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Abstract Low-dimensional semiconductors are considered
promising candidates for thermoelectric applications with
enhanced performance because of a drastic reduction in their
thermal conductivity, «;, and possibilities of enhanced power
factors. This is also the case for traditionally poor thermo-
electric materials such as silicon. This work presents atom-
istic simulations for the electronic, thermal, and thermoelec-
tric properties of ultra-thin Si layers of thicknesses below
10 nm. The Linearized Boltzmann theory is coupled: (i) to
the atomistic sp>d’s* tight-binding (TB) model for the elec-
tronic properties of the thin layers, and (ii) to the modified
valence-force-field method (MVFF) for the calculation of
the thermal conductivity of the thin layers. We calculate
the room temperature electrical conductivity, Seebeck co-
efficient, power factor, thermal conductivity, and ZT figure
of merit of ultra-thin p-type Si layers (UTLs). We describe
the numerical formulation of coupling TB and MVFF to the
linearized Boltzmann transport formalism. The properties of
UTLs are highly anisotropic, and optimized thermoelectric
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properties can be achieved by the choice of the appropri-
ate transport and confinement orientations, as well as layer
thickness.
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1 Introduction

Low-dimensional semiconductor nanostructures are promis-
ing candidates for next generation thermoelectric (TE) ap-
plications because of their extremely low thermal conductiv-
ities compared to those of their corresponding bulk material.
This is the case even for traditionally poor thermoelectric
materials such as Si, which has recently received significant
attention in the thermoelectric community. The ability of a
material to convert heat into electricity is measured by the
dimensionless figure of merit ZT = O'SZT/(Ke + k), where
o is the electrical conductivity, S is the Seebeck coefficient,
and k. and k; are the electronic and lattice parts of the ther-
mal conductivity, respectively. Silicon, the most common
semiconductor with the most advanced industrial processes,
is a poor TE material with room temperature ZT'p,;x ~ 0.01,
a result of its high thermal conductivity «; ~ 140 W/mK.
Si nanostructures, on the other hand, have demonstrated a
significantly higher ZT ~ 0.5 [1-4], and they are now con-
sidered as emerging candidates for high efficiency and large
volume production TE applications [5].

This large performance improvement was a result of a
drastic reduction in the Si nanostructures’ thermal conduc-
tivity to values down to «; = 1-2 W/mK, close to the amor-
phous limit. Additionally, benefits to the ZT figure of merit
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can come from the power factor o S? as well. By nanostruc-
turing, the electronic structure could be engineered to tune
the Seebeck coefficient [6—8] and the electrical conductivity
independently [9], which could maximize o S2. For exam-
ple, Hicks and Dresselhaus suggested that the sharp features
in the low-dimensional density of states function DOS(E)
can improve the Seebeck coefficient [6, 7]. Mahan and Sofo
have further shown that thermoelectric energy conversion
through a single energy level (OD channel) can reach the
Carnot efficiency when «; is zero [10].

For a proper optimization of the thermoelectric proper-
ties in low-dimensional channels, electronic and phononic
bandstructure models that fully consider the atomistic na-
ture of the channels over large length scales need to be em-
ployed in order to guide the design of such devices. For ex-
ample, in Refs. [11-13] we described in detail a compu-
tational model based on the atomistic sp>d>s*-spin-orbit-
coupled (sp>d®s*-SO) tight-binding (TB) model [14—18]
and Linearized Boltzmann transport for calculations of the
thermoelectric power factor of ultra-narrow Si NWs. In
those works, we pointed out that the power factor of low-
dimensional channels can be optimized by appropriately
choosing the transport orientation and confinement length
scale such that high conductivity is achieved, despite a mild
reduction in the Seebeck coefficient. In Ref. [19] we de-
scribed a model based on the atomistic modified valence-
force-field method (MVFF) and the Landauer transport ap-
proach for the calculation of the thermal conductivity of
ultra-narrow Si NWs. In this work, we extend these for-
malisms to investigate the thermoelectric properties of 2D
ultra-narrow Si thin layers (UTLs) from fully atomistic
prospective. The sp>d®s* TB model and the MVFF method
are coupled to linearized Boltzmann transport for the calcu-
lation of the electronic and thermal properties of the UTLs,
respectively. The numerical methodologies and the approx-
imations used are described. We present results on p-type
UTLs that demonstrate the largest anisotropy in their trans-
port properties, and for which the atomistic modeling ap-
proach is more appropriate due to the complications of the
warped bands, as we showed in Refs. [20, 21], although the
method we consider is generic for both n-type and p-type
UTLs. We finally extract the ZT figure of merit in the UTLs,
showing that room temperature values of ZT ~ 0.5 can in-
deed be achieved, in agreement with experimental data in Si
nanostructures.

The paper is organized as follows: In Sect. 2 we describe
the calculation of the electronic properties of the UTLs and
in Sect. 3 the calculation of their thermal properties. In
Sect. 4 we compute the ZT figure of merit. Finally, Sect. 5
summarizes and concludes the work.
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Fig. 1 The atomistic structure of the cross sections of the (a) (100)
and (b) (110) silicon ultra-thin layer surfaces. In both cases the x-axis
is along the [110] transport direction. Arbitrary transport orientations
can be considered by varying the angle 6 between 0 and =

2 Calculation of the electronic properties of Si 2D UTLs

The UTL bandstructure is calculated using the 20 orbital
atomistic tight-binding sp3d®s*-spin-orbit-coupled model
[14, 17, 20], which is sufficiently accurate and inherently
includes the effects of different transport and quantization
orientations. We consider infinitely long, uniform, silicon
ULTs on the (100) and (110) surface orientations. The
transport orientation considered is the [110] as shown in
Fig. 1. By considering these two surfaces we demonstrate
the strong anisotropy of the transport properties. The sur-
faces are assumed to be passivated. The passivation tech-
nique details are provided in Refs. [13, 22].

We perform full band calculations by coupling TB band-
structure to linearized Boltzmann transport theory [11, 23].
The electrical conductivity o and the Seebeck coefficient S
are computed as:

— 42 > _% =

o—qO/EV dE( aE>H(E), (1a)
_qokp [~ 90 - E—Ep

=" /E dE( 8E)“(E)< kT ) (a0

where the transport distribution function & (FE) is defined
as [24]:
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Fig. 2 The simulation procedure for the extraction of the density
of states versus energy. (a) The k-space rectangular grid used for
the bandstructure calculation with a sample contour (dashed green).

Here vy, 4 (E) = %%TE: is the group velocity in the transport
direction, 7, (ky,y) is the momentum relaxation time of a car-
rier with in-plane wave number k, , in subband n, g5, (Ey)
is the density of states for a 2D subband, Ev is the valence
band edge, W is the thickness of the channel, and EF is the
Fermi level, determined by the doping of the material. The
mobility x can also be extracted from u = -Z-, where p is
the carrier concentration in the channel. In the calculations,
we actually use the Fermi level as an input parameter, and
for a certain Fermi level, the carrier density (assumed to be
equal to the doping density) is extracted.

Extraction of the gop(E) An essential numerical point in
the calculation of the electronic properties, is the calcula-
tion of the density of states (DOS) of the subbands of the
2D channel at a certain energy, g5 (E,). Since we consider
a numerical/arbitrary bandstructure calculated in k-space, in
order to use it within the Linearized Boltzmann formalism,
the k-space-dependent DOS needs to be converted into an
energy-dependent function to be used within the & (E) func-
tion of Eq. (2). For this we use the following scheme pre-
sented in Fig. 2. We compute the electronic structure on a
rectangular k,—k, grid as shown in Fig. 2a. The available
eigen-energies are, therefore, available at the k-grid points.
The energy contour at a specific energy E then needs to be
computed (i.e. dashed green line). Once the energy contour
is known, the DOS at the corresponding energy of the par-
ticular subband can be computed as:

¢l (E) = /C (n (k. ky. E))dk. 3)
k

where (v, (ky, ky, E)) is the average group velocity of the
states in subband n at energy E along the contour Cy com-
puted as v, (ky, ky, E) = \/vn(kx, E)? + v, (ky, E)2, where
each component of the directional velocities is given by
Vn(kyy, E) = $0Ey(kyy)/0ky/y, Where E,(kyy) is the
energy of the particular state in subband 7.

For illustration regarding the contour extraction we con-
sider a circular contour in the ky—k, space as shown in

(b) The rectangular grid is separated into triangles. (¢) An individual
triangle whose three corners are placed in between energy E (Color
figure online)

Fig. 2a, although the approach works for arbitrary contour
shapes. To construct the contour of a subband at a spe-
cific energy, the following steps are performed: (i) We di-
vide the rectangular k-space grid into triangles as shown
in Fig. 2b and keep record the coordinates and the ener-
gies E4, Ep, and E¢ of the three triangle corners as shown
in Fig. 2c. (ii)) We find the eigen-energies of the specific
subband into consideration that reside around the energy
of interest (within a lower and upper energy cutoffs) and
record the triangles which have the energy of one of their
corners above/below and the energies of the other two cor-
ners below/above that energy level. This indicates that the
energy contour passes through that triangle as shown in
Fig. 2c¢. (iii) The third step is to compute the k-space length
of the contour segments in each of the relevant triangles.
This is done by simple geometric considerations. The k. -
points on the triangle sides at energy E (the red labeled dots
kM /k® in Fig. 2¢) are given by:

A
(1/2) _ A B/C A (E—E7)
kx/y =Ky + (kx/}‘ - kX/y) (EB/C —EA) @
x/y x/y

The length of the individual segments is then computed as:

FIAIE) z\/(]él) —k§2))2+ (kgl) —k_i”)z )

Once the individual segment lengths dk are extracted, the
energy resolved density of states is computed using Eq. (3).
Note that for the velocity (v, (ky, ky, E)) we use the average
of the velocities of the bandstructure at the three points of
their corresponding triangle.

Figures 3a and 3b show typical examples for the energy
contours in p-type Si UTLs of thicknesses W = 3 nm on
the (100) and (110) surfaces, respectively. Contours at vari-
ous different energies are shown, indicating that the method
correctly captures essential bandstructure features such as
warping and anisotropy, as we presented in Ref. [20]. The
differences between the contours of the two surfaces indi-
cate the importance of the anisotropy of the material at the
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Fig. 3 (a) Energy contours of the first subband of the p-type
(100)/[110] UTL of W =3 nm. (b) Energy contours of the first sub-
band of the p-type (110)/[110] UTL of W =3 nm. (¢) The density of
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states versus energy of the (100) (black) and the (110) (blue) surfaces
of (a) and (b), respectively (Color figure online)
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Fig. 4 (a) Energy contours of the first subband of the n-type
(100)/[110] UTL of W = 3 nm. (b) Energy contours of the first sub-
band of the n-type (110)/[110] UTL of W = 3 nm. (¢) The density of

nanoscale, and point to the fact that the choice of different
surfaces will result in different transport properties. The en-
ergy resolved density of states DOS(E) for the two surfaces
is shown in Fig. 3c. The DOS(E) is lower for the (110) sur-
face (blue line), an indication of the lighter effective mass
of this channel and the superior transport properties also ad-
dressed in detail in Refs. [20, 21]. The deviations from the
flat plateaus in the DOS(E) point to the non-parabolicity
of the bands, whereas the discontinuities point to the on-
sets of the different subbands. Figures 4a and 4b show the
same quantities for the corresponding n-type channels on
the (100) and (110) surfaces, respectively. The projections
of the six ellipsoids on the 2D k-space are captured as ex-
pected and the onset of the different subbands and valleys is
also captured in the DOS(E) plot of Fig. 3c. Note that for
the rest of the paper only the (110)/[110] and (100)/[110] p-
type channels are considered. p-Type channels are the ones
addressed less frequently due to the difficulty in describ-
ing their bandstructure. Furthermore, the p-type (110) sur-
face has superior transport properties compared to the other
surfaces, e.g. compared to the (100) surface [20, 21, 25],
and can serve as an example in optimizing the properties of
channels at the nanoscale. For example, experimental work
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states versus energy of the (100) (black) and the (110) (blue) surfaces
of (a) and (b), respectively. Red contours belong to the lowest energy
valleys (see energy values) (Color figure online)

on the mobility of MOSFET devices by Yang et al. [25],
showed that the (110)/[110] p-type channel has the highest
low-field mobility at inversion conditions compared to all
differently oriented channels. This was also demonstrated
specifically for thin layers by Tsutsui et al. in Ref. [26]. In
both cases, the mobility was almost 2x higher compared to
the mobility of the (100) surface channels. Our simulation
work in Ref. [21], showed that indeed this channel has su-
perior transport properties, i.e. the mobility is higher than
that of differently oriented channels, but in addition, it in-
creases as the (110) layer thickness is decreased as the bands
become lighter with confinement and the carriers acquire
higher velocities [20]. This was not the case for channels on
different surfaces. Importantly, Ref. [21], also showed that
this channel is only weakly sensitive to surface roughness
scattering due to its high confinement effective mass (as we
demonstrate below), which makes it very suitable for ultra-
thin-layer devices.

Relaxation rates and approximations After the extraction
of the density of states, Fermi’s Golden rule is used to ex-
tract the momentum relaxation rates. We include scatter-
ing due to elastic acoustic phonons (ADP), inelastic opti-
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cal phonons (ODP), and surface roughness (SRS), and use
the full energy dependence for the momentum relaxation
times as shown in Fig. 5. This figure shows a schematic
of elastic (red-dashed arrows) and inelastic (blue-solid ar-
rows) processes, indicating that all bandstructure shape de-
tails are considered in the extraction of the relaxation times.
Note that we consider acoustic phonon scattering as an elas-
tic process, although in principle there is a small energy as-
sociated with such transitions. This, however, only has an
impact at low temperatures. At room temperature, which is
what is considered in this work, since the thermal energy
is larger than the corresponding phonon energy, the elas-
tic acoustic phonon scattering treatment is adequate. For
computational efficiency, we make the following approx-
imations, also commonly employed in numerical calcula-
tions: (i) Confinement of phonons is neglected, and disper-
sionless bulk phonons are assumed. Instead, enhanced de-
formation potential values Dé’)‘]’)lff =13.24 x 10'° ¢V/m and
DZ‘I’)II? = 5.34 eV are employed in order to capture the effect
of enhanced phonon scattering due to modifications in the
phonon spectrum. This is common practice for nanostruc-
tures throughout the literature [23, 27-30]. These values are
usually calibrated to mobility measurements on 2D chan-
nels, and good accuracy is achieved. This is possible because
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k[mo]

Fig. 5 An example of scattering processes on a typical p-type band-
structure. Elastic transitions (red-dashed arrows) and inelastic transi-
tions (blue-solid arrows) are indicated (Color figure online)

Fig. 6 (a) Change in band
edges as a function of film
thickness. Results for UTLs of
(100) (diamond-black), and
(110) (triangle-blue) surface
orientations are shown. (b) The
average confinement effective
mass for the UTLs of (a). This
is calculated from the change in
the subband edges with
confinement using the particle
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confined phonons have only quantitative effect on charge
transport, as pointed out by the calculations of Donetti et
al. [31]. Their influence can be lumped into an enhanced
deformation potential amplitude. For example, studies on
the effect of confined phonons on the phonon-limited mo-
bility of p-type thin layers [31], as well as GaAs NWs [32]
have also shown that the influence of phonon confinement
is rather weak. The influence of acoustic phonon confine-
ment can be somewhat more important on the phonon lim-
ited mobility of ultra-narrow nanowires, but even in that case
it is only of the order of ~10-20 %, and reduces fast as
the diameter is increased [23, 33-35]. Clearly, the presence
of additional scattering mechanisms (such as surface rough-
ness scattering) also limits the conductivity, and the effect of
phonon confinement on the total conductivity will be even
smaller. One additional uncertainty comes from the assump-
tions about the boundary conditions for phonons used in
the calculations. Two types of boundary conditions are usu-
ally employed: (a) the free surface boundary conditions (FS-
BCs), and (b) the clamped/rigid surface boundary conditions
(CSBCs). FSCBs tend to increase, whereas CSBCs tend to
decrease the scattering rates [33, 34]. The calculated con-
fined acoustic phonon limited mobility can differ depend-
ing on the nature of the surfaces assumed. In some cases,
the results using bulk acoustic phonons, lie somewhere be-
tween the two [34]. (ii) The second approximation is that
surface relaxation is neglected. (iii) The third approxima-
tion is that for SRS we assume a 2D exponential autocor-
relation function for the roughness with Aypg = 0.48 nm
and Lc = 1.3 nm [28] and derive the transition rate from
the shift in the band edges AEy /AW with confinement. As
discussed by Uchida et al. [36], this is the strongest contribu-
tion to SRS in channels of a few nanometers in thickness. In
Fig. 6a we show the quantity AEy /AW for the (110) and
(100) surfaces versus the UTL thickness W. Considerable
differences are observed between the two surfaces, further
indication of the strong anisotropy in their properties. The
band edges in the case of the (100) surface (black-diamond
line) have a very strong sensitivity to the layer thickness. It
implies that channels on this particular surface will be very
sensitive and strongly affected by SRS as well. On the other

in a box quantization picture
(Color figure online)
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Fig. 7 Low-field mobility for
UTLs of thicknesses W = 3 nm
and W = 10 nm as denoted.
Solid lines: phonon-limited
mobility. Dashed lines: phonon
plus SRS-limited mobility.

(a) (110)/[110] channel,

(b) (100)/[110] channel (Color
figure online)
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hand, the band edge of the (110) surface is almost invariant
to changes in the layer thickness (blue-triangle line), which
indicates that SRS will only affect this surface weakly. An-
other way to see this is by extracting an effective confine-
ment mass for the valleys of these channels using a sim-
ple particle in a box quantization picture. Large confine-
ment mass translates into difficulty in shifting the energy
levels with well thickness variation. The effective confine-
ment mass is shown in Fig. 6b for the two channels as a
function of the UTL thickness. Indeed, for the (110) surface
(blue-triangle line), the effective confinement mass reaches
very large values ~4m, whereas in the (100) surface only
~mg (black-diamond line).

Finally, we note that in our calculations we employ atom-
istic description of both electronic and phononic bandstruc-
ture (further below), but the calculations are empirical in na-
ture. Empirical parameters are used to calibrate the tight-
binding and the modified valence-force-field models to Si
bulk dispersions. We assume that since we fit the bulk dis-
persions in the entire Brillouin zone, the parameters are
still transferable to nanostructures. In addition, the validity
of both, the tight-binding and the modified valence-force-
field models, has been verified through experimental data
for nanostructures in various occasions [15, 37].

Mobility Figures 7a and 7b show the calculated mobility
for the (110)/[110] and (100)/[110] channels, respectively.
In each case we show channels with thicknesses W = 3 nm
and W = 10 nm as denoted in Fig. 7, and for each channel,
results for the phonon-limited mobility (solid lines) and the
phonon plus SRS-limited mobility (dashed lines). A few ob-
servations can be made in this figure: (i) The effect of SRS is
very weak for UTLs of thicknesses W = 10 nm. The dashed
lines and the solid lines in the cases of the W = 10 nm UTLs
are almost overlapping. (Note that we do not include any
electrostatic fields in the calculation that will confine carrier
near the surface.) (ii) In the case of the thinner W = 3 nm
UTLs, SRS is still weak for the (110) channel in Fig. 7a,
but is quite strong in the case of the (100) channel (compare
the solid W = 3 nm line with the dashed W = 3 nm line
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as denoted in Fig. 7b). In the latter, SRS reduces the mo-
bility by a factor of ~3x compared to the phonon-limited
value. (iii) The mobility of the (110) channels is by almost
an order of magnitude higher than that of the corresponding
(100) channels, especially at low carrier densities. This is at-
tributed to the low effective mass and higher hole velocities
on this surface [20]. (iv) The mobility in the (110) channel
increases with reducing width. The mobility increases by al-
most 3x as the layer thickness is reduced from 10 nm to
3 nm. This again is attributed to the reduction of the trans-
port effective mass on the (110) surface, attributed to the
warping of the heavy-hole band as we discuss in detail in
Refs. [20, 21, 38]. On the other hand, the hole mobility on
the (100) surface follows the usual trend, i.e. the mobility
reduces with layer thickness. This trend is usually attributed
to the enhanced electron-phonon interaction with increasing
carrier confinement which increases scattering.

Thermoelectric properties The thermoelectric properties
of the thinner W = 3 nm channels are shown in Fig. 8. The
superior transport properties of the (110) p-type Si chan-
nel are evident in its thermoelectric properties. Figures 8a,
8b and 8c show the electrical conductivity, the Seebeck co-
efficient, and the power factor versus carrier density, re-
spectively. As expected, the conductivity of the (110)/[110]
channel (blue lines) in Fig. 8a is considerably higher than
that of the (100)/[110] channel (black lines). As also fol-
lows from the mobility calculations in Fig. 7, SRS does not
affect the conductivity of the (110)/[110] channel (dashed
blue line), whereas it significantly reduces the conductiv-
ity of the (100)/[110] channel (dashed black line). The See-
beck coefficients follow the reverse trend, namely they de-
crease with carrier density, with the (100)/[110] channel
having the highest values (black lines). SRS helps to slightly
increase the Seebeck coefficient of this channel. A com-
parison between the conductivity and Seebeck coefficient
values, however, shows that the conductivity is strongly
anisotropic, whereas the Seebeck coefficient is not as much.
The reason is that the Seebeck coefficient in nanostruc-
tures depends strongly on the distance of the subbands from
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Fig. 8 Thermoelectric coefficients versus carrier concentration for the
W =3 nm p-type UTL, in the [110] transport orientation at 300 K.
Channels on the (110) and (100) confinement surfaces are shown by
the blue and black lines, respectively as denoted in the figures. Two

the Fermi level EF, and is independent of bandstructure
at first order [39]. This difference in the properties of the
two channels is evident in their thermoelectric power fac-
tors in Fig. 8c. The (110)/[110] channel outperforms the
(100)/[110] channel (blue versus black lines). In addition,
the power factor of the latter is strongly affected by SRS and
further reduced. A crucial point that these results demon-
strate is the importance of high conductivity over the See-
beck coefficient in determining the thermoelectric properties
of nanoscale materials. Design of the material’s bandstruc-
ture for achieving high electrical conductivity rather than
high Seebeck coefficient, provides larger power factors, de-
spite the initial efforts which focused on achieving high See-
beck coefficients in low-dimensional materials.

3 Calculation of the thermal conductivity of Si 2D
UTLs

In order to fully evaluate the thermoelectric properties of
the UTLs, we also need to compute their thermal conduc-
tivity. In Si, the dominant component of the thermal con-
ductivity originates from the transport of phonons. In this
section we calculate the thermal conductivity in Si UTLs us-
ing the modified valence-force-field (MVFF) method for the
phonon bandstructure calculation, coupled to the phononic
Boltzmann transport equation for computing the lattice ther-
mal conductivity.

MVFF method The modified valence-force-field method
[40] can accurately capture the bulk Si phonon spectrum
as well as the effects of confinement [37]. In this method
the inter-atomic potential is modeled by the following bond
deformations: bond stretching Ups, bond bending Upp,
cross bond stretching Ups_ps, cross bond bending stretch-
ing Ups—pp, and coplanar bond bending interactions Upp—pp

different carrier scattering situations are considered, (i) phonons (solid
lines), and (ii) phonons plus SRS (dashed lines). (a) The electrical con-
ductivity. (b) The Seebeck coefficient. (¢) The power factor (Color fig-
ure online)

Table 1 Force constants for silicon from Ref. [40] (in units of N/m)

o B 8 1% v
Si 49.4 4.79 5.2 0 6.99
calculated as:
3 (rl.z. — dl.z.)2
Uy =a—t—-— (6a)
S8 di'
2
jik 3 (Aejlk)
_ /g (6b)
dljdlk
. 3 (= di) o —d)
Uit =25 6
bs—bs 8 dijdik ( C)
y 3, (rf = d)(A0jix)
Uit == 6d
bs—bb = g7 diidiy (6d)
ikl 3 (A8;ik)(Abirr)
Ulilln bb =g (6e)

Vdijdidu

where Ji ; and r;; are equilibrium and non-equilibrium bond
vectors from atom ‘i’ to ‘j’, respectively, and A0 =
Fii | S Tiik — dl j d, ik 1s the angle deviation of the bonds be-
tween atoms ‘i’ and ‘j’ and atoms ‘i’ and ‘k’ [37]. The force
constants «, B, 8, v, and v are fitting parameters to match
experimental data for bulk silicon dispersion. In our calcu-
lations we use the parameters from Ref. [40] as shown in
Table 1.

The total potential energy of the system is defined as:

= ik ik ik
ij /l /l /l
vrs 3| Tue T @ttt
lENA jenn; Jj.kenn;
JFk#l -
Y Ut bb:| )
j kIeCOP;
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which is zero when all the atoms are located in their equilib-
rium positions. Here, N4, nn;, and COP; are the number of
atoms in the system, the number of the nearest neighbors of
a specific atom ‘i’, and the coplanar atom groups for atom
‘i, respectively [37]. If only two atoms ‘i’ and ‘j’ slightly
move away from their equilibrium positions along m and n
axes (m,n € [x,y, z]), respectively, the total potential en-
ergy increases to U,,. Under the harmonic approximation,
the corresponding element of dynamic matrix is then calcu-
lated as:

Uiy

i 9qd
arl ory

Dijn = @®)
and the dynamic matrix tensor between atoms ‘7’ and ‘j’ is
given by [37]:

pl DY, DY

D;j = D;jx D;jy Dlyjz )
D% D DI

Finally, the dynamic matrix is set up as:

D=[Dj ]=|—=1""% T 10
[D3,5] [M{_Zl;éiDil i=j (10)
where M is the atomic mass of Si. Afterwards, the follow-
ing eigenvalue problem is solved to calculate the phononic
dispersion:

D+ Dyexp(iG.AR) — ()] =0 (11)
1

where Dy is the dynamic matrix representing the interaction
between the central unit cell and its neighboring unit cells
separated by AR [41]. The calculated phonon dispersion of
bulk silicon along the high symmetry lines of the Brillouin
zone is shown in Fig. 9 (solid-blue line). An excellent fit
to the experimental data (red dots) taken from Ref. [42] is
found. The MVFF method has already been used for com-
puting the phonon dispersion of Si nanowires [19, 37], and
in this work we extend this method to describe the phonon
properties of UTLs. Figure 10 shows an example for the cal-
culation of the phonon bandstructure of the (110) surface
UTL of thickness W = 3 nm. The first five of the low en-
ergy phonon subbands are shown. The black lines indicate
cuts along the [100] and [110] transport orientations through
the I"-point.

The thermal conductivity can then be calculated using
the phonon relaxation time approximation in the phononic
Boltzmann transport equation as [43]:

hos(q) > elos@/ksT
_ 2 s
K1 =ks ng,s(‘l)|llfs(4)[ kgT | (ehos@/ksT _1)2
5.

12)
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Fig. 9 Phononic bandstructure of bulk silicon (solid blue) in the en-
tire Brillouin zone evaluated using the MVFF method. Experimental
results (red circles) are from Ref. [42] (Color figure online)

q [110]

Fig. 10 Part of the phononic band spectrum (5 subbands) of the
W =3 nm UTL on the (110) surface. The black lines show the disper-
sion cuts along the [100] and [110] orientations through the I"-point
(Color figure online)

where kp is the Boltzmann constant, vgs(g)|) is the
transport component of the group velocity of phonons of
wavevector ¢ in subband s, and 74 (g) is the scattering time.
For the calculation of the relaxation times, we follow the
bulk formalism for Umklapp scattering:

=0l )
— = Baws(q)"Texp| —= (13)
1144 T

where B =2.8 x 107!? s/K and C = 140 K [44]. An im-
portant point is that at low frequencies nanostructures have
a different phonon density of states from that of bulk ma-
terials. Because of this, the bulk scattering model for Umk-
lapp scattering causes divergence in the thermal conductiv-
ity, something described by Ziman as “the problem of long
longitudinal waves” since the 60 s [45]. To avoid this di-
vergence, Mingo et al. proposed to include a second order
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Fig. 11 The phononic dispersion cuts along [110] direction through
the I"-point of the W = 3 nm (110) UTL dispersion shown in Fig. 10.
The colormap indicates the contribution of each phonon state to the
thermal conductivity when Umklapp plus diffusive boundary scatter-
ing mechanisms are considered. Three band regions can be identified:
(i) The low frequency acoustic modes, (ii) The high frequency opti-
cal modes, and (iii) The middle frequency range quasi-acoustic modes,
which appear as a result of confinement of the bulk acoustic modes
(Color figure online)

3-phonon scattering rate as [46]:

1 AoT? (14)
[20p)

Although this is just an order of magnitude approximation,
its consideration can help to remove the singularity for low
frequency phonons. We found that Ay = 15000 s~' K2
can accurately capture both temperature and diameter de-
pendences of the thermal conductivity of silicon nanowires
calibrated against non-equilibrium Green’s function calcu-
lations from Ref. [47] and molecular dynamics calculations
from Ref. [48]. We thus use the same value in this work for
UTLs.

For boundary scattering we use:

11— Pig(q)
3s(q) 1+P W

15)

where W is the confinement size (UTL thickness) and P is
the surface scattering specularity parameter that varies be-
tween O (for fully diffusive boundary scattering) and 1 (for
fully specular boundary scattering). In our calculation we
assume that v, s(q) is the average of parallel and perpen-
dicular components of the group velocity, and consider the
boundary scattering to be fully diffusive, which is a fairly
good estimate for ultra thin UTLs [49]. Finally, the overall
relaxation rate is then computed using Matthiessen’s rule.
The phonon spectrum consists of several subbands. Fig-
ure 11 shows the phononic dispersion cut along the [110]
direction through the I"-point of the bandstructure for the

W =3 nm (110) thin layer. The dispersion is somewhat dif-
ferent from the usual acoustic/optical two-band dispersion.
The bands can be separated into three categories: (a) the
low-frequency acoustic bands, (b) the high frequency op-
tical bands, and (c) the quasi-acoustic modes in the middle
region of the frequency range, which originate from the con-
finement of acoustic modes. Not all of them, however con-
tribute equally to thermal transport. The colormap in Fig. 11
indicates the contribution of each phonon state to the ther-
mal conductivity when considering Umklapp plus bound-
ary scattering limited transport (assuming fully diffusive
boundaries). Most of the contribution is attributed to the low
frequency, acoustic and quasi-acoustic modes, whereas the
contribution of the optical modes is limited due to their small
group velocity and short mean-free-paths. Nevertheless, al-
though small, their contribution is increased in proportion
to the Umklapp-limited scattering case because boundary
scattering reduces the mean-free-path of the acoustic modes,
bringing it relatively more close to that of the optical modes.
We find, therefore, that in the case of fully diffusive bound-
ary scattering the contribution of the optical modes is con-
siderable (under Umklapp-limited scattering the contribu-
tion of the optical phonons is much smaller).

As in the case of electronic transport, phonon transport
in Si UTLs is also anisotropic, although at a much lower
degree. Recently in Ref. [50] we showed that the ballistic
thermal conductance of Si UTLs can vary up to 2x depend-
ing on the surface and transport orientations of the chan-
nels. The diffusive thermal conductivity of thin layers fol-
lows a similar anisotropic trend as well, also originating
from the anisotropy in the phonon spectrum. Figure 12 il-
lustrates this point by showing the contributions to the ther-
mal conductivity of the phonon spectrum of the (110)/[110]
(Fig. 12a) and (100)/[110] (Fig. 12b) W = 3 nm channels
at the energy 10 meV (i.e. along a cut in the g,—g, spec-
trum through the arrow shown in the dispersion illustrated
in Fig. 10). The phonon dispersions are different on differ-
ent surfaces, but also along different directions, similarly
to the case of the electronic dispersions. The features of
the dispersion can provide understanding to the anisotropic
behavior of the thermal conductivity in the different layers,
although as we show below for these two channels the vari-
ation is very small. In general, we note that differently ori-
entated channels could have larger anisotropy in their ther-
mal properties [50]. Figures 12¢ and 12d show the cumula-
tive thermal conductivity of these channels (when Umklapp
and fully diffusive boundary scattering are considered) of all
states in the two-dimensional g-space. This figure illustrates
the contribution of the different parts of the Brillouin zone
to the conductivity of these two channels along the trans-
port direction indicated by the arrows. In both cases, the
largest contributions (bright yellow regions) come from the
acoustic modes whose group velocity is directed in the trans-
port orientation. The overall thermal conductivity of these
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Table 2 Thermal conductivity
of Si ultra-thin layers in

[W/mK]

J Comput Electron (2013) 12:611-622
Channel description W =3 nm W =3 nm W =10 nm W =10 nm
(100)/[110] (110)/[110] (100)/[110] (110)/[110]
Umklapp scattering only 40.6 45.3 37.1 43.0
Umklapp + SR scattering 2.6 2.7 6.4 7.3

Fig. 12 Energy contours at
hw = 10 meV of the phonon
dispersion of the (a) (110)/[110]
and (b) (100)/[110] W =3 nm
UTLs in the 2D g,—qy space.
The color shows the
contribution of each phonon
state to the thermal conductivity
under Umklapp plus diffusive
phonon-boundary scattering

considerations. (¢) and (d) Show
the cumulative thermal

conductivity as a function of the

2D g-space for the channels

in (a) and (b) respectively
(bright yellow indicates the
highest and dark green the
lowest contributions). The
transport orientations are

indicated by arrows (Color
figure online)

two channels is summarized in Table 2. The Umklapp plus
boundary scattering limited thermal conductivity is as low as
k; =2.7 W/mK and «k; = 2.6 W/mK For the (110)/[110] and
(100)/[110] UTLs, respectively. This is a significant reduc-
tion from the Umklapp-limited thermal conductivity which
is k; = 45.3 W/mK and «; = 40.6 W/mK for the two sur-
faces, respectively, indicating the importance of the bound-
ary scattering for phonons. This is also a significant reduc-
tion from the thermal conductivity of the thicker W = 10 nm
UTLs which is almost a factor of 3x higher. Note that

Umklapp-limited conductivity is at first order thickness in-
dependent as shown in Table 2.

a)  (110)[110]

4 Calculation of the ZT figure of merit

Once the thermoelectric power factor and the thermal con-
ductivity are calculated, the ZT figure of merit is extracted.
Figure 13 shows the ZT figure of merit as a function of the
carrier concentration for the W = 3 nm thick (110)/[110]
(blue lines) and (100)/[110] (black lines) p-type channels.
With solid lines we show results for which we only in-
clude hole-phonon scattering for the electronic system, and
Umklapp-limited scattering for the phononic system. With
dashed lines we show results for which in addition we
include boundary scattering for both carriers, holes and
phonons (hole-SRS for the electronic system, and phonon-
boundary scattering for the phononic system). The per-
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Fig. 13 The ZT figure of merit of p-type UTLs of W =3 nm versus
hole density. Blue lines: (110)/[110] channel. Black lines: (100)/[110]
channel (as also denoted). Solid lines: hole-phonon scattering-limited
power factor and phonon-phonon-limited phonon thermal conductiv-
ity is used in the calculation. Dashed lines: phonon plus SRS-lim-
ited power factor and phonon-phonon plus phonon-boundary scattering
limited phonon thermal conductivity are used in the calculation (Color
figure online)

formance advantage of the (110)/[110] channel is evident,
reaching room temperature ZT values around ZT ~ 0.5,
whereas the (100)/[110] channel provides only ZT ~ 0.1.
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Boundary scattering is beneficial even in the case of the
(100) surface because the boundaries affect the phonon sys-
tem more than the electronic system. We note that we only
consider these two orientations in this work because our re-
sults indicate that the (110)/[110] channel indicates the best
performance compared to all other p-type channels. All oth-
ers perform very similar to the (100)/[110] channel in terms
of power factor and ZT figure of merit [51].

It is interesting to also note the strong dependence of
the ZT figure of merit on the density in Fig. 13. This fol-
lows from the dependence of the power factor on density
as shown in Fig. 8. The ZT for the (110)/[110] channel
peaks just before densities of 10'°/cm? and sharply drops
as the density deviates from that value. The doping density
should, therefore, be precisely controlled in order to achieve
high performance. In the case of the (100) surface channels,
however, the maximum of ZT appears for densities above
10'%/cm?, but it does not peak as sharply as the ZT of the
(110) channel. The reason behind this different location of
the peaks in density is the lower density of states of the (110)
surface, as shown in Fig. 3c. At the same density, the Fermi
level is closer to the bands in the (110) channel, which re-
duces the Seebeck coefficient (shifts to the left as shown in
Fig. 8b), and increases the electrical conductivity (also shifts
it to the left as shown in Fig. 8a). The result is that the peak
of the power factor and ZT appears at lower densities for the
(110) channel.

5 Conclusions

In this work we perform atomistic simulations for the elec-
tronic, thermal, and thermoelectric properties of ultra-thin
Si layers. We couple Linearized Boltzmann theory to: (i) the
atomistic sp>ds* tight-binding model for the electronic
properties of the thin layers, and (ii) the modified valence-
force-field method for the calculation of the thermal con-
ductivity of the thin layers. We calculate the room tempera-
ture electrical conductivity, Seebeck coefficient, power fac-
tor, thermal conductivity, and Z7 figure of merit of ultra-thin
p-type Si layers of thicknesses W =3 nm and 10 nm. We
show that their electronic and thermoelectric properties are
highly anisotropic, with the (110)/[110] channel indicating
the highest performance in terms of the ZT figure of merit.
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