The VTH
shift occurs parallel along the voltage axis, as
also visible when plotting the horizontal differ-
ence between the characteristics (lower plot).

In accordance, the CP current stays almost constant with increasing stress time [5] if compared to HCS
(c.f. Fig. 5).

Discussion:

In the degradation after HCS and PBTS we distinguish between OT and IT by analyzing the transfer
characteristics and the CP current of dedicated test structures. We find that only the high energetic
carriers during HCS can cause interface degradation measurable with CP. PBTS causes the creation of
gate bias independent negative oxide charges consistent with results for negative BTS [5]. We explain
our results by assuming that IT at the SiC-SiO2 interface are passivated by nitrogen atoms [11] which
are strongly bonded to the interfacial Si or C atoms [12] and are therefore only dissociated by the high
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virgin Fig. 5: Change of the density of interface traps
measured with CP over stress time for HCS and
PBTS. The smaller CP energy range at 200°C
for PBTS compared to 30°C [6] for HCS was
considered by calculating the energy range with
(1). The remaining difference in the virgin ICP is
due to device-to-device variations.
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energetic carriers existent during HCS. In contrast, PBTS causes a degradation because of field and
temperature dependent bond dissociation [1, 13] of precursor defects within the SiO2 layer.
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