
Solving 3D incompressible Navier-Stokes equations on hybrid CPU/GPU systems

Yushan Wang
Université Paris-Sud

France
yushan.wang@lri.fr

Marc Baboulin
Université Paris-Sud and Inria

France
marc.baboulin@inria.fr

Karl Rupp
Vienna University of Technology

Austria
rupp@iue.tuwien.ac.at

Oliver Le Maı̂tre
LIMSI-CNRS

France
olm@limsi.fr

Yann Fraigneau
LIMSI-CNRS

France
yann.fraigneau@limsi.fr

Keywords: Navier-Stokes equations, prediction-projection
method, parallel computing, Graphics Processing Unit (GPU)

Abstract
This paper describes a hybrid multicore/GPU solver for the
incompressible Navier-Stokes equations with constant coef-
ficients, discretized by the finite difference method. By ap-
plying the prediction-projection method, the Navier-Stokes
equations are transformed into a combination of Helmholtz-
like and Poisson equations for which we describe efficient
solvers. As an extension of our previous paper [1], this paper
proposes a new implementation that takes advantage of GPU
accelerators. We present numerical experiments on a current
hybrid machine.

1. INTRODUCTION TO THE PROBLEM
OF NAVIER-STOKES

The incompressible Navier-Stokes (NS) equations [2] are
the fundamental bases of many computational fluid dynamics
problems [3] as they model fluid flows with constant den-
sity. These equations are widely used in both academic and
industrial contexts to compute fluid flows in various applica-
tion domains (e.g., low-speed aerodynamics, oceanography,
biology, industrial systems. . .). In their simplest form, the
NS equations express the conservation of momentum (New-
ton’s second law) and mass, with a viscous fluid stress pro-
portional to the deformation rate (Newtonian fluid). Closed
form solutions are generally non-available, in particular be-
cause of the non-linear character of the equations, and various
computational methods have been proposed for their numer-
ical approximation. We mentioned in [1] possible numerical
methods for solving the NS equations, depending on the type
of problem. More specifically for GPU architectures, several
NS solvers have been developed in recent years (see e.g. [4]
that uses finite element method). In this paper, we consider
a finite difference discretization of the prediction-projection
method [5], and we present a hybrid solver for the resolution
of the 3D incompressible Navier-Stokes equations.

{
∂V
∂t

+∇ · (V⊗VT) = −∇P+
1

Re
∆V,

∇ ·V = 0.
(1)

In Eq. (1), V = (V1,V2,V3)
T (x1,x2,x3, t) is the 3D veloc-

ity vector and P = P(x1,x2,x3, t) is the fluid pressure. The
Reynolds number Re is the ratio of the characteristic iner-
tial and viscous forces. As Re increases, non-linear effects
arising from the non-linear convection term ∇ · (V⊗VT) be-
come more important and the flow exhibits fluctuations at
smaller scales requiring higher resolution. We restrict ourself
to simple rectangular computational domains supporting uni-
form discretization grids. The prediction-projection method
is a time-integration approach which transforms the original
NS problem into sequences of Helmholtz-like and Poisson
problems which are easier to solve numerically. Details on
the prediction-projection method can be found in [1]. The NS
problem has to be complemented with initial and boundary
conditions. We do not discuss boundary conditions and only
mention without details that our NS solver can deal with Neu-
mann, Dirichlet and periodical boundary conditions. In Sec-
tion 2, we describe the structure of the Helmholtz-like and
Poisson equations resulting from the prediction-projection
method. Then, Section 3 presents algorithms and implemen-
tations for solving these two equations using MAGMA [6, 7]
which is a dense linear algebra library for heterogeneous mul-
ticore/GPU architectures with interface similar to LAPACK.
Performance and numerical tests are given in section 4.

2. SOLVING THE HELMHOLTZ AND
POISSON EQUATIONS

According to the prediction-projection method, the Navier-
Stokes Eq. (1) is transformed into a Helmholtz-like equation
for the velocity field and a Poisson equation for the pressure.
In this section, we present the numerical methods used for
solving these equations and the resulting structures.

mailto:yushan.wang@lri.fr
mailto:marc.baboulin@inria.fr
mailto:rupp@iue.tuwien.ac.at
mailto:olm@limsi.fr
mailto:yann.fraigneau@limsi.fr

2.1. Helmholtz-like equation
Upon introduction of a suitable time-integration scheme

(e.g., with an explicit treatment of the non-linearities), the
prediction step consists of solving uncoupled 3D Helmholtz-
like equations for the components of the prediction velocity
V∗ given the current solution Vn at time tn:

(I−α∆)(V ∗i −V n
i) = Sn

i , i = 1,2,3, (2)

where I is the identity matrix, ∆ is the 3D Laplacian oper-
ator, α > 0 is a constant that depends on Re and the time
step ∆t. The known source Sn

i contains the explicit convec-
tion terms ∇ · (Vn⊗VnT

). The boundary conditions for the
increments V ∗i −V n

i in Eq. (2) can be of Neumann, Dirichlet
or periodic type, but are always homogeneous in the Neu-
mann and Dirichlet cases for steady boundary conditions. In
the remainder of this paper, Eq. (2) will be simply referred to
as Helmholtz equation.

An Alternating Direction Implicit (ADI) method [8] is then
used to approximate the 3D Laplacian operator ∆ by the prod-
uct of three 1D operators ∆1, ∆2 and ∆3. Eq. (2) is accordingly
transformed into a system of three equations which are solved
successively.

(I−α∆1)r = Sn
i ,

(I−α∆2)r′ = r,

(I−α∆3)(V ∗i −V n
i) = r′,

(3)

with i = 1,2,3 and r,r′ intermediate fields.
As illustrated in Fig. 1 in the 2D case, the computational

domain is divided equally into subdomains (shown by bold
lines) and a uniform grid is applied on each subdomain. For
a subdomain, the boundaries include layers of interface cells
with all its neighbor subdomains and possibly layers of real
boundary cells. Let Di denote the number of subdomains in
directions i = 1,2,3 such that D = D1D2D3 is the total num-
ber of subdomains. For simplicity, we assume subdomains
with number ni of grid points in each direction (including in-
terface and/or boundary points). It allows to define a unique
mesh size hi along each dimension. In addition, n = n1n2n3
is the total number of points in a subdomain while the total
number of computational points (including boundary but not
interface points) is computed by

N =
3

∏
i=1

Ni =
3

∏
i=1

(Di(ni−2)+2).

For simplicity, we detail the GPU solver for i = 1 and note
Sn

1 = f in system (3). The treatment of the other two com-
ponents is similar. Using the second-order finite difference
discretization of the 1D Laplacian operators, the system (3)
leads to tridiagonal linear systems. For instance, ordering the

Boundary cells.

Interface cells.

L1

L2

Figure 1. Example of a 2D domain decomposition and in-
terface layer.

unknowns according to i = 1→ i = 2→ i = 3 order, the dis-
cretization of the operator (I−α∆x) yields the block tridiag-
onal system:


B

B
. . .

B




r1
r2
...

rN2×N3

=


f1
f2
...

fN2×N3

 , (4)

where B = I − α

h2
1


c 1
1 −2 1

.
1 −2 1

1 c

 ∈ RN1×N1 ,

c =

{
−1, for Neumann BC
−2, for Dirichlet BC , and r j, f j ∈ RN1 , j =

1,2, ...,N2×N3.
For a periodic boundary conditions the matrix B has a dif-

ferent structure:

Bperiodic = I− α

h2
1


−2 1 1
1 −2 1

.
1 −2 1

1 1 −2

 .

A naive approach to solve Eq. (4) with Bperiodic can be ex-
pensive. Instead, the Sherman-Morrison algorithm [9] is ap-
plied to reduce Bperiodic to a tridiagonal matrix. When the
boundary condition types are constant along each faces of the
computational domain (here the two faces with normal in di-
rection i = 1), the blocks B in system (4) are all the same so
its resolution reduces to a smaller system with multiple RHS:

B
[
r1 r2 . . . rN2×N3

]
=
[

f1 f2 . . . fN2×N3

]
(5)

Eq. (5) is naturally parallelized according to the number of
blocks along i = 2 and i = 3 directions as shown in Eq. (6),
while along the i = 1 direction, the Schur complement [10] is
applied to ensure the continuity of the solution across subdo-
main interfaces.

B [r1 r2 . . . rn2×n3]
(j,k) = [f1 f2 . . . fn2×n3]

(j,k) ,

j = 1, ...,D2; k = 1, ...,D3. (6)

2.2. Poisson equation
The prediction velocity V∗ solution of Helmholtz Eq. (2)

needs be corrected to enforce the divergence free conditions.
This is achieved by computing a correction potential φ by
means of solving the Poisson equation

∆φ = α∇ ·V∗, (7)

with homogeneous Neumann or periodic boundary condi-
tions. Eq. (7) is rewritten as Lφ = s as follows

(L1 +L2 +L3)φ = s, (8)

where Li =
∂2

∂x2
i

, i = 1,2,3.

Many methods exist for solving the Poisson equation based
on multigrid techniques [11] and Fourier transformation [12].
The method we use in our solver is based on partial diagonal-
ization and uses the eigen decompositions of L1 and L2:

L1 = Q1Λ1Q−1
1 ,

L2 = Q2Λ2Q−1
2 ,

where Λi=1,2 are the eigenvalue diagonal matrices and Qi=1,2
the eigenvector matrices of the 1D operators.

By defining

s′ = Q−1
1 Q−1

2 s,
φ′ = Q−1

1 Q−1
2 φ,

we obtain a new tridiagonal system for the i = 3 direction:

(Λ1 +Λ2 +L3)φ
′ = s′. (9)

Obviously, Eq. (9) is also a block tridiagonal system by
using the standard second order approximation of the opera-
tor L3 and the i = 3→ i = 1→ i = 2 ordering. In contrast to
Eq. (4), the tridiagonal blocks in Eq. (9) are not identical. The
matrix form of Eq. (9) is represented by Eq.(10):


D1

D2
. . .

DN1×N2




φ1
φ2
...

φN1×N2

=


s1
s2
...

sN1×N2

 ,

(10)

where the k-th tridiagonal block Dk is:
dkk−1 1

1 dkk−2 1
.

1 dkk−2 1
1 dkk−1

 ∈ RN3×N3 ,

with dkk = λ1(id1)+λ2(id2), where λ1 and λ2 are eigenvalues
of L1 and L2 respectively, and id1 = (k%(N1×N3))/N3 and
id2 = k/(N1×N3) are the corresponding i= 1 and i= 2 index
for the k-th block (% denotes the modulo operator).

3. ALGORITHMS AND IMPLEMENTA-
TIONS

This section describes how we can solve Helmholtz and
Poisson equations using heterogeneous multicore/GPU ar-
chitectures. For each solver we first identify the most time-
consuming task in the calculation using an existing CPU
solver SUNFLUIDH which is based on MPI [13] and is de-
veloped at LIMSI1. Then, we propose an efficient algorithm
to perform this task on a CPU/GPU machine.

3.1. Helmholtz solver
The solution of the Helmholtz equations can be split in

two main tasks: construction of tridiagonal system (including
computations of convection-diffusion flux and source term)
and tridiagonal solve. Fig. 2 shows how the global computa-
tional time is distributed among these tasks when consider-
ing one iteration of the SUNFLUIDH solver for a Helmholtz
problem (mesh size = 2403) on a multicore system. We ob-
serve that solving the tridiagonal systems (including reorder-
ing) represents about 2/3 of the execution time. In the follow-
ing we explain two possible methods for performing this task
efficiently using GPU accelerators.

A classical method to solve Eq. (5) is the Thomas algo-
rithm, which corresponds to a Gaussian elimination without
pivoting. We consider a general diagonally dominant tridiag-
onal system (11) Ax = s where A∈Rm×m and x,s∈Rm. Then
the system is solved using Algorithm 1.


b1 c1
.

ai bi ci
.

am bm




x1
...
xi
...

xm

=


s1
...
si
...

sm

 . (11)

1Laboratoire d’Informatique pour la Mécanique et les Sciences de
l’Ingénieur (http://www.limsi.fr).

http://www.limsi.fr

Figure 2. Time breakdown in Helmholtz equation (Intel
Xeon E5645 2×6 cores 2.4 GHz.)

Algorithm 1: Thomas algorithm.
Data: Diagonal matrix (a,b,c), RHS s.
Result: Solution x (stored in si).

1 Forward elimination: for i = 2 to m, do
2 bi = bi−

ci−1×ai

bi−1

3 si = si−
si−1×ai

bi−1
4 end
5 Backward substitution: sm =

sm

bm
6 for i = m−1 to 1, do
7 si =

si− ci× si+1

bi
8 end

Algorithm 1 can be easily extended to address systems with
multiple RHS by adding loops in lines 3, 5 and 7 of the al-
gorithm. Inside a given RHS row, the operation will be per-
formed by different GPU threads (see Algorithm 2).

To solve one equation of system (3), without considering
the domain decomposition, data needed to be copied from
CPU to GPU includes the three diagonals and the RHS ar-
ray. Thus, to solve the whole system, we need to transfer
three tridiagonal matrices and the source term. Once these ar-
rays have been transferred (during the initialization step of the
solver), we keep them in GPU memory and only use copies
for computations.

As system (3) is solved successively, the solution of the
first equation is used as the RHS of the second equation. How-
ever, the matrices in system (3) are block tridiagonal only if
the variables are ordered in a certain way according to the
direction. So we need a GPU kernel which deals with the
reordering according to the solving direction. Algorithm 3

Algorithm 2: GPU implementation of Thomas algorithm
with multiple RHS.

Data: Device copies ad , bd , cd and sd of the tridiagonal
matrix and the RHS array.

Result: Solution xd (stored in sd).
1 Forward elimination: for i = 2 to m, do

2 bd [i]−=
cd [i−1]×ad [i]

bd [i−1]
3 for each thread j do

4 sd [(j−1)m+ i]−=
sd [(j−1)m+ i−1]×ad [i]

bd [i−1]
5 end
6 end
7 Backward substitution: for each thread j do

8 sd [jm] =
bd [m]

sd [jm]
9 end

10 for i = m−1 to 1, do
11 for each thread j do
12 sd [(j−1)m+ i] =

sd [(j−1)m+ i]− cd [i]× sd [(j−1)m+ i+1]
bd [i]

13 end
14 end

is an example of reordering from i = 1→ i = 2→ i = 3 to
i = 2→ i = 3→ i = 1.

Algorithm 3: Reorder the solution array after the first
solve to fit for the second solve.

int id1, id2, id3;
for each thread i do

id1 = i%n1;
id2 = (i%(n1×n2))/n1;
id3 = i/(n1×n2);
arraynew[id2 + id3×n2 + id1×n2×n3] = arrayold [i];

end

Another method for solving Eq. (5) is by using the explicit
inverse of matrix B. We can find in [14] an expression for the
inverse of a general non-singular tridiagonal matrix A used in
Eq. (11) where each component of A−1 can be expressed as

A−1
i j =

 (−1)i+ jcici+1 . . .c j−1θi−1φ j+1/θn, i < j,
θi−1φi+1/θn, i = j,
(−1)i+ ja j+1a j+2 . . .aiθ j−1φi+1/θn, i > j,

(12)
where θi’s verify the recurrence relation

θi = biθi−1− ci−1aiθi−2, for i = 2, ...,m,

with initial conditions θ0 = 1 and θ1 = b1, and φi’s verify the
recurrence relation

φi = biφi+1− ciai+1φi+2, for i = m−1, ...,1,

with initial conditions φm+1 = 1 and φm = bm, and we also
observe that θm = |A|.

We use formulas (12) to compute the inverse of B in the ini-
tialization step of the solver and store the inverse in memory.
The solution of the Eq. (5) is then computed by the matrix-
matrix multiplications:[

r1 r2 . . . rN2×N3

]
= B−1 [f1 f2 . . . fN2×N3

]
.

3.2. Poisson solver
Fig. 3 represents the time breakdown for one iteration of a

Poisson problem (mesh size = 2403) using SUNFLUIDH on
a multicore system. According to the partial diagonalization
method mentioned in Section 2.2., the main tasks are base
projections and tridiagonal solve. We observe in Fig. 3 that
the most time-consuming part is the base projection which
corresponds to matrix-matrix multiply (including reordering).
In the remainder of this section we explain how to improve
this calculation using GPU accelerators.

Figure 3. Time breakdown in Poisson equation (Intel Xeon
E5645 2×6 cores 2.4 GHz.)

We can also improve the tridiagonal solver even though it
does not cost much time. For solving Eq. (8) we can exploit
parallelism at the matrix level instead of the RHS level as
shown in Algorithm 4. For example in the forward elimina-
tion step, we associate each elimination operation with one
GPU thread which can be considered as doing multiple elim-
inations simultaneously.

To reduce the execution time spent in matrix-matrix mul-
tiplication, we take advantage of GPU accelerator by calling
the MAGMA routine magmablas dgemm. One remark is

Algorithm 4: GPU implementation of Thomas algorithm
with multiple matrices.

Data: Device copies ad , bd , cd and sd of the tridiagonal
matrix and the RHS array.

Result: Solution xd (stored in sd).
1 Forward elimination: for i = 2 to m, do
2 for each thread j do
3 bd [(j−1)m+ i]−=

cd [(j−1)m+ i−1]×ad [jm+ i−1]
bd [jm+ i−1]

4 sd [(j−1)×m+ i]−=
sd [(j−1)m+ i−1]×ad [jm+ i−1]

bd [jm+ i−1]
5 end
6 end
7 Backward substitution: for each thread j do

8 sd [jm−1] =
bd [jm−1]
sd [jm−1]

9 end
10 for i = m−1 to 1, do
11 for each thread j do
12 sd [(j−1)m+ i] =

sd [(j−1)m+ i]− cd [(j−1)m+ i]× sd [(j−1)m+ i+1]
bd [(j−1)m+ i]

13 end
14 end

that we need to reorder the variables according to the direc-
tion considered. For example, to compute the new source term
s′, we have to reorder the source array s by the order i = 2→
i= 3→ i= 1 in order to use the magmablas dgemm routine
to compute Q−1

2 s. Next, we have to once again reorder the re-
sult Q−1

2 s in the order of i = 1→ i = 2→ i = 3 to proceed
to second multiplication with Q−1

1 . For the same reason, the
product Q−1

1 Q−1
2 s must be ordered by i= 3→ i= 1→ i= 2 to

fit in the block tridiagonal structure and the solution needs to
be once again reordered according to the multiplication fac-
tor. The algorithm for the reordering is exactly the same as
Algorithm 3 shown in Section 3.1..

Let us now study how to implement on GPU the matrix-
matrix multiply for the matrices Qi described in Section 2.2.
with decomposed domain. Suppose that the 3D domain is di-
vided into p subdomains along i = 1 direction as shown in
Fig. 4. According to the principles of domain decomposition,
each subdomain is associated to a multicore processor Pi and
to a GPU Gi.

Let us consider for instance the multiplication of Q−1
1 and

s. As the source array s is already distributed on the corre-
sponding processor or accelerator, and its size is often impor-

P1 P2 . . . Pp

Figure 4. 3D domain decomposition along i = 1 direction.

tant, we do not want to re-distribute s by column blocks to
perform the usual parallel matrix-matrix multiplication. The
rearrangement of s can be very expensive especially when s is
stored on the GPU memory. On the other hand, we distribute
the matrix Q−1

1 by column blocks to the corresponding pro-
cessor or accelerator as shown in Fig. 5.

Q11 Q12 . . . Q1p

Q21 Q22 . . . Q2p

...
...

...
...

Qp1 Qp2 . . . Qpp




s1
s2

...
sp




↓
P1

↓
P2

↓
Pp

→ P1

→ P2

→ Pp

Figure 5. Distribution of Q−1
1 = {Qi j}i=1,...,p; j=1,...,p and s

on multiple processors.

With Q−1
1 distributed in blocks, on accelerator Gi, we mul-

tiply Q ji and si with j = 1,2, ..., p, where Q ji ∈ Rn1×n1 and
si ∈Rn1×(n2×n3). Once all the p multiplications are computed,
we send the results back to processor Pi and we call MPI
routines MPI ALLTOALL and MPI REDUCE to distribute the
block multiplication results and to obtain the final multiplica-
tion result as shown in Fig. 6.

To sum up, we compute Q1, Q2, Q−1
1 and Q−1

2 in the ini-
tialization phase and copy the corresponding column blocks
to the assocoated GPU. While doing the matrix-matrix multi-
plication, we first transfer (or not if it is already on the GPU)
the source array s to the GPU and then call the MAGMA rou-
tine magmablas dgemm to obtain the blocks Qi js j which
are then sent back to processor. Then we proceed the infor-
mation exchange via MPI routines and send back to GPU the
final solution in order to perform the next multiplication or
the tridiagonal solve.

4. NUMERICAL EXPERIMENTS
Our experiments have been carried out on a multicore pro-

cessor Intel Xeon E5645 (2 sockets × 6 cores) running at
2.4 GHz. The cache size per core is 12 MB and the size of the
main memory is 48 GB. This system hosts two GPU NVIDIA

P1→ Q11s1 Q21s1 . . . Qp1s1

P2→ Q12s2 Q22s2 . . . Qp2s2

...
...

...
...

Pp→ Q1psp Q2psp . . . Qppsp

MPI ALLTOALL

P1→ Q11s1 Q12s2 . . . Q1psp

P2→ Q21s1 Q22s2 . . . Q2psp

...
...

...
...

Pp→ Qp1s1 Qp2s2 . . . Qppsp

MPI REDUCE(+)

P1→ ∑
p
l=1 Q1lsl

P2→ ∑
p
l=1 Q2lsl

...

Pp→ ∑
p
l=1 Qplsl

Figure 6. Matrix-matrix multiplication with multiple subdo-
mains.

Tesla C2075 running at 1.15 GHz with 6 GB memory each.
MAGMA was linked with the libraries CUDA 5.0 [15] and
MKL 10.3.8 [16] respectively, for multicore and GPU. In par-
ticular we compare the performance of our new hybrid NS
solver with the existing NS solver SUNFLUIDH.

4.1. Helmholtz and Poisson solvers
The 3D Helmholtz test problem that we consider is defined

as follows.{
V(x)−α∆V(x) = S(x), x ∈Ω = (0,1)3,

V(x) = 0, x ∈ ∂Ω,
(13)

where S = (1+3απ2)V, x = (x1,x2,x3) and α = 10−7 is de-

fined in Eq. (3). The exact solution is:

V(x) =

 sin(πx1)sin(πx2)sin(πx3)
sin(πx1)sin(πx2)sin(πx3)
sin(πx1)sin(πx2)sin(πx3)

 .

In Fig. 7 we compare the two methods described in Sec-
tion 3.1. for solving the tridiagonal systems resulting from
Eq. (13) for different mesh sizes (Thomas algorithm and ex-
plicit inverse). For both methods we computed the absolute
error given by ||u−uh||/

√
N where u and uh are respectively

the exact and approximate solutions. We noticed that the two
errors are the same. Regarding the performance, Fig. 7 rep-
resents the execution time for the two methods. For instance,
for a mesh size of 2563, using an explicit inverse enables us to
gain a factor 4 over the Thomas algorithm. However, as com-
puting the explicit inverse suits only for problems with same
boundary conditions for each direction, the standard Thomas
algorithm will be still useful in more general Helmholtz prob-
lems.

Figure 7. Performance of Helmholtz solver using Thomas
algorithm and explicit inverse.

Let us now consider the following Poisson problem.

 ∆φ(x) = s(x), x ∈Ω = (0,1)3,
∂φ

∂n
(x) = 0, x ∈ ∂Ω,

(14)

where s =−π2φ and the exact solution is

φ(x) = cos(πx1)cos(πx2)cos(πx3).

The performance of the Poisson solver is presented in
Fig. 8. We observe that, when the problem size grows, the
forward error decreases and the execution time increases.

Table 1 lists the time breakdown for one iteration of
the Helmholtz and Poisson solvers and compares the per-
formance of the GPU solvers with the corresponding CPU

Figure 8. Performance of Poisson solver.

solvers. We observe that the GPU implementations enable us
to accelerate the calculations with roughly a factor 8 and 5 for
the Helmholtz and Poisson solvers respectively when com-
pared with the CPU solvers using MPI or multithreading. The
data transfer from CPU to GPU for the Helmholtz solver in-
cludes three RHS vectors (size 2403) and three matrices B−1

(2402). For the Poisson solver, the amount is three diagonals
of size 2403, one RHS vector of size 2403, and the matrices
Q1,Q−1

1 ,Q2,Q−1
2 of size 2402. Consequently, the data move-

ments for the Poisson solver require 1/3 more time than for
the Helmholtz solver, which is confirmed in Table 1.

Helmholtz Poisson
(with B−1)

Transfers CPU-GPU (only once) 85 109
Matrix multiplication 216 96
Solution reordering 126 84
Tridiagonal system solve - 165
Total CPU solver (12 MPI procs) 2700 1460
Total CPU solver (12 threads) 2750 1760
Total GPU solver 342 345

Table 1. Time (ms) distribution for Poisson and Helmholtz
GPU solvers (mesh size = 2403).

4.2. Hybrid NS solver
We study the global performance of the hybrid multi-

core+GPU NS solver using OpenMP [17]. Fig. 9 depicts the
execution time for one time iteration (the dashed line repre-
sents the sequential time using SUNFLUIDH). The problem
size is 1283 for one domain/MPI process and 128×128×64
per subdomain for two subdomains/MPI processes. Each MPI
process corresponds to an hexacore processor and is associ-
ated to one GPU. We observe that the computational time is
reduced by at least 20% when using two GPUs instead of one.
A potential of improvement relies on the use of optimized
communication (e.g. asynchronous calls to GPU).

Figure 9. Performance of multicore+GPU NS solver.

5. CONCLUSION
We described a hybrid multicore+GPU Navier-Stokes

solver that includes the solution of the Helmholtz and Poisson
equations. The performance results showed significant accel-
erations by using GPU devices. Even though the GPU is used
only in several parts of the algorithm, the speed-ups are en-
couraging, which allows us to continue in this direction. As
a future work, we plan to extend the use of GPU in other
parts of the NS solver, such as the construction of the tridiag-
onal Helmholtz system mentioned at the beginning of Section
3.1.. Another improvement will concern the optimization of
the memory transfer between CPU and GPU.

ACKNOWLEDGMENT
This work was supported by Région Île-de-France and

Digitéo2, CALIFHA project, contract No 2011-038D. It was
also partially funded by Inria-Illinois Joint Laboratory on
PetaScale Computing. We thank Franck Cappello and Ar-
gonne National Laboratory (Mathematics and Computer Sci-
ence Division) for hosting the first author in summer 2013.
We also thank Joël Falcou (Université Paris-Sud, France) for
fruitful discussions on GPU computing.

REFERENCES
[1] Y. Wang, M. Baboulin, J. Dongarra, J. Falcou,

Y. Fraigneau, and O. Le Maı̂tre. A parallel solver for in-
compressible fluid flows. Procedia Computer Science,
(18):439–448, 2013.

[2] P. Constantin and C. Foias. Navier-Stokes Equations.
University of Chicago Press, 1988.

[3] J. H. Ferziger and M. Perić. Computational Methods for
Fluid Dynamics. Springer, 3 edition, 1996.

2http://www.digiteo.fr

[4] D. Göddeke, S. H. M. Buijssen, H. Wobker, and
S. Turek. GPU acceleration of an unmodified parallel
finite element Navier-Stokes solver. International Con-
ference on High Performance Computing & Simulation
(HPCS’09), pages 12–21, 2009.

[5] A. J. Chorin. Numerical solution of the Navier-Stokes
equations. Mathematics of Computation, 22(104):745–
762, 1968.

[6] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense
linear algebra for hybrid GPU accelerated manycore
systems. Parallel Computing, 36(5-6):232–240, 2010.

[7] M. Baboulin, J. Dongarra, and S. Tomov. Some is-
sues in dense linear algebra for multicore and special
purpose architectures. In 9th International Workshop
on State-of-the-Art in Scientific and Parallel Comput-
ing (PARA’08), volume 6126-6127 of LNCS. Springer,
2008.

[8] J. Douglas Jr. Alternating direction methods for three
space variables. Numerische Mathematik, (4):41–63,
1962.

[9] J. Sherman and W. J. Morrison. Adjustment of an in-
verse matrix corresponding to a change in one element
of a given matrix. Annals of Mathematical Statistics,
21(1):124–127, 1950.

[10] Y. Saad. Iterative Methods for Sparse Linear Systems.
SIAM, 2 edition, 2003.

[11] A. McAdams, E. Sifakis, and J. Teran. A parallel
multigrid Poisson solver for fluids simulation on large
grids. In Eurographics/ ACM SIGGRAPH Symposium
on Computer Animation, 2010.

[12] R. W. Hockney. A fast direct solution of poisson’s
equation using fourier analysis. Journal of the ACM,
12(1):95–113, 1994.

[13] Message Passing Interface Forum. MPI : A Message-
Passing Interface Standard. Int. J. Supercomputer Ap-
plications and High Performance Computing, 1994.

[14] R. A. Usmani. Inversion of a tridiagonal Jacobi matrix.
Linear Algebra and its Applications, 212-213:413–414,
1994.

[15] NVIDIA CUDA Programming Guide. 2012. https:
//developer.nvidia.com.

[16] Intel. Math Kernel Library (MKL). http://www.
intel.com/software/products/mkl/.

[17] OpenMP Architecture Review Board. OpenMP appli-
cation program interface version 3.0, 2008.

http://www.digiteo.fr
https://developer.nvidia.com
https://developer.nvidia.com
 http://www.intel.com/software/products/mkl/
 http://www.intel.com/software/products/mkl/

	Introduction to the problem of Navier-Stokes
	Solving the Helmholtz and Poisson equations
	Helmholtz-like equation
	Poisson equation

	Algorithms and implementations
	Helmholtz solver
	Poisson solver

	Numerical experiments
	Helmholtz and Poisson solvers
	Hybrid NS solver

	Conclusion

