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We study the thermal properties of ultra-narrow silicon nanowires (NW) with
diameters from 3 nm to 12 nm. We use the modified valence-force-field method
for computation of phononic dispersion and the Boltzmann transport equation
for calculation of phonon transport. Phonon dispersion in ultra-narrow 1D
structures differs from dispersion in the bulk and dispersion in thicker NWs,
which leads to different thermal properties. We show that as the diameter of
the NW is reduced the density of long-wavelength phonons per cross section
area increases, which increases their relative importance in carrying heat
compared with the rest of the phonon spectrum. This effect, together with the
fact that low-frequency, low-wavevector phonons are affected less by scatter-
ing and have longer mean-free-paths than phonons in the rest of the spectrum,
leads to a counter-intuitive increase in thermal conductivity as the diameter is
reduced to the sub-ten-nanometers range. This behavior is retained in the
presence of moderate boundary scattering.
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INTRODUCTION

The thermal conductivity of bulk Si is relatively
high, k¥ ~ 140 W/mK, and is dominated by phonon
transport. In low-dimensional Si nanowires (NWs),
on the other hand, thermal conductivity is much
lower; this is attributed to strong boundary-scat-
tering effects.’™ Numerous studies of the thermal
conductivity of Si NWs have been reported in the
literature.*® The effects of different scattering
mechanisms, i.e. surface roughness scattering, mass
doping, phonon—phonon scattering, and phonon-—
electron scattering, have been investigated by sev-
eral authors.®~'? Phonon dispersion in low-dimen-
sional materials is, however, different from bulk
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dispersion. For ultra-narrow NWs, i.e. below 10 nm
in diameter, the effect of confinement can further
change the phonon spectrum substantially, and
thus the thermal properties.

The effects of nanostructuring on the nature of
phonon modes in low-dimensional channels, and on
thermal conductivity, are still not well understood.
It is common practice in simulation studies to use
either continuum approaches or Si bulk dispersion
(even in confined geometry).”?1*715 Other studies
use purely diffusive boundary scattering (specular-
ity, p = 0),*1617 or the same scattering probability
for all phonon states with different wavelength
(p = constant),”'® which is effective in explaining
experimental measurements for confinement length
scales down to several tens of nanometers. However,
phonon mode dispersion and density of states are
strongly modified in nanostructures, and atomistic



description of phonon dispersion and the wave nat-
ure of phonons acquires significant importance.

In this work we used the modified valence-force-
field (MVFF) method'®?° with ballistic Landauer
formalism and the diffusive Boltzmann transport
equation for phonons, to address the effects of
structural confinement of phonons on the thermal
properties of low-dimensional Si NWs of diameter
from 12 nm down to 3 nm. We showed that long-
wavelength phonons are much more significant in
1D systems than they are in bulk material. Their
density, and their significance compared with the
rest of the spectrum, increase as the diameter is
reduced, which results in more than ~60% of the
heat being carried by these long-wavelength, low-
energy phonons, which, in turn, undergo relatively
weaker scattering.?’ This results in a counter-
intuitive increase in thermal conductivity with
diameter reduction, which is retained even in the
presence of moderate boundary scattering. Finally,
we show that, because of the specular scattering
nature of the long-wavelength phonons at the
boundaries under weak roughness amplitudes, a
large portion of the heat is carried by phonons with
mean-free-paths (MFPs) significantly larger than
the NW diameter.

APPROACH

For calculation of the phononic band structure
we used the MVFF method,'® which is an extension
of the Keating model.?? In this method the inter-
atomic potential is modeled by use of the bond
deformations: bond-stretching, bond-bending, cross-
bond-stretching, cross-bond-bending-stretching,
and coplanar-bond-bending interactions.'® The
model accurately captures the bulk Si phonon
spectrum and the effects of confinement in NWs.?°
As an empirical atomistic model, its variables are
calibrated to the bulk dispersion, in this case over
the entire Brillouin zone. This is common practice
for electronic structure methods as well (e.g. the
use of tight-binding, pseudo-potential, and k.p
methods for the electronic properties of nano-
structures). Transferability of the model variables
for nanostructures is then assumed. Of course the
only true verification is comparison with experi-
mental measurements, which at this point are
sparse for NWs, especially those with such ultra-
narrow diameters. Typical phonon modes for NWs
are shown in Fig. 1. Figure la—c show the lower
energy part of the dispersions of (111)-oriented
NWs of diameters D =12 nm, 6 nm, and 3 nm,
respectively. We note that without loss in gener-
ality we use the (111) transport orientation in this
manuscript unless otherwise specified. The phonon
spectrum of the thicker NWs consists of many more
modes than that for thinner NWs. The lowest four
acoustic branches, however, other than some
changes in their shape, remain the same as the
diameter is reduced. The energy region in which
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only these four bands contribute is shown by the
curly brackets in each NW case. Because the
number of these bands remains the same, although
the diameter is reduced, their density per unit of
cross section area increases. As we show below,
this has large consequences for the thermal con-
ductivity of the NWs.

After calculating the phonon dispersion, the
thermal conductivity was obtained by assuming the
phonon relaxation time approximation in the pho-
nonic Boltzmann transport equation as:*®?3

hoi(q)]?  ehwi@/ksT
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where kg is the Boltzmann constant, vg; is the group
velocity of a phonon of wavevector ¢ in subband i,
given by vg;(q) = 0w;(q)/0q, and t;(q) is the scat-
tering time. For calculation of the relaxation times,
we followed the bulk formalisms for Umklapp scat-
tering as:*%425

1 N2 C
;_Bwl(q) T exp (_T)’ (2)

where B = 2.8 x 1071 /K and C = 140 K.*° This is
the simplest model available for Si, calibrated to the
bulk thermal conductivity over a large temperature
range.?® Although the model assumes 3D phonons,
it is commonly used for calculation of the thermal
conductivity of nanostructures also.>'®?¢ The rea-
son why such a model derived for 3D channels
provides sufficient accuracy for nanostructures, is
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Fig. 1. Phonon dispersions for (a) D =12 nm, (b) D=6 nm, and
(c) D =3 nm NWs in the (111) transport orientation. As the diameter
is reduced, the number of phonon modes is also reduced. The lowest
four acoustic modes at low frequencies, however, remain, as indi-
cated by the curly brackets.



Use of Atomistic Phonon Dispersion and Boltzmann Transport Formalism to Study

the Thermal Conductivity of Narrow Si Nanowires

that even for 1D channels the atomic vibrations are
still in 3D and not constrained in one particular
direction.?” Modifications and extensions of this
transport model to improve its validity for nano-
structures, still under the assumptlon of 3D pho-
nons, are described in the literature.?®?° One of
these modifications, proposed by Mlngo and
Broido,?” is used here and described below. Another
reason is that the dominant scattering mechanism
in low-dimensional channels is boundary scattering
rather than phonon—phonon scattering, and, there-
fore, the accuracy of the phonon—phonon scattering
model will have little effect on the accuracy of the
overall thermal conductivity of nanostructures.’

For boundary scattering we use the Casimir
formula:

1 1-p(g) vgilg)
wgi(q) 1l+p(@) D

where D is the diameter of the NWs and p( ) is the
g-dependent specularity, given by:'?

p(q) = exp(—4q*AZ,,). (4)
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We vary the root-mean-square of the roughness
amplitude as A, from 0.1 nm to 1.2 nm. In this
model the extent of scattering depends on the con-
finement size D (inversely) and the specularity, p. It
is again based on the assumption of 3D phonon
scattering at boundaries. Although commonly used
in low-dimensional nanostructures,”®?® strictly
speaking its validity can be questioned for ultra-
narrow 1D NWs, because one cannot define a
transverse phonon velocity in a purely 1D system.
The model implies that the phonons are isotropic, i.e.
they will travel towards the surface with the same
velocity as along the wire axis. By us1ng atomistic
calculations, however, Carrete et al.,>* have recently
shown that even for ultra-thin NWs of diameter
~2 nm and with roughness amplitude as large as
20%, the phonon mean-free-path and the thermal
conductivity are very close to what the Casimir limit
predicts®® (for p = 0). The Casimir model breaks
down at much greater roughness, when strong
boundary effects occur. Here, the specularity is lar-
ger for low-frequency/long-wavelength phonons, be-
cause long waves are little affected by short-range
roughness. As the extent of scattering is inversely
proportional to the specularity (Eq. 3), the MFPs of
low-frequency phonons are longer than those of
high- frequency phonons. This feature of the Casimir
model is also in good agreement with atomistic cal-
culations.?>*! The Casimir model (Eq. 3), therefore,
captures basic features of boundary-scattering down
to ultra-narrow NWs, although the boundary scat-
tering is phenomenologically different in 3D and 1D
channels. In this work, however, we consider quasi-
1D NWs down to D=3 nm in diameter, and
limit the roughness amplitude to 10% of the NWs
diameter.

RESULTS AND DISCUSSION

Because the density of the low-frequency, long-
wavelength phonon modes increases with diameter
reduction, as mentioned above, their importance in
the heat-carrying capability of the NWs increases. A
simple but effective way of demonstrating this is by
plotting the differential (or frequency spectrum) of
the ballistic thermal conductance versus energy for
NWs of different diameters, as shown in Fig. 2a.

The differential of the ballistic thermal conduc-
tance (normalized by the NW area, A) at a specific
energy is calculated as:®

dKl TCkB
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where Wy, (hw) is the phonon window function that
determines the conductance, defined as:?%°
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Fig. 2. (a) The differential contribution to ballistic thermal conduc-
tance of phonons of different energy. Nanowire diameters as they
appear from top to bottom in the low-energy region: D=1 nm,
D=2nm, D=3nm, D=6 nm, and D = 12 nm. The contribution of
the low-frequency modes increases with decreasing diameter.
(b) The phonon window function that determines the thermal con-
ductance in the cases of ballistic (blue) and Umklapp-limited (red)
scattering (Color figure online).



Under ballistic conditions, the entire energy
spectrum contributes to the thermal conductance.
This is contrary to what would be expected from
diffusive transport, in which low-frequency modes
dominate the thermal conductivity. The reason is
that the phonon window function shown in Fig. 2b
(blue line) is a wide and flat function at room tem-
perature, covering most of the energy spectrum.35
For the thicker NWs in Fig. 2a, i.e. for D = 12 nm
(green-triangles), the high-frequency phonons con-
tribute the most because the number of modes is
larger at higher frequencies. As the diameter is
reduced to D = 3 nm, however, although the high-
frequency phonons still contribute the most, the
contribution of the low-frequency modes increases.
If smaller diameters are considered (D = 1 nm and
2 nm), the contribution of the low-frequency modes
is even greater (note that these two curves are
shown as dashed lines, to indicate what could hap-
pen, although for such low diameters we might be
already reaching the limits of the transferability of
the MVFF model for calculating the NW phonon
dispersion). The increasing contribution of the low-
frequency phonons is attributed to the fact that the
density of these modes increases. Indeed, ultra-
narrow NWs have a finite phonon density-of-states
(DOS) at low frequencies, in contrast to the bulk, for
which the phonon DOS tends to zero. A consequence
of this increase in the phonon DOS at low frequen-
cies, shown in Fig. 2a, is that their contribution to
the ballistic thermal conductance increases as the
NW diameter is reduced. In the paragraphs below
we examine the consequences of this effect when
scattering is included, and whether this increase
could be retained.

Because of the finite DOS that is introduced at
low-frequencies with decreasing diameter, use of
the bulk model for Umklapp scattering, as in Eq. 2,
causes divergence in the thermal conductivity. To
avoid this divergence, either the bulk dispersion or
constant specularity for phonon-boundary rough-
ness are commonly used in the literature. This
partially neglects the wave nature of phonons.
However, as proposed by Mingo and Broido,?” an
additional scattering mechanism for a second-order
three-phonon process (as an order of magnitude
approximation) can be introduced as:

1A, )
TU2

to remove this singularity for the low-frequency
phonons. Here Ay is used as a fitting term to match
the extracted thermal conductivity to more sophis-
ticated models. Use of this frequency-independent
contribution for calculation of the extent of scatter-
ing is actually similar to imposing a lower-frequency
cut-off in the integration over the phonon spectrum
(or imposing a finite channel length as in direct
methods), methods which also remove the singu-
larity at zero frequency.
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Because of this simplified treatment of second-
order three-phonon processes, quantitative values
for the thermal conductivity can be obtained only by
fitting to more sophisticated calculations, because
reliable experimental data are not available. Using
a value of A, = 15,000/sK? we standardize our
results to more sophisticated calculations for the
thermal conductivity by Luisier,®® who used the
direct NEGF method, and Donadio and Galli,>” who
used molecular dynamics. Figure 3 shows this
comparison between our calculations of thermal
conductivity versus temperature (lines), those of
Ref. 36 (symbols) for D = 3 nm diameter NWs in the
(100), (110), and (111) transport orientations, and
those of Ref. 37 for the (100) NW. The results are
very similar for all three NW orientations, espe-
cially for temperatures above 200 K. The deviation
is larger at lower temperatures, because our choice
of Ag was from a calibration at room temperature. A
different choice of Ay would provide a better match
at lower temperatures. We should note, however,
that direct comparison with Luisier’s data for low
temperature, at which the low-wavevector modes
determine the conductivity, is not possible. Luisier’s
calculations used the direct method, in which the
thermal conductivity depends on the length of the
channel considered (up to 75 nm in that work). The
longer the channel length, the more low-frequency
modes participate, and the higher is the thermal
conductivity. The thermal conductivity finally sat-
urates at the diffusive value as channel length
approaches infinity. This has recently been experi-
mentally and theoretically reported for graphene
nanoribbons even at room temperature.>’>® There-
fore, the higher thermal conductivity at low tem-
peratures in our calculations compared with the
work of Luisier can be partially attributed to the
finite channel length used by Luisier.

The increasing importance of the long-wavelength
phonons for ultra-narrow NWs is demonstrated in
Fig. 4a, which shows the differential contribution to
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Fig. 3. Umklapp-limited thermal conductivity versus temperature for
NWs with D =3 nm in the (100) (blue line), (110) (red line), and
(111) (green line) transport orientations. The symbols are results
from calculations by Luisier®® for the same NWs, except for the black
triangles, which are results obtained by Donadio and Galli®” (Color
figure online).
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the Umklapp-limited thermal conductivity of pho-
nons of different frequency. We show results for
three different NW diameters, D = 12 nm, 6 nm,
and 3 nm. It is evident that the low-frequency
phonons contribute most to the thermal conductiv-
ity. This is particularly pronounced for the narrower
NWs. The thermal conductivity of phonons with
energies below ~10-15 meV is almost two orders of
magnitude higher than that of higher-energy pho-
nons (note the logarithmic scale in Fig. 4a).
Figure 4b shows the cumulative thermal conduc-
tivity of these NWs versus energy. Two very inter-
esting observations can be made here:

1 Most of the contribution to the total thermal
conductivity is attributed to phonons with ener-
gies below 10 meV, especially for NWs with
diameters D = 3 nm and 6 nm.

2 The most interesting observation is that the
Umklapp-limited thermal conductivity is larger
for the thinner NWs.

The thermal conductivity of the D = 12 nm NW is
reduced from the bulk value (kpu ~ 140 W/mK) to
~15 W/mK. This is attributed to reduction of the
phonon group velocity and changes in the phonon
spectrum as a result of confinement.??*° As the
diameter is reduced even further, however, the
increasing contribution of the long-wavelength
phonons causes the thermal conductivity to increase
again. The reasons for this are:

1 The density of these modes increases compared
with the rest of the spectrum as described in the
ballistic results of Fig. 2a.

2 The low-frequency, low-wavevector modes under-
go weaker scattering, compared with the high
frequency modes.

The window function for phonon—phonon-limited
transport in Fig. 2b (red line) is now (in the diffusive
transport regime) multiplied by the phonon—phonon
scattering lifetime as tpn_ph Wpn (Eq. 1), which
makes it a much narrower energy function, enabling
mostly the low-frequency modes to participate in
transport. Therefore, as the density of these impor-
tant modes increases with diameter reduction, the
thermal conductivity increases. We note that this
counter-intuitive effect is also observed in results
from more sophisticated molecular dynamics calcu-
lations by Donadio and Galli.?” The fact that the
narrowing of the phonon window function is a gen-
eral feature of phonon transport explains why our
simplified Umklapp model based on 3D phonons also
captures (at least qualitatively) this effect, which
originates from the increase in low-wavevector, low-
frequency mode density. The reason why 751 _ph Wpn.
is narrower than Wy, is because low-frequency, low-
wavevector phonons have larger MFPs and relaxa-
tion times. Note that the function 7p, _pn Wpn can
even be narrower if one uses the exact solution of

Boltzmann transport equation. In this case, the
selection rules (to ensure energy and momentum
conservation) are valid only at some points of the
dispersion, rather than on lines or surfaces in 2D and
3D, respectively.?” This could indicate that in low-
dimensional materials phonon—phonon scattering is
weaker. Our calculations show that for the D = 1 nm
NW the thermal conductivity can increase back to
the bulk value (not shown), in very good agreement
with molecular dynamics calculations,®” although
the accuracy of our model could be questionable at
such low diameters. We should also note that this
narrowing of the 1, _pn Wpn, function is not sensitive
to the value of Ay we use to calibrate our data, even if
Ag increases or decreases by an order of magnitude.

This counter-intuitive increase in the thermal
conductivity with diameter reduction is also
retained in the presence of phonon-boundary scat-
tering on top of Umklapp scattering. Figure 5a, as
previously Fig. 4a, shows the differential contribu-
tion to the thermal conductivity of phonons with
different energies, again for NWs with diameters
D =12 nm (green), 6 nm (red), and 3 nm (blue).
Compared with Fig. 4a, the inclusion of boundary
scattering in Fig. 5a, reduces the differential values
of the thermal conductivity but also redistributes
the thermal conductivity to a much narrower energy
region below 5 meV (see the peak of diy/dw at
approximately E = 0 eV in Fig. 5a). These phonons
are least affected by boundary scattering. The rea-
son is that the specularity, p(g), in Eq. 4 peaks at
g = 0 indicating specular scattering, and drops
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Fig. 4. (a) Differential contribution to the Umklapp-limited thermal
conductivity of phonons of different energies. Nanowire diameters as
they appear from top to bottom in the low-energy region: D = 3 nm,
D = 6 nm,and D = 12 nm. (b) Cumulative thermal conductivity versus
phonon energy. The thermal conductivity increases with decreasing
diameter because of the increase in the contribution of low-frequency
phonons which undergo less scattering (Color figure online).



sharply for higher energies. As shown in Fig. 5b
(right region), although the overall thermal con-
ductivity drops to significantly lower values, be-
cause of boundary scattering, than in Fig. 4b, the
higher thermal conductivity of the D = 3 nm NW
compared with the D = 12 nm NW, is still retained
for small roughness amplitude (A, = 0.1 nm). One
would have expected that the narrower the diame-
ter, the more effectively boundary scattering re-
duces the thermal conductivity. This would have
been true if the boundary scattering in Eq. 3 was
only proportional to 1/D. The term (1 —p)/(1+p) in
Eq. 3, however, approaches zero as p approaches
unity for low-g phonons. This reduces the extent of
scattering for these phonons. Because their impor-
tance increases with diameter reduction, overall
scattering in the narrower NWs decreases and
thermal conductivity increases. As the roughness
amplitude increases, however, the increase in the
Umklapp-limited thermal conductivity of the nar-
rower NWs is lost as the boundary scattering
eventually becomes stronger with decreasing NW
diameter (second and third set of lines in Fig. 5b for
Arms = 0.3 nm and A, = 0.6 nm).

The change in thermal conductivity with
decreasing dimensionality of the system is an
important aspect of design for thermal management
and thermoelectric applications. For thermal man-
agement in nanoscale electronic devices, a large
thermal conductivity removes heat from the device
and is actually desired. In thermoelectric devices, on
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Fig. 5. (a) Differential contribution to the Umklapp plus boundary
scattering-limited thermal conductivity of phonons of different ener-
gies. Nanowire diameters as they appear from top to bottom in the
low-energy region: D=3 nm, D=6 nm, and D =12 nm. (b) The
cumulative thermal conductivity versus phonon energy. Cases for
boundary-scattering Ams values of 0.1 nm, 0.3 nm, and 0.6 nm are
shown. For 0.6 nm, results are shown in open symbols, indicating
that in this case our calculations reach the limits of the model.
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the other hand, thermal conductivity must be
reduced to retain the temperature gradient between
the hot and cold sides of the device and to reduce
losses. For proper design of such channels, the rel-
evant quantity that must be taken into consider-
ation is the MFPs of the phonons that contribute to
thermal conductivity. In thermoelectric devices, for
example, the design strategy used to reduce thermal
conductivity is to introduce scatterers of the order of
the dominant MFP.*° The MFP of each phonon state
for 1D NWs is given by the product of the phonon
group velocity and relaxation time as
2i(q) = vg;(q)ti(q). In Fig. 6a we extract the cumu-
lative thermal conductivity versus the MFPs of the
phonons for the D = 12 nm NW. We show cases for
Umklapp-limited scattering (black line) and
Umklapp plus boundary-limited scattering with
different A, values for the scattering strength
(Ayms = 0.1 nm, 0.3 nm, and 1.2 nm—up to 10% of
the NW diameter). The red arrow indicates the
12 nm MFP, same as the diameter of the NW. For
Umklapp scattering the MFPs of the phonons that
contribute to thermal conductivity are distributed
more or less uniformly from 1 nm to 6 ym (similar
those reported for bulk Si%®*!). The large MFPs
contribute strongly to heat, as observed in the inset
of Fig. 6a. Here we show a part of the phonon
spectrum of this NW. The color map shows the
contribution to the thermal conductivity of each of
the phonon states for Umklapp-limited scattering.
In red we show the large contribution to xj, and in
blue the small contribution. The larger contribution
comes from the longer MFPs of the LA branch. With
the introduction of boundary scattering, on the
other hand, the overall thermal conductivity is
strongly reduced but the distribution of heat within
the different phonon MFPs also changes. A slightly
larger part of the heat compared with Umklapp-
limited scattering is now carried by phonons of MFP
below 12 nm, whereas long-wavelength phonons
now carry less heat (Fig. 6a, right region). For small
roughness amplitude, although reduced, this
amount is still significant, indicating that MFPs
larger than the NW diameter still contribute sig-
nificantly to the thermal conductivity. For relatively
strong roughness (green line, A, = 1.2 nm, 10% of
the diameter), on the other hand, the MFPs are
limited to values below the NW diameter, which
indicates that the scattering approaches the Casi-
mir limit (black-dashed line), i.e. the phonon-
boundary scattering MFP is limited by the diameter
of the NW. The green line in Fig. 6a, therefore,
saturates after a MFP of ~12 nm. An interesting
observation can be made in Fig. 6b, which shows the
same quantity for the narrower NW with D = 3 nm.
The Casimir limit is reached for a relatively larger
percentage of roughness amplitudes (above
Arms = 0.6 nm, ie. 20% of the NWs diameter,
although this could be pushing the limits of our
model). This is indicated by the fact that the green
line in Fig. 6b still increases slightly for MFPs
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Fig. 6. Cumulative thermal conductivity of the (a) D= 12 nm and
(b) D=3 nm (111) NW versus MFP. Umklapp-limited thermal con-
ductivity is shown by the black line. Umklapp plus boundary scat-
tering thermal conductivity for Ay, values of 0.1 nm, 0.3 nm, and
1.2 nm are shown by the blue, red, and green lines, respectively, in
(@). In (b) Ans values 0.1 nm, 0.3 nm, and 0.6 nm are shown
(Arms = 0.6 Nm is dotted as an indication, because at this value the
limits of the model are reached). The MFP values of 12 nm and
3 nm, the same as the diameters of the NWs, are indicated on the
x-axis. The fully diffusive boundary case (Casimir limit) is shown by
black-dashed lines. Insets: Part of the NWs phonon dispersion, in
which the color map shows the contribution of each phonon state to
the total thermal conductivity (red: largest contribution, blue: smallest
contribution) (Color figure online).

above ~3 nm. This is because scattering of the low-
wavevector states is more specular, and, because
their density in the phonon spectrum increases, the
overall phonon MFP increases. It also explains why
phonons with MFPs larger than the NWs diameter
contribute significantly to the thermal conductivity,
at least for weak roughness. Note that more
sophisticated calculations at an atomistic level
indicate that the Casimir limit can, indeed, describe
the effect of boundary scattering in NWs of diame-
ters even down to 2 nm and roughness amplitude
even up to 20%.° This is quite interesting, because
the Casimir formula is a simplified treatment
actually based on scattering at the boundaries of 3D
phonons, rather than 1D phonons.

CONCLUSIONS

In this work we studied the thermal properties of
ultra-narrow silicon NWs by using the atomistic

MVFF method for computation of phonon band
structure and the ballistic Landauer approach and
the lifetime approximation solution of the phononic
Boltzmann transport equation for calculation of
ballistic and diffusive thermal conductivities,
respectively. We addressed the effects of structural
confinement on phonon dispersion, and the conse-
quences of this on thermal conductivity. We showed
that the thermal conductivity is significantly
reduced from the bulk values as the NW diameter is
reduced to D = 12 nm, because of phonon band
structure changes. For ultra-narrow NWs of diam-
eters down to 3 nm, however, the thermal conduc-
tivity increases again, because of the increasing
density of the long-wavelength phonons, which
undergo weaker scattering. This behavior is also
retained in the presence of moderate boundary
scattering. Finally, we showed that a significant
amount of heat in NWs is transported by phonons of
MFP longer than the NWs diameter, especially in
the narrowest NWs. In this case, the Casimir limit
is reached for relatively large roughness of the order
of 20% of the diameter.
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