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Abstract During the last couple of years, there is growing experimental evidence
which confirms charge trapping as the recoverable componentof BTI. The trap-
ping process is believed to be a non-radiative multiphonon (NMP) process, which
is also encountered in numerous physically related problems. Therefore, the under-
lying NMP theory is frequently found as an important ingredient in the youngest
BTI reliability models. While several different descriptions of the NMP transitions
are available in literature, most of them are not suitable for the application to de-
vice simulation. In this chapter, we will present a rigorousderivation that starts out
from the microscopic Franck-Condon theory and yields generalized trapping rates
accounting for all possible NMP transitions with the conduction and the valence
band in the substrate as well as in the poly-gate. Most importantly, this derivation
considers the more general quadratic electron-phonon coupling contrary to several
previous charge trapping models. However, the pure NMP transitions do not suffice
to describe the charge trapping behavior seen in time dependent defect spectroscopy
(TDDS). Inspired by these measurements, we introduced metastable states, which
have a strong impact on the trapping dynamics of the investigated defect. It is found
that these states provide an explanation for plenty of experimental features observed
in TDDS measurements. In particular, they can explain the behavior of fixed as well
as switching oxide hole traps, both regularly observed in TDDS measurements.

abstract on a separate page so as not to break the formating ofthe chapter
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1 Introduction

For a long time, the research in bias temperature instability (BTI) was dominated by
variants of the reaction-diffusion (RD) model,1–8 discussed in the Chapter 2.2.3 of
this book.9 In the course of the last decade it was realized that the concept of the RD
model cannot explain BTI.8,10,11At the same time, a new measurement technique
called time-dependent defect spectroscopy (TDDS) emerged, which indicated that
some sort of charge trapping is involved in BTI. This method is capable of detecting
single charge emission events from individual defects12–18 in recovery traces that
last up to a few hundred seconds. Thus TDDS allows for the analysis of the recov-
erable component of BTI and opened the doors towards in-depth investigations of
the physical trapping mechanism underlying BTI. For a detailed description of this
measurement method see Chapter 1.2.2 of this book.19

First variants of charge trapping models relied on elastic hole tunneling of holes
between the substrate and oxide defects.20–24However, these models show a negli-
gible temperature dependence, which is in contrast to what has been observed ex-
perimentally. Other variants were based on the famous Shockley-Read-Hall (SRH)
model25 and modified to account for the tunneling effect26 and the thermal activa-
tion of BTI.27,28 For the latter, transition barriers were phenomenologically intro-
duced to reproduce the observed temperature dependence. They were reasoned by
non-radiative multiphonon (NMP) transitions but were not rigorously derived from
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a microscopic theory.29–39The underlying theory provides a rigorous framework for
the description of the charge transfer process between the substrate and the oxide
defects in BTI. Hence, this theory forms the basis of our multi-state model and will
be discussed in detail at first. Subsequently they will be simplified to make them
applicable for analytical calculations.

Furthermore, TDDS studies demonstrated that the trapping dynamics must in-
volve metastable states as well as thermal but field-insensitive transitions. This ob-
servation suggested a bistable BTI defect, which features quite complicated trapping
dynamics including two-step capture and emission processes. This kind of defect
also allows for different transition paths, which can explain the dual trap behavior
seen in TDDS. For validation of this new model, we will evaluate the simulation
results to the experimental data obtained from TDDS.

2 Benchmarks for a BTI Model

As a result of the continuous downscaling of the device geometries, single charge
detrapping events have become visible as discrete steps in the BTI recovery curves.
These steps came into the focus of scientific interest so thatmeasurement tech-
niques, such as TDDS, have become frequently employed. The TDDS relates these
steps to several single charging or discharging events12,13,18of defects and therefore
allows for the analysis of individual oxide defects and their trapping behavior. As
such, the findings from TDDS14–17 are used as criteria for the development of an
atomistic BTI model and are listed in the following:

(i ) The plot in Fig. 1 reveals that the defects exhibit a strong,nearly exponential
stress voltage dependence ofτc. Empirically, this dependence can be described
by exp(−c1Fox+c2F2

ox). However, it differs from defect to defect, implying that
it is related to certain defect properties.

(ii ) The time constant plots show a marked temperature dependence, which becomes
obvious by the downward shift of theτc curves at higher temperatures. The acti-
vation energies extracted from Arrhenius plots are about 0.6eV.

(iii ) One type of the oxide defects (‘fixed oxide hole traps’) has aτe that remains
unaffected by changes inVg.40,41

(iv ) The other type (‘switching oxide hole traps’) shows a drop in τe towards lower
Vg.40–42

(v ) The τe of both types shows a temperature activation with a large spread (0.6−
1.4eV).

Furthermore, it was found that several TDDS recovery tracesdisplay random
telegraph noise (RTN) when studying a device at certain biasconditions.14 After a
while, this RTN signal vanishes and does not reoccur during the remaining mea-
surement time. The termination of the noise signal is ascribed to hole traps which
change to their neutral charge state and remain therein. This kind of noise is termed
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Fig. 1 (PRINT IN COLOR)Left: The capture time constantsτc as a function ofVg for two de-
fects at different temperatures extracted from a single device. Open and closed symbols mark
measurements carried out at 125◦C and 175◦C, respectively. Theτc curves show a strong field
acceleration and temperature activation. However, the observed field acceleration does not follow
the 1/Id ≈ 1/p dependence (dot-dashed line) as predicted by the conventional SRH model.Right:
The emission time constantsτe for single defects gathered from the TDDS for varying recovery
gate voltages. The two distinct field dependences (upper and lower panel) suggest the existence of
two types of defects present in the oxide. The defect #1 shows different field behaviors depending
on whether the device is operated in the linear or the saturation regime during the measurement
(not shown here). This suggests that the electrostatics within the device are responsible for the two
distinct field dependences. It is noteworthy that the drop inτe goes hand in hand with the decrease
in the interfacial hole concentrationp (dot-dashed line).

temporary RTN14 (tRTN) since it occurs only for a limited amount of time. A sim-
ilar phenomenon called anomalous RTN (aRTN) was discoveredearlier by Kirton
and Uren.27 Therein, electron traps were observed, which repeatedly produce noise
for random time intervals. During the interruptions of thisRTN signal, the defects
dwell in their negative charge state generating no RTN noisesignal. The behavior
of these traps was interpreted by the existence of a metastable defect state. Unfor-
tunately, there exist only a quite limited amount of noise data so that no reliable
statistics can be generated. Nevertheless, it is viewed as astringent requirement that
the sought BTI model can also capture these noise phenomena in principle.

3 Previous Modeling Attempts

Early BTI modeling attempts relied on the classical reaction-diffusion model1,2,5–7

or variants thereof3,5,8accounting for dispersive diffusion3,8 and three-dimensional
effects.10,11 Even though these models are still popular, it has been demonstrated
that the underlying concept cannot describe the basic feature of BTI (see Chapter
2.2.3 of this book9). As an alternative explanation for BTI, charge trapping based on
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elastic electron tunneling was previously suggested. However, this process exhibits
a far too weak temperature dependence as compared to measurements. The next
evolution of trapping models rested upon SRH theory combined with elastic tunnel-
ing, thereby mimicking an inelastic and thus temperature-activated trapping process.
To its disadvantage, the underlying trapping process is notspecified within the gen-
eral SRH framework and can therefore not be linked to simulations based on well-
founded atomistic theories. A prototype version of this SRHmodel was proposed
by McWhorter,26 who extended the SRH equations by the factor exp(xt/x0) in order
to account for the effect of electron tunneling. Since this model suffers from a weak
temperature dependence ofτc and small time constants, Kirton and Uren27 incorpo-
rated a term with field-independent energy barriers∆Eb. This ‘ad hoc’ introduction
of barriers has been motivated by the theory of non-radiative multi-phonon transi-
tions (NMP) process.38 However, Kirton and Uren did not provide a detailed theoret-
ical derivation based on NMP theory. Nevertheless, their work must be regarded as
a substantial improvement in the interpretation of charge trapping at semiconductor-
oxide interfaces. In this variant, the capture and emissiontime constants read

τc = τ0 exp

(
xt

x0

)

exp(β∆Eb)
Nv

p

{

1, Et > Ev

exp(−β∆Et) exp(βq0Foxxt),Et < Ev
(1)

τe = τ0 exp

(
xt

x0

)

exp(β∆Eb)

{

exp(β∆Et) exp(−βq0Foxxt), Et > Ev

1, Et < Ev
(2)

where the trap levelEt is defined as

Et(xt) = Ev +Et,0−Ev,0
︸ ︷︷ ︸

=∆Et

−q0xtFox (3)

with Et,0 andEv,0 denoting the trap level and the valence band edge in the absence
of an electric field.

The behavior of the model with respect to the temperature andthe oxide field
is illustrated in the left plot of Fig. 2 (left). When the trap level lies below the va-
lence band edge (Et < Ev), τc shows an exponential field dependence. At low gate
biases, the breakdown of the inversion layer gives rise to a drop in the hole con-
centration and in consequence to a strong increase inτc. Comparing the model to
the experimental TDDS data, this exponential behavior allows for reasonably good,
approximative fits ofτc but is still incompatible with the observed curvature inτc

(see the left fit in Fig. 2).τe is experimentally observed to be field insensitive, which
goes hand in hand with equation (2) based on Boltzmann statistics. However, when
accurate Fermi-Dirac statistics (as implemented in devicesimulators) are employed,
the emission times exhibit a weak field dependence that agrees reasonably well with
the behavior of fixed oxide hole traps (constant emission times) but is incompati-
ble with the behavior of switching oxide hole traps (a drop atweak oxide fields).
Alternatively, whenτe is optimized in the Kirton model (see right fit in Fig. 2), a
reasonable fit can be achieved but at the same time a strong mismatch arises forτc
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Fig. 2 (PRINT IN COLOR) Two fits of the Kirton model to the TDDS data. The symbols stand for
the measurement data and the lines represent the simulated time constants.Left: When the Kirton
model is optimized to the hole capture timesτc, reasonable fits can be achieved butτe is predicted
three orders of magnitudes too low.Right: Alternatively, a good agreement can be obtained for the
hole emission timesτe but with a strong mismatch of the capture timesτc for Et > Ev. From this it
is concluded that the Kirton model is not capable of fittingτc andτe at the same time.

in the rangeEt > Ev. Furthermore, Fig. 2 reveals that the introduction of∆Eb yields
the required temperature activation and larger time constants in agreement with the
points (ii ) and (v ) of the TDDS findings. Even though the model can reproduce sev-
eral features seen in the TDDS data separately — except for the curvature inτc —,
no reasonable agreement with the whole set of measurement data can be achieved.

4 NMP Transitions between Single States

Contrary to the previously discussed charge trapping models, the non-radiative mul-
tiphonon (NMP) theory37–39relies on a solid physical foundation. Its understanding
requires the knowledge of fundamental microscopic theories, which are briefly dis-
cussed in the following. In the Huang-Born approximation, acertain atomic con-
figuration is split into a system of electrons and nuclei, which are described by two
separated Schrödinger equations.

{
T̂e+V̂ee(r)+V̂en(r;R)+V̂nn(R)

}
ϕi(r;R) =Vi(R)ϕi(r;R) (4)

{
T̂n+Vi(R)

}
ηiα(R) = Eiα ηiα(R) (5)

These equations contain Coulomb contributions from the electron-electron (̂Vee),
electron-nucleus (̂Ven), and nucleus-nucleus (V̂nn) interactions as well as the kinetic
energies of the electrons (T̂e) and the nuclei (̂Tn). The electronic Hamiltonian in
equation (4) depends on the electronic (r) and the nuclear (R) degrees of free-
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Fig. 3 Adiabatic potentials
involved in a charge transfer
reaction. Each of the two
parabola corresponds to one
charge state of the defect
where the left (Vi ) one rep-
resents the initial and the
right (Vj ) one the final charge
state. Their corresponding
wavefunctions and eigenener-
gies are depicted as solid and
dashed lines, respectively. An
NMP transition only occurs
when the initial and the final
energies coincide as it is the
case forEi3 andE j1. Then the
overlap of their correspond-
ing vibrational wavefunctions
enters the calculation of the
lineshape functionfij and
consequently determines the
NMP transition probability.
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dom, where the latter only enter parametrically. The solutionVi(R) of the electronic
Schr̈odinger equation (4) corresponds to the energy of a certain atomic configura-
tion and acts as a potential for the nuclei in the Schrödinger equation (5). Therefore,
Vi(R) is usually referred to as the adiabatic potential energy. Inthe Huang-Born ap-
proximation, the nuclei of the atoms are treated as a system of quantum mechanical
particles with quantized statesηiα and discrete energiesEiα . Also the wavefunc-
tion of the composite electron-nucleus system is split intoan electronicϕi(r;R)
and nuclearηiα(R) part, denoted the electronic and the vibrational wavefunction,
respectively.

In the case of charge trapping in BTI, one deals with a processthat is frequently
termed ‘charge transfer reaction’ in the theoretical literature. Such a kind of process
must be described by a system consisting of all atoms involved. Since the trapped
charge carrier is exchanged between the defect and the substrate, the system includes
the atoms surrounding the BTI-defect as well as the atoms in the substrate. Alto-
gether, these atoms span a 3N-dimensional space withN being the number of con-
sidered atoms. The adiabatic potential energy surface in this configurational space
is usually visualized in a configuration coordinate diagram(see Fig. 3). Therein,
the atomic positions are reduced to a one-dimensional quantity called configuration
coordinate, which allows to describe the correlated motionof atoms, such as lattice
relaxation. In these plots, the adiabatic potential energysurfaces assume an almost
parabolic shape for small atomic displacements and are thususually approximated
by harmonic quantum oscillators in solid state theory.

During a charge trapping process, the defect changes from the charge statei to
j, where each of them charge states is represented by its own adiabatic potential
in the configuration coordinate diagram (see Fig. 3). The NMPtransition ratekij is
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then derived from first-order time-dependent perturbationtheory using the Franck-
Condon approximation.37,39,43,44

kij = Aij fij (6)

Aij =
2π
h̄
|〈ϕi |V ′|ϕ j〉|2 (7)

fij = ave
α ∑

β
|〈ηiα |ηjβ 〉|2 (8)

Here, ‘ave’ stands for the thermal average over all initial states ‘α ’ and the sum
runs over the final states ‘β ’. Aij is the electronic matrix element with the adiabatic
operator as a perturbationV ′ and is associated with a simple electronic transition.
The Franck-Condon factor|〈ηiα |ηjβ 〉|2 in equation (8) only gives a contribution
when the initial and the final state have the same energy. If this is the case, this factor
is calculated as the overlap integral of the two vibrationalwavefunctions ‘iα ’ and
‘ jβ ’ and corresponds to the respective transition probability(cf. Fig. 3). Calculating
the thermal average over the initial statesα and summing over the final statesβ yield
the lineshape functionfij that will be found to govern the gate bias and temperature
dependence of the NMP transition rate. In solids the eigenspectrumEiα is usually
densely spaced so that there are numerous possible transitions from the initial charge
i to the final charge statej. This lineshape function has its largest contributions from
those energies that lie close to the intersection point (IP)of the adiabatic potentials.
Around this point, the lineshape function is assumed to havea Dirac peak in the
classical limit.45 This assumption allows for simple analytical expressions that can
be conveniently employed for device simulation.

In the following, the NMP transition rates will be derived for a defect which
changes between its neutral (0) and its positive (+) charge state upon hole trapping
or detrapping. The corresponding initial (i = 0) and final (j =+) potential energy
surface can be expressed as

V0(q) = c0(q−q0)
2+V0 = c0∆q2+V0 (9)

V+(q) = c+(q−q+)
2+V+= c+(∆q−qs)

2+V0+Vs (10)

using the quantities defined in Fig. 4 and the shorthands∆q= q−q0, qs = q+−q0,
andVs =V+−V0. c0 andc+ denote the curvature of the adiabatic potentials for the
neutral and the positively charged defect, respectively. Without loss of generality,V0

can be chosen to be zero and will thus be neglected from now on.Note that the two
parabolas are characterized by different curvatures (c0 6= c+), implying that there
exist two intersection points given by

∆q1,2 =
c+qs±

√

c0c+qs
2+Vs(c0−c+)

c+−c0
. (11)

In the literature, this case is usually referred to as quadratic electron-phonon cou-
pling. For equal curvatures (c0=c+=c), linear electron-phonon coupling is obtained,
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V(q)
V0(q) V+(q)

V0

V+
V0/+

Vs

q0 q+

∆q

q

qs

IP

Fig. 4 The configuration coordinate diagram for an NMP transition. The adiabatic potentials for
the initial and the final states are denotedV0(q) andV+(q), respectively. They are defined by their
corresponding minimaV0 andV+ located at their equilibrium configurationsq0 andq+, respectively.
To simplify the mathematical calculations, the axis origin is shifted into the energy minimumV0.

which yields only one intersection point located at

∆q1 =
Vs/c+q2

s

2qs
. (12)

The classical lineshape function for hole capture is obtained from

f0/+(c0,c+,qs,V0,V+) = Z−1
∫

q

e−βV0(q
′)δ
(
V0(q

′)−V+(q
′)
)

dq′ (13)

with the partition function

Z =
∫

q

e−βV0(q
′)dq′ . (14)

In accordance with the classical limit, the Dirac delta function in equation (13) en-
sures that the integral is only evaluated at the intersection point of the two parabolas.
Using the integration rule for Dirac delta functions, this integral evaluates to

∫

∆q

e−βV0(∆q′)δ
(
V0(∆q′)−V+(∆q′)

)
d(∆q′)

=
e−βc0∆q1

2

|2c0∆q1−2c+(∆q1−qs)|
+

e−βc0∆q2
2

|2c0∆q2−2c+(∆q2−qs)|
(15)

and the partition function simplifies to
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+∞∫

−∞

e−βc0∆q′2d(∆q′) =
√

π
c0β

. (16)

Inserting the equations (15) and (16) into the definition of the lineshape function
(13) leads to45

f0/+(c0,c+,qs,V0,V+) = f0/+(c0,c+,qs,Vs)

=
1
2

√

c0β
π

(
e−βc0∆q1

2

|c0∆q1−c+(∆q1−qs)|
+

e−βc0∆q2
2

|c0∆q2−c+(∆q2−qs)|

)

. (17)

Keep in mind that the lineshape function may also vanish (f0/+ = 0) when the two
parabolas do not share a common intersection point. For linear electron-phonon
coupling (c= c0 = c+), the above expression reduces to

f0/+(c,qs,V0,V+) = f0/+(c,qs,Vs) =
1
2

√

cβ
π

e−βc∆q1
2

c|qs|
(18)

with

∆q1 =
Vs/c+qs

2

2qs
. (19)

It is emphasized here that the lineshape function is most strongly affected by the
exponential term, where the expressionc0∆q1,2

2 can be identified with the energy
barrier from the minimumV0 to the saddle point IP (cf. Fig. 4). This NMP transition
barrier can be expressed as

V0/+ =V0(∆q1,2)

=
c0q2

s

( c0
c+
−1)2



1±

√

c0

c+
+

Vs(
c0
c+
−1)

c+q2
s





2

, (20)

or

V0/+ =

(
Vs+cq2

s

2
√

cqs

)2

(21)

for linear electron-phonon coupling. For hole emission theroles of the initial and the
final states are reversed. The corresponding lineshape function f+/0 and the NMP
barrierV+/0 are of the same form as in equation (17) and (20), respectively, but have
their subscripts ‘0’ and ‘+’ exchanged.

As will be demonstrated in Section 7, the NMP transition barrier varies strongly
with the temperature and the gate bias and therefore governsthe trapping behavior of
BTI defects. In the following calculations, the above analytical expressions for the
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lineshape function are preferred to the Franck-Condon overlap factors since they can
be easily implemented in simple device simulators at computational feasible costs.

Next, the NMP theory has to be specified for the situation of charge capture and
emission in MOSFETs. Therefore, the energy minimaV0 andV+ at the potential
energy surfaces must be linked to the energy of the transferred electron in the band
energy diagram before and after an NMP transition. In a simplified picture, it can be
envisioned that only the energy of the transferred electronchanges while the energy
of the other electrons (Ṽ0) remains unaffected. In the following, we discuss a hole
capture1 process, during which an electron is emitted from the energylevel Et of
a trap into an energy levelE in the substrate valance band state. Then the energy
minimaV0 andV+ can be expressed as

V0 = Ṽ0+Et (22)

V+= Ṽ0+E (23)

with Ṽ0 being the energy of the system less the transferred electron. The NMP tran-
sition rate is then written as

k0/+ = A0/+(E) f0/+(c0,c+,qs,E−Et). (24)

The unknown auxiliary quantitỹV0 cancels out in the lineshape function, which only
depends on the energy difference

Vs =V+−V0 = E−Et . (25)

The trap wavefunction in the electronic matrix elementA0/+(E) is strongly localized
around the defect so that the integrand in equation (7) has its largest contribution at
the defect site andA0/+(E,xt) can be approximated by

A0/+(E,xt) = A0|〈xt|ϕ〉|2 = A0|ϕ(xt)|2

= A1λ (E,xt) . (26)

Here,A0 is a not further specified prefactor andϕ(E) stands for the channel wave-
function with an energyE. The electronic matrix element is governed by the expo-
nential decay of the channel wavefunction and can be approximated using a WKB
factorλ (E,xt) for the implementation in simple device simulators.

1 It is stressed that the term ‘hole capture’ refers to either a capture of hole from the valence band
into a trap or an emission of an electron from the trap into the valence band. Keep in mind that
both of these processes are equivalent from a physical point of view.



Advanced Modeling of Oxide Defects 11

5 NMP Transition with a Whole Band of States

So far, the theoretical foundation for NMP transitions between two certain states
has been discussed. In BTI, however, the oxide defects interact with the whole con-
duction or valence band of the substrate so that the current formulation of the NMP
processes must be extended to account for transitions with amultitude of band states
at different energiesE. For this reason, one has to introduce a summation over all
possible valence band statesn in equation (24). Since the valence band states form
a continuous spectrum, this summation can also be transformed to an integral over
a density of states.46

∑
n
→ Ω

Ev∫

−∞

Dp(E)dE (27)

Using the above transformation, the NMP hole capture rate can be expressed as

kpc
0/+ = Ω

Ev∫

−∞

Dp(E)A0/+(E,xt) f0/+(c0,c+,qs,E−Et)dE . (28)

The density of statesDp(E) can be calculated using a simple expression based on
the parabolic band approximation

Dp(E) = ∑
ν

gνmpν

h̄3π2

√

2mpν(E−Ec) , (29)

wheregν is the degeneracy of theν th valence band valley andmp its corresponding
effective hole mass. Alternatively, the density of states may originate from a more
sophisticated Schrödinger-Poisson solver that allows for quantized statesEνk arising
from the one-dimensional confinement of the charge carriersin the inversion layer.

Dp(E) = ∑
ν

gνmpν

h̄2π ∑
k

Θ(E−Eνk) (30)

Next, the hole occupancy of the band states (fp for E) and electron occupancy of
the trap state (ft for Et) have to be taken into account. Then, the resulting NMP
transition rates read

kpc
0/+ = Ω

Ev∫

−∞

Dp(E) fp(E,Ef)A0/+(E,xt) f0/+(c0,c+,qs,E−Et) ftdE . (31)

For the case of electron emission2, the electron is emitted into the substrate conduc-
tion band and thusDp(E) must be replaced byDn(E).

2 Note that electron emission corresponds to hole capture into thesubstrate conduction band.
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q0 q+
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Band

Band

Neutral Defect

Positive Defect

Fig. 5 A combined configuration coordinate diagram for hole captureand electron emission. Ac-
cording to the relationV+= Ṽ0+E, an electron located in an energetically higher band stateE is
represented by higher adiabatic potentialV+(q). As a consequence, the upper and the lower family
of curves constitute the set of adiabatic potentialsV+ associated with the conduction and valence
band, respectively. It is noted that this configuration coordinate diagram remains unchanged for
hole emission and electron capture and can therefore be used for both processes. As such, this
diagram covers all possible NMP transitions of the considered defect with the substrate.

kne
0/+ = Ω

+∞∫

Ec

Dn(E) fp(E,Ef)A0/+(E,xt) f0/+(c0,c+,qs,E−Et) ftdE (32)

The configuration coordinate diagrams of both processes arecombined in Fig. 5,
which now covers all electron or hole transitions from the defect into the substrate.
Interestingly, the final states span an energy spectrumV+ that can be identified with
band energy diagram including the conduction as well as the valence band. Each
of these states is associated with a distinct position of itsadiabatic potentialV+(q)
and thus has a different NMP barrier height along with a different transition prob-
ability according to the lineshape function in the transition rates (31) and (32) (cf.
Fig. 6). For hole capture (case A), the defect has to undergo an NMP transition from
the parabolaV0(q) to the parabolaV+(q). This transition occurs the fastest when
V+(q) cuts the minimum ofV0(q). Then the corresponding transition barrierV0/+
is negligible and the lineshape functionf0/+(E) reaches its maximum value. When
hole emission is considered (case B), the roles of the initial and the final states are
reversed so that the NMP transition proceeds from the adiabatic potentialV+(q) to
V0(q). Then the corresponding lineshape functionf+/0(E) peaks whenV+(q) is cut
in its minimum. Note that the maximal transition rates for hole capture and emission
are associated with different energy levelsE, which are frequently referred to as the
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Fig. 6 Configuration coordinate diagram (left) for a continuum of adiabatic potentialsV+(q), the
corresponding lineshape functions (middle), and sketches of the cases A, B, and C (right). For hole
capture, the lineshape functionf0/+(E) reaches its maximal value whenV+(q) intersects the mini-
mum ofV0(q) and thus the NMP transition has a vanishing barrierV0/+ (case A). When changing
from the configuration coordinate diagram (left) to the lineshape function (middle), the adiabatic
potentials are converted to electron energies according toequation (23). For the hole emission, the
analogous considerations apply as for hole capture. Now the intersection point must lie in the min-
imum ofV+(q), giving rise to the peak of the lineshape functionf+/0(E) (case B). If the minima
of both parabolas coincide, the barriers for both directions have the same heights, which leads to
equaling NMP transition rates (case C).

switching trap levels3 in literature.47–54However, they should not be confused with
the thermodynamic trap levelsEt that enter SRH-like formulations of the charge
transfer process used here. The thermodynamic trap level (case C) is associated with
the energy levelE, at which the hole capture and emission are balanced and the two
lineshape functionsf0/+(E) and f+/0(E) assume the same value (cf. Fig. 6). In the
configuration coordinate diagram, this is the case for the situation when the minima
of adiabatic potentialsV0(q) andV+(q) are at the same height. Note that special im-
portance is attached to this energy level with respect to theequilibrium occupancy
of the defect. If the Fermi level is located above the thermodynamic level, the dom-
inating trapping process is hole emission and the defect becomes neutral. However,
when the Fermi level falls below the thermodynamic level, the hole capture rate
exceeds the hole emission rate and the defect becomes occupied by a hole.

In semiconductor theory — especially when NBTI in pMOS transistors is con-
sidered — the trapping dynamics is preferentially described in the ‘hole picture’.
In this case the hole is emitted from a continuum of states where its energy in the
initial state is undefined. By contrast, the hole energy is exactly specified by the trap
level Et in the final state (cf. Fig. 7). As a consequence, the trap level Et and the
band statesE change their roles. Furthermore, the energy axis of the charge carriers
is inverted so that the energy spectrum ofV+ in Fig. 5 is flipped in the hole picture
in Fig. 7.

3 Note that the same term ‘switching trap level’ is also used for the thermodynamic trap level for a
switching oxide hole trap introduced in Fig. 1.
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Fig. 7 The same configura-
tion coordinate diagram as in
Fig. 5 but in the ‘hole picture’.
Note that the energy scale of
the charge carriers and thus
the band diagram is inverted
compared to the ‘electron
picture’. Furthermore, the en-
ergy of the transferred charge
carrier is now undefined for
the initial state since the hole
is in one of the valence band
states. By contrast, it can be
specified byEt when the hole
is trapped.
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V0 = Ṽ0−E (33)

V+= Ṽ0−Et (34)

The energy difference of the adiabatic potentials is then given by

Vs =V+−V0 = E−Et , (35)

implying that the same activation energy is required as in the electron picture. Fol-
lowing the same derivation as for the electron picture, the NMP transition rate for
hole capture reads

kpc
0/+ = Ω

Ev∫

−∞

Dp(E) fp(E,Ef)A0/+(E,xt) f0/+(c0,c+,qs,E−Et) ftdE . (36)

It is remarked that the electronic matrix elementsA0/+(E,xt) in the hole picture
and in the electron picture equal since they are determined by the same channel
wavefunction. Using the approximation (26), the whole set of NMP trapping rates
can be written as

knc = kn
0

+∞∫

Ec

Dn(E) fn(E,Ef)λ (E,xt) f+/0(c+,c0,qs,Et −E)dE (37)

kne= kn
0

+∞∫

Ec

Dn(E) fp(E,Ef)λ (E,xt) f0/+(c0,c+,qs,E−Et)dE (38)

kpc = kp
0

Ev∫

−∞

Dp(E) fp(E,Ef)λ (E,xt) f0/+(c0,c+,qs,E−Et)dE (39)
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kpe= kp
0

Ev∫

−∞

Dp(E) fn(E,Ef)λ (E,xt) f+/0(c+,c0,qs,Et −E)dE , (40)

where the quantitieskn/p
0 are used as shorthands for the product of the prefactorsΩ

andA1. ‘n’ and ‘p’ refers to electrons or holes while ‘c’ and ‘e’ stand for capture and
emission processes, respectively. It has to be noted that the integrands of the above
rate equations are usually sharply peaked due to the strong exponential dependences
of the occupanciesfp(E) and fn(E) as well as the lineshape functionsf0/+(E) and
f+/0(E). Hence, these integrals are solved numerically using adaptive integration
schemes in order to keep the computation costs low and to ensure a sufficient accu-
racy of the computed rates.

The above set of rate equations can also be modified to the casewhere the defect
exchanges charge carriers with the poly-gate by replacing the band edges and the
Fermi level with their respective values at the poly-gate. They can also be adapted
for an electron trap, whose charge state switches between neutral and negative. As
such, these rate equations form the basis for charge trapping involving the substrate
as well as the gate and could consequently also cover trap-assisted tunneling occur-
ring via NMP transitions.

6 Huang-Rhys Parameter

The employed NMP theory was initially derived for the fluorescence and absorption
spectra of gases and solids, where the Huang-Rhys factorSwas introduced to obtain
compact analytical solutions.37 This quantity corresponds to the number of absorbed
or emitted phonons during an optical transition and therebycharacterizes the shape
of two adiabatic potentialsV0(q) andV+(q). For quadratic electron-phonon coupling,
the adiabatic potentials are represented by two parabolas that are shifted against each
other and have different curvatures. To define them, we introduce the quantitiesS
andR (see Fig. 8), which are defined as follows:

Sh̄ω = c0q2
s (41)

R2 =
c0

c+
. (42)

Using the above substitutions, the NMP transition barrier in equation (20) can be
rewritten as

V0/+(Vs) =
Sh̄ω

(R2−1)2

(

1±R

√

Sh̄ω +Vs(R2−1)
Sh̄ω

)2

. (43)

The prefactorξ0/+(∆q) of the exponential term in equation (17) is of the form
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Fig. 8 Left: The configuration coordinate diagram including the Huang Rhys factorsS0 andS+.
The adiabatic potentials are often defined as harmonic oscillators of the formV0(q)=1/2Mω2

0(q−
q0)

2 +V0 andV+(q) = 1/2Mω2
+(q− q+)2 +V+, whereω0 and ω+ are their respective oscillator

frequencies. For an optical transition, the energy deliveredby the photon must equals the energy
differenceV0(q+)−V+, which is indicated by the upwards arrow and can be expressed asan integral
multiple S0 of h̄ω0. In analogy,S+h̄ω+ equals the energy differenceV+(q0)−V0. In the remainder
of this chapter,S0h̄ω0 andS+h̄ω+ will be replaced bySh̄ω andR2Sh̄ω, respectively.Right: Strong
(top) and weak (bottom) electron-phonon coupling. In the firstcase the parabolas are positioned
such that the intersection point is situated inbetween their minima while in the second case one
parabola lies inside the other and the intersection point is located beside the two minima.

ξ0/+(∆q1,2) =

√

βc0

4π
1

|c0∆q−c+(∆q−qs)|
(44)

and can be expressed as

ξ0/+(Vs) =

√

β
4π

R
√

Sh̄ω +Vs(R2−1)
. (45)

For linear electron-phonon coupling, one obtains the frequently applied result

V0/+(Vs) =
(Vs+Sh̄ω)2

4Sh̄ω
(46)

for the NMP transition barrier with the prefactor

ξ0/+(∆q) =

√

βc0

4π
1

|c0∆q−c+(∆q−qs)|
=

√

β
4π

1√
Sh̄ω

. (47)
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V+/0

q

VIP

Fig. 9 The hole capture (V0/+) and emission (V+/0) barrier for an NMP transition. The barrier
heights are calculated as the energy differences between the corresponding minimum and the inter-
section point in the hole picture, which yieldsV0/+=VIP−V0=VIP−Ṽ0+E and∆V+/0=VIP−V+=
VIP−Ṽ0+Et for the capture and the emission barrier, respectively.

6.1 Analytical Expressions for the NMP Rates

A second order expansion of the expression (43) delivers

V0/+(Vs)≈
Sh̄ω

(1+R)2 +
R

1+R
Vs+

R
4Sh̄ω

V2
s . (48)

If the curvaturesc0 andc+ differ, the quantityR deviates from unity. SinceR also
enters the above expression for the barrier height, the ratio of the curvatures has a
strong impact on the NMP transition rates (cf. Fig. 9). As in the previous section,Vs

can be expressed as

Vs =V+−V0 = E−Et = E−Ev
︸ ︷︷ ︸

=−∆E

+Ev −Et (49)

so that equation (48) can be rewritten as

V0/+(∆E)≈ Sh̄ω
(1+R)2 +

R
1+R

(
Ev −Et −∆E

)
+

R
4Sh̄ω

(
Ev −Et −∆E

)2
. (50)

In the case of strong electron-phonon coupling (see Fig. 8)Sh̄ω ≫ |Ev −Et −∆E|
holds and the third term of equation (50) can be neglected. Inorder to evaluate the
integral in the hole capture rate (39), the following assumptions must be made:

• Assuming the parabolic-band approximation, the valence band density of states
(29) is given byDp(E) = Dp,0

√
∆E with Dp,0 being an energy-independent pref-

actor.
• The occupancyfp(E,Ef) follows Boltzmann statistics.
• The WKB factor is approximated by the factor exp(−xt/x0) with the tunneling

lengthx0.
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• The lineshape function is dominated by the exponential barrier term so that the
prefactorξ0/+ can be neglected to first order.

With the above simplifications, the hole capture rate (39) evaluates to

kpc = kp
0

Ev∫

−∞

Dp(E) fp(E,Ef)λ (E,xt)exp(−βV0/+(∆E))dE

= kp
0(1+R)3/2pexp(−xt/x0)exp

(

−β
(

Sh̄ω
(1+R)2 − R

1+R
∆Et

))

, (51)

where the hole densityp is given by the expression

p= Dp,0 exp
(
β (Ev −Ef)

)
β−3/2 Γ (3/2) (52)

with Γ (x) being the Gamma function. Motivated by the similarity to therate equa-
tions in the standard SRH theory, the prefactorkp

0 has been identified with the hole
thermal velocityvth,p times a hole capture cross-sectionσp. The lengthy expression
in the exponent of the last term of equation (51) can be related to the hole capture
barrierεpc, which is evaluated forE=Ev.

Sh̄ω
(1+R)2 +

R
1+R

Ev −Et =V0/+

∣
∣
∣
∆E=0

= εpc (53)

This is actually surprising since the NMP transition barrier V0/+(∆E) is a function
of the hole energyE per definition. However, for strong electron-phonon coupling,
the rate integral (39) delivers its largest contribution close to the valence band edge
(∆E=0) so that the barrierV0/+(E) can be approximated byV0/+(Ev). As a conse-
quence, the hole capture rate simplifies to

kpc = vth,pσp(1+R)3/2exp(−xt/x0)pexp(−βεpc) . (54)

The hole emission rate is derived from equation (40) using the two relations:
First, the electron occupation function can be replaced by

fn(E,Ef) = fp(E,Ef)exp
(
−β (E−Ef)

)
. (55)

Second, the ratio of the exponential barrier terms (see Fig.9) gives

exp(−βV+/0)/exp(−βV0/+) = exp(−β (Et −E)) (56)

for each band stateE. Inserting both relations in equation (40) and using the same
assumptions as before yields the hole emission rate
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kpe= vth,pσp

Ev∫

+∞

Dp(E) fn(E,Ef)λ (E,xt)exp(−βV0/+)dE

= vth,pσp(1+R)3/2exp(−xt/x0)pexp(−βεpc)exp(−β (Et −Ef)) . (57)

Interestingly, the equations (54) and (57) closely resemble the rates obtained from
the standard SRH theory except from the exponential barrierterms and even have
the same shape as those of Kirton and Uren. However, the NMP transition barriers
derived above are calculated from the intersection point oftwo adiabatic potentials
— in this case parabolas — and thus reflect their gate bias dependence governed by
the energy separation between the trap level and the valenceband edge according to
equation (53). Even though they rely on a series of approximations, they contain the
main physics involved in charge trapping. As such, they promote the understanding
of the gate bias and temperature tendencies in charge trapping and allow compact
analytical expressions for the assumption of strong electron-phonon coupling.

7 State Diagram of the Multi-State Model

The NMP transition rates derived in the previous sections describe charge transfer
reactions, i.e. the pure charge trapping or detrapping processes. However, the TDDS
studies revealed that some defects are found to disappear onthe spectral maps. This
observation can only be reasoned by the existence of metastable states, in which the
oxide defects dwell for a certain amount of time. Furthermore, the TDDS also re-
veals gate bias independent transitions that can not be related to charge transfer reac-
tions. These transitions are associated with an activationover thermal barriers, leav-
ing the charge state of the defect unchanged. Both observations suggest a bistable
defect, which has an additional metastable configuration (marked by primes) that
appears in two charge states (cf. Fig. 10). This means that the defect features two
neutral (1, 1′) and two positive (2, 2′) charge states (cf. Fig. 10), where thermal tran-
sitions allow for transitions between same charge states (1↔ 1′ and 2↔ 2′) and
NMP transitions between opposite charge states (1↔ 2′ and 2↔ 1′). The bistable
defect described above is the heart of the ‘multi-state model’ and will be discussed
detailedly in the following.

Such defects55 show complex dynamics between those four states and must be
correctly treated using homogeneous continuous-time Markov chain theory.56 This
theory rests upon the assumption that the future transitions between the states do
not depend on the past of the investigated system. This assumption is justified as
long as the defect relaxes after each transition by interacting with its environment,
thereby losing the memory of its past. In fact, this is the case for both pure thermal
and NMP transitions disregarding special theories, such asrecombination-enhanced
defect reaction. The time evolution of such a defect system is described by a first-
order differential equation termed the Master equation.
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Fig. 10 (PRINT IN COLOR) State diagram of the multi-state model. The defect is present in a
stable neutral (1) and a stable positive (2) charge state, where each of them has a second metastable
state marked by a prime (1′, 2′). The NMP transitions 1↔ 2′ and 2↔ 1′ occur between different
charge states while the thermal transitions 1↔ 1′ and 2↔ 2′ between same charge states. Note
that the transitions between the stable states are of main interest since they correspond to the
experimentally measured capture and emission times in BTI. However, they involve intermediate
states, which are metastable and important for the gate-bias and temperature dependence of the
overall transition. The stick-and-ball models correspond to the configurations of a possible defect
candidate, i.e. the oxygen vacancy, which is only shown for illustration purpose.

∂tπi(t) = ∑
j 6=i

π j(t)kji −∑
i 6= j

πi(t)kij (58)

Here,πi(t) is the time-dependent occupation probability that the defect is in statei
andkij denotes the transition rate from statei to statej. When going from a single
to a multitude of defects, the occupation probabilities must be averaged and be-
come occupancies. The resulting rate equations, which are of the same form as the
above Master equation, are usually solved in device simulators in order to predict
the degradation for large area devices. Those kind of simulations can also account
for the fact that the defect properties vary from trap to trap. The wide distributions of
the defect properties arise from the amorphous defect environments but also come
from the random dopant fluctuations, which have increasingly attracted scientific
interest during the last several years.18,57–62(For a detailed discussion of this topic,
the interested reader is referred to Chapter 2.2.1 of this book.63) For a comparison
to the TDDS data, one is primarily interested in the transition times between stable
states. The metastable states will only be occupied temporarily and are not observ-
able in experiments. However, they gain their relevance forthe overall gate bias
and temperature dependence of two-step processes. The transitions between stable
states are obtained from first-passage times. For a two-stepprocess, the transition
time from a stateα to a stateγ over a stateβ (cf. Fig. 11) reads

ταγ =
kαβ +kβγ +kβα

kαβ kβγ
=

1
kαβ

+
1

kβγ
+

1
kβγ

kβα

kαβ
. (59)
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Fig. 11 The state diagram for a two-step process from the stateα to γ. The first passage time of
such a process is calculated by equation (59). Consider that thetransition ratekγβ , indicated by the
dashed arrow, does not enter this equation.
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Fig. 12 Simplified state diagrams of hole capture and emission over the metastable states 1′ and
2′. The superscripts ofτ denote the intermediate state, which has been passed through during
a complete capture or emission event. Note that there exist two competing pathways for a hole
capture event, namely one over the intermediate state 1′ and one over 2′. Of course, the same holds
true for a hole emission event.

The multi-state model with its four states allows for four distinct transition path-
ways (see Fig. 12), whose first-passage times are listed below:

τ2′
c =

1
k12′

+
1

k2′2
+

1
k2′2

k2′1

k12′
(60)

τ1′
c =

1
k11′

+
1

k1′2
+

1
k1′2

k1′1

k11′
(61)

τ2′
e =

1
k22′

+
1

k2′1
+

1
k2′1

k2′2

k22′
(62)

τ1′
e =

1
k21′

+
1

k1′1
+

1
k1′1

k1′2

k21′
(63)

The transition barriers for the partial rates can be extracted from the configuration
coordinate diagram of the bistable defect (see Fig. 13). Thebistability of the de-
fect is reflected in the double-well shape of the adiabatic potentials. The transitions
T1↔1′ andT2↔2′ are thermally activated and do not vary with the applied gatebias.
According to transition state theory, they can be expressedas
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Fig. 13 (PRINT IN COLOR)Left: A schematic of the configuration coordinate diagram for a
bistable defect. The solid and the dashed lines represent the adiabatic potentials for a defect in
its positive and neutral charge state, respectively. The energy minima correspond to the stable or
metastable defect configurations, labeled 1, 1′, 2, and 2′. The present configuration coordinate di-
agram describes the exchange of holes with the valence band and thus is associated with a hole
capture or emission process. The stick-and-ball models display a defect in its various stable and
metastable configurations for illustration purpose.Right: Definitions of the used energies and bar-
riers in the multi-state model. Recall that two adiabatic potentials must be shown for one transition.
It is assumed that an alternative transition pathway with an additional crossing point exists in the
multi-dimensional atomic configuration space. In order to show both intersections (related to the
transitions 1↔ 2′ and 2↔ 1′) in one configuration coordinate diagram, the ‘neutral’ potential must
be plotted twice. Obviously,ε22′ = ε2′2+ εT2′ holds.

k11′ = ν0 exp(−βε11′) (64)

k1′1 = ν0 exp(−βε1′1) (65)

k22′ = ν0 exp(−βε22′) (66)

k2′2 = ν0 exp(−βε2′2) (67)

where the barriersεij are defined in Fig. 13 andν0 is the attempt frequency, which
is typically of the order 1013s−1. The NMP transition rates are evaluated using the
equations (37) - (40), which contain lineshape functions and thus depend onVs. The
energy minima in the configuration coordinate diagram of Fig. 13 are given by

V1 = Ṽ0−E (68)

V2′ = Ṽ0+ εT2′ −Et (69)

V2 = Ṽ0−E′
t (70)

V1′ = Ṽ0−E (71)

in the hole picture. Here, theVi stands for the adiabatic potentials withi being one
of the states in Fig. 10. Furthermore, the hole is assumed to be energetically located
at the valence band edge. It is emphasized that the energyεT2′ must be added tõV0
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to obtain the correct energy minimum of state 2′.

Et → Et − εT2′ (72)

As a consequence,εT2′ modifies the energy differencesVs extracted from the con-
figuration coordinate diagram

V12′ =V2′ −V1 = E−Et + εT2′ (73)

V1′2 =V2−V1′ = E−E′
t (74)

and enters the NMP rates

k12′ = vth,nσn

+∞∫

Ec

Dn(E) fp(E,Ef)λ (E) f0/+(c0,c+,qs,E−Et + εT2′
︸ ︷︷ ︸

=V12′

)dE

+vth,pσp

Ev∫

−∞

Dp(E) fp(E,Ef)λ (E) f0/+(c0,c+,qs,E−Et + εT2′
︸ ︷︷ ︸

=V12′

)dE (75)

k2′1 = vth,nσn

+∞∫

Ec

Dn(E) fn(E,Ef)λ (E) f+/0(c+,c0,qs,Et − εT2′ −E
︸ ︷︷ ︸

=−V12′

)dE

+vth,pσp

Ev∫

−∞

Dp(E) fn(E,Ef)λ (E) f+/0(c+,c0,qs,Et − εT2′ −E
︸ ︷︷ ︸

=−V12′

)dE (76)

k1′2 = vth,nσn

+∞∫

Ec

Dn(E) fp(E,Ef)λ (E) f0/+(c0,c+,qs,E−E′
t

︸ ︷︷ ︸

=V1′2

)dE

+vth,pσp

Ev∫

−∞

Dp(E) fp(E,Ef)λ (E) f0/+(c0,c+,qs,E−E′
t

︸ ︷︷ ︸

=V1′2

)dE (77)

k21′ = vth,nσn

+∞∫

Ec

Dn(E) fn(E,Ef)λ (E) f+/0(c+,c0,qs,E
′
t −E
︸ ︷︷ ︸

=−V1′2

)dE

+vth,pσp

Ev∫

−∞

Dp(E) fn(E,Ef)λ (E) f+/0(c+,c0,qs,E
′
t −E
︸ ︷︷ ︸

=−V1′2

)dE . (78)

The above NMP transition rates along with the thermal transition rates (64) - (67)
enter the expressions of the capture and emission times (60)- (63) that are compa-
rable to time constants observed in the TDDS data. In the nextsection, they will be
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Fig. 14 (PRINT IN COLOR)Left: The capture (solid lines) and emission (dashed lines) times of
a fixed oxide hole trap as a function of the gate bias. The symbols stand for the measurement data
and the lines represent the simulation results of the multi-state model. The latter are shown to be in
remarkable agreement with the experimental data. The inset (bottom left) depicts the band diagram
of a MOSFET with the trap lvelsEt andE′

t for the case when no bias is applied to the gate. Under
these conditions the trap levelE′

t is located far above the substrate Fermi level and the emission
time remains unaffected by the gate bias. This fact eventually characterizes this defect as a fixed
oxide hole trapRight: The same but for a switching oxide hole trap as presented in the Section 2.
Compared to the fixed oxide hole trap, it shows a strong gate bias dependence ofτe at small gate
biases. In contrast to a fixed oxide hole trap, the Fermi level and the trap levelE′

t coincide there,
resulting in the strong sensitivity ofτe to Vg.

used to evaluate the multi-state model against the TDDS dataand allow a verifica-
tion of this model.

8 Model Evaluation

As outlined in Section 2, TDDS experiments measure the response of single defects
to different gate voltage or temperature conditions. Basedon these data, they give
insight into the behavior of single defects and can thus reveal whether a BTI trap-
ping model reflects the physics of real defects. The time constant plots in Fig. 14
depict a fit of the multi-state model against the time constants extracted from the
TDDS measurement data. The following calculations are carried out on a device
simulator that delivers the band energy diagram for the devices used in the TDDS
measurements. With these data, the thermal and the NMP transition rates were eval-
uated, which were subsequently used to calculate the capture and emission times.
In these simulation, we accounted for the exchange of chargecarriers with the sub-
strate as well as the gate from the conduction and the valenceband. An evaluation
of the TDDS checklist is given below:

(i ) The curvature inτc is reproduced by the multi-state model.
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(ii ) τc shows a marked temperature activation over the whole range of Vg, visible as
a parallel upward shift.

(iii ) In general, the multi-state model yields field-insensitiveτe as displayed in Fig. 14
left. It is important to note here that at larger oxide fields this model also predicts
an exponential dependence, which has also been observed forsome defects in
RTN measurements.31

(iv ) The multi-state model also allows for a field-dependentτe provided that the sub-
strate Fermi level and the trap levelE′

t are separated by only a few hundredth of
an electron Volt at smallVg (cf. Fig. 14 right).

(v ) In both cases,τe is thermally-activated.

The above checklist demonstrates that the multi-state model can reproduce the key
features of the hole capture and emission process correctly, strongly indicating that
the multi-state model can describe the physics of the defects seen in TDDS.

9 Discussion of the Multi-State Model

In Section 7, we derived a full set of rate equations that can accurately describe
charge trapping within the multi-state model. However, they rely on complicated in-
tegrals which obscure the gate bias and temperature dependent behavior of defects.
For this reason, we also provide analytical expressions that promote understanding
of the essential physical behind the mathematical framework.

Following the derivation in Section 6, the NMP transition rates can be written as

k12′ = vth,pσp(1+R)3/2λ (Ev)pexp(−βε12′) (79)

k2′1 = vth,pσp(1+R)3/2λ (Ev)pexp(−βε12′)exp(−β (Et − εT2′ −Ef)) (80)

k1′2 = vth,pσp(1+R′)3/2λ (Ev)pexp(−βε1′2) (81)

k21′ = vth,pσp(1+R′)3/2λ (Ev)pexp(−βε1′2)exp(−β (Et −Ef)) (82)

with

ε12′ =
S1h̄ω1

(1+R1)2 +
R1

1+R1
(Ev −Et + εT2′) (83)

=
S1h̄ω1

(1+R1)2 − R1

1+R1
(∆Et − εT2′)+

R1

1+R1
q0xtFox (84)

ε1′2 =
S1′ h̄ω1′

(1+R1′)2 +
R1′

1+R1′
(Ev −E′

t ) (85)

=
S1′ h̄ω1′

(1+R1′)2 − R1′

1+R1′
∆E′

t +
R1′

1+R1′
q0xtFox (86)

using equation (3). In analogy to the derivation of the exactNMP transition rates
(68) - (78), the trap levelEt must again be referenced to the minimum 2′ according
to equation (69). This reference ofEt is required in the calculation of the NMP
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barriers (84) and (86) as well as the last term of equation (80) following the concept
outlined in Fig. 9. With the thermal transitions (64)-(67) and the above expression
of the NMP rates (79) - (82), the capture and emission times (60) - (63) read

τ2′
c = τ2′

c,min+ τp0
N2

p
exp

(

β
R1q0xtFox

1+R1

)

+ τ2′
c,min

N1

p
exp(βq0xtFox) (87)

τ1′
c = τ1′

c,min+ τp0
N3

p
exp

(

β
R1′q0xtFox

1+R1′

)

(88)

τ2′
e = τ2′

e,min+ τ2′ exp

(

−β
q0xtFox

1+R1

)

(89)

τ1′
e = τ1′ exp

(

−β
q0xtFox

1+R1′

)

+ τ1′
e,min

(
1+exp

(
β (E′

t −Ef)
))

(90)

using the definitions

N1 = Nv exp(β (εT2′ −∆Et)) (91)

N2 =
Nv

(1+R1)3/2
exp

(

β
S1h̄ω1

(1+R1)2

)

exp

(

−β
R1(∆Et − εT2′)

1+R1

)

(92)

N3 =
Nv

(1+R1′)3/2
exp

(

β
S1′ h̄ω1′

(1+R1′)2

)

exp

(

−β
R1′

1+R1′
∆E′

t

)

×

×
(
1+exp

(
β (∆E′

t −∆Et)
))

(93)

τ2′ =
τp0

(1+R1)3/2
exp

(

β
S1h̄ω1

(1+R1)2

)

exp

(

β
∆Et − εT2′

1+R1

)

×

× (1+exp(βεT2′)) (94)

τ1′ =
τp0

(1+R1′)3/2
exp

(

β
S1′ h̄ω1′

(1+R1′)2

)

exp

(

β
∆E′

t

1+R1′

)

(95)

τ2′
c,min = 1/k2′2 (96)

τ2′
e,min = 1/k22′ (97)

τ1′
c,min = 1/k11′ (98)

τ1′
e,min = 1/k1′1 (99)

τp0 =
1

σpvth,pNvλ (Ev)
. (100)

Recall that the hole capture process can proceed from state 1over one of the
metastable states 2′ or 1′ to the final state 2 according to the state diagram of Fig. 12.
The corresponding capture time constants are denoted asτ2′

c andτ1′
c , respectively,

and will be discussed in the following. If the transition pathway T1→2′→2 is pre-
ferred, the capture time constant has the same shape as equation (59).
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Fig. 15 (PRINT IN COLOR)Left: The calculated hole capture time constants as a function of the
oxide field. The different regimes ofτc (A, B, C, and D) are separated by the thin vertical lines and
labeled by the circles with the capital letters. The dotted curvesτ i

c show the capture processes over
a metastable statei. The field dependence ofτc within a certain regime is shown by the dashed
curve.Right: The same but for the hole emission time constants with the regimes (E,F, and G).

τ2′
c =

k12′ +k2′1+k2′2

k12′k2′2
(101)

=
1

k12′
︸︷︷︸

D

+
1

k2′2
︸︷︷︸

C

+
1

k2′2

k2′1

k12′
︸ ︷︷ ︸

B

(102)

Each summand in the nominator can be dominant, leading to equation (60), which
is characterized by three distinct regimes, namely B, C, andD in Fig. 15. At ex-
tremely high negative oxide fields (regime D),k12′ is the dominant rate meaning
that the transition4 T1→2′ proceeds much faster thanT2′→2 (cf. Fig. 16). Thus com-
plete capture process (T1→2′→2) is controlled by the second transitionT2′→2, which
is much slower and has a time constant ofτ2′

c,min. Since this second step is only

thermally activated,τ2′
c does not depend on the oxide field. This is consistent with

equation (87), in which both exponential terms become negligible at extremely high
negative oxide fields. At moderate negative oxide fields (regime C), the ratek12′

approaches the order ofk2′1 and even falls belowk2′2. In this case the thermal tran-
sition T2′→2 immediately follows the hole capture process from the state1 to 2′. As
a result, the trapping kinetics are governed by the forward rate of the NMP process
T1→2′ . Thenτ2′

c shows an exponential oxide field dependence, which is reflected in
the second term of equation (87). At low negative oxide fields(regime B),k12′ is
already outbalanced by its reverse ratek2′1 (see Fig. 16) and the ratio of both rates
determines the oxide field dependence. This gives an increased exponential slope
originating from the third term of equation (87).The transitions between these three

4 Keep in mind that the term ‘transition’ does not refer to the duration of the physical process itself,
such as the time it takes an electron to tunnel through an energybarrier. It rather denotes the mean
time until the physical process takes place and the defect change its state.
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Fig. 16 (PRINT IN COLOR)A schematic representation of adiabatic potentials in the regimes B,
C, and D. The arrows show the transitions involved in the hole capture process. Their thicknesses
indicate the magnitude of their rates. This means that the thinner arrows are associated with larger
transitions times and thus governs the oxide field and temperature dependence of the complete
capture processT1→2. With higher oxide fields (B→ D) the potential of the neutral defect (dashed
line) is raised relative to that of the positive defect (solid line). This is associated with an increase
of k12′ and a decrease of the reverse ratek2′1. In contrast to the charge transfer reactionsT1→2′ and
T2→′1, the thermal transitionT2′→2 is not affected by the oxide field.

regimes are smooth so that the capture time becomes curved inits time constant
plots (cf. Fig. 16). It emphasized here that the curvature in the capture times are one
of the most obstinate feature for BTI modeling and has only been reproduced by the
multi-state model so far.

However, if the transition over the metastable state 1′ is favored (regime A), the
capture time constant can be formulated using first-passagetimes:

τ1′
c =

k11′ +k1′1+k1′2

k11′k1′2
(103)

Since the metastable state 1′ is situated above the state 1 by definition,k1′1 ≫ k11′

holds. Therefore, the expression (103) can be approximatedby

τ1′
c ≈ k1′1

k11′k1′2
︸ ︷︷ ︸

A′′

+
1

k11′
︸︷︷︸

A′

, (104)
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Fig. 17 (PRINT IN COLOR)The same as in Fig. 16 but for the regimes A’ and A”of the oxide
field dependence ofτ1′

c .

which is characterized by only two regimes (A’ and A”) now. Atnegative oxide
fields (regime A’), the state 1′ is located high (see Fig. 17) so that the transition
ratek1′2 is large compared tok11′ . Then the first term of expression (104) vanishes
and the field-dependent transitionT1→1′ with a time constant ofτ1′

c,min dominates

τ1′
c in equation (104). When reducing the oxide field, the state 1′ is shifted down-

wards in the configuration coordinate diagram, thereby decreasing the transition rate
k1′2. At a certain oxide field,k1′2 falls belowk1′1 and the first term of the expres-
sion (104) becomes dominant (regime A”). As a consequence,τ1′

c governed by the
field-dependent transitionT1′→2, which is reflected in the exponential term of the
expression (88). The transition between A’ and A” yields a kink, which is visible in
τ1′

c (cf. Fig. 15) but not in the overall hole captureτc time given by

1
τc

≈ 1

τ1′
c
+

1

τ2′
c

. (105)

So far, this transition has not been observed in TDDS experiments, which is why
the regimes A’ and A” are not differentiated in Fig. 16.

Also the hole emission process has the possibility to proceed over either the
state 1′ or 2′, with τ1′

e andτ2′
e being the corresponding emission time constants (see

Fig. 18). For the transition pathway over 2′, the emission time constant can be
expressed as:

τ2′
e =

k22′ +k2′2+k2′1

k22′k2′1
(106)

Sincek2′2 ≫ k22′ applies,τ2′
e has only two regimes, labeled with the capital letters

F and G in Fig. 15.
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Fig. 18 (PRINT IN COLOR)The same as in Fig. 16 but for the regimes E, F, andG of the oxide
field dependence ofτe.

τ2′
e ≈ k2′2

k22′k2′1
︸ ︷︷ ︸

G

+
1

k22′
︸︷︷︸

F

(107)

At high negative oxide fields (regime G), the state 1 is shifted upwards so thatk22′

is the dominant rate and the field-dependent NMP transitionT2′→1 controls the tran-
sition T1→2′→2. The oxide field dependenceT2′→1 is reflected in the second term
of equation (89). At moderate negative oxide fields (regime F), the transitionT2′→1
proceeds much faster thanT2→2′ . Thus,τ2′

e is determined by the field-insensitive
transitionT2→2′ with a time constant ofτ2′

e,min. It is pointed out thatthe regime F can
give an explanation for the field-independent emission timeconstants observed for
fixed oxide hole traps (cf. Fig. 14 left). This is a direct consequence of the assumed
bistability of the defect in the multi-state model.

At a low oxide field (regime E), the state 1′ is further shifted down, which speeds
up the transitionT2→1′ and allows the pathway over the metastable state 1′. The
corresponding emission time constantτ1′

e is then given by

τ1′
e =

k21′ +k1′2+ r1′1

k21′k1′1
. (108)

For a sufficiently large barrierε1′1, the ratek1′1 becomes negligible compared tok21′

andk1′2 and the above equation simplifies to

τ1′
e =

1
k1′1

+
k1′2

k21′k1′1
. (109)
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In this case, the state diagram reduces to a subsystem that includes the states 1′ and
2 and is marginally disturbed by the ratek1′1. In this subsystem the states 1′ and 2
can be assumed to be in quasi-equilibrium

f1′k1′2 = f2k21′ (110)

and the conditionf1′ + f2 = 1 is met. Then the trap occupancyf ′t = f1′ is given by

f1′ =
1

1+ k21′
k1′2

=
1

1+exp(β (E′
t −Ef))

. (111)

From this equation, it follows that the conditionk1′2 = k21′ is equivalent toE′
t = Ef .

Furthermore, this equation can also be used to simplify the equation (90) to

τ1′
e = τ1′ exp

(

−β
q0xtFox

1+R1′

)

+
τ1′

e,min

ft′
. (112)

If E′
t falls belowEf at a certain relaxation voltage, the state 1′ becomes occupied

and the emission timeτ1′
e is determined by the field-independent transitionT1′→1

with the time constantτ1′
e,min. By contrast, ifE′

t is raised aboveEf , the state 1′ is
underpopulated thereby slowing down the hole emission process. This occupancy
effect is reflected in the second term, which is sensitive to changes inEf .

The overall hole emission timeτe follows approximately from

1
τe

≈ 1

τ1′
e
+

1

τ2′
e

(113)

and is depicted in Fig. 15. At a certain oxide field, when the state 1′ is shifted below
state 2,τ1′

e reaches its minimum value and falls belowτ2′
e . The resulting drop inτe

is observed as the field dependence characterizing fixed oxide hole traps at weak
oxide fields (cf. Fig. 14 right).The drop inτe occurs when the minimum of the state
1′ passes that of state 2, and is thus related to the exact shape of the configuration
coordinate diagram. It is emphasized here that in the multi-state model the bistability
of the defect allows for fixed as well as switching oxide hole traps while there is no
explanation for these two kinds for defects in other models.

In summary, several features observed in the TDDS data have been quantitatively
reproduced as shown in Section 8 and qualitatively understood following the above
discussion based on analytical expressions. As such, this model can be regarded as
a suited model to describe hole trapping in BTI.
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Fig. 19 (PRINT IN COLOR)Top left: The hole occupancy during tRTN. Att = 0 the stress voltage
has been removed and the defect is in its positive state 2. After atimeτs

e the defect ceases to produce
noise.Bottom left: Configuration coordinate diagram for a tRTN defect. The thick arrow indicates
the fast switches between the states 2 and 1′ related to the occurrence of noise. The possibilities
to escape from these states are shown by the thin arrows.Top right: Electron occupancy during
aRTN.Bottom right: Configuration coordinate diagram for an aRTN defect. Sincethis defect is
an electron trap, the solid and the dashed line correspond to thenegative and the neutral charge
state of the defect, respectively. The double-sided thick arrow is associated with aRTN while the
thin one represents the transitions into and out of the metastable state 2′.

10 Noise

So far it has been shown that the multi-state model accounts for all features seen in
the time constant plots for the fixed as well as the switching oxide hole traps. Be-
yond that, the model can also give an explanation for tRTN observed in TDDS (see
Section 2). The generated noise stems from defects switching back and forth be-
tween states 2 and 1′. The associated charge transfer reactionsT2↔1′ do not involve
any intermediate states and are therefore simple NMP processes. It is remarked here
that the transitionsT2↔1′ require the energy minima 2 and 1′ in the configuration
coordinate diagram to be on approximately the same level at the relaxation voltage.
This is only the case for a group of defects whose energy minima 1 and 1′ are en-
ergetically not far separated. In the TDDS measurements, the investigated devices
are stressed at a highVg so that the defects are forced from the state 1 into the state
2 or 1′. During this step, the defects undergo the transitionT1→2′→2 into the state
2 or even further into 1′. The other direct pathwayT1→1′ into the state 1′ or 2 is
assumed to go over a large barrierε11′ . Therefore, the transitionT1→1′ proceeds on
much larger timescales compared toT1→2′→2 and can be neglected. After stressing,
the recovery traces are monitored at lowVg or Fox, respectively, at which the energy
minima of the states 2 and 1′ coincide and noise is produced. However, the state
1 is thermodynamically preferred due to its energetically lower position compared
to the states 2 and 1′. When the defect returns to its initial state 1, the RTN signal
disappears with a time constant ofτs

e. The corresponding transition could be either
T2→2′→1 or T1′→1 with a time constant ofτ2′

e or τ1′
e,min, respectively (cf. Fig. 19).

The termination of the noise signal after a time period ofτs
e is determined by the
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minimum of these time constants. Consider that the NMP barriersε21′ andε1′2 must
not be too large since otherwise trapping events will occur too fast and are therefore
not detected using a conventional measurement equipment.

Interestingly, there also exists a type of defect which repeatedly produces noise
for stochastically distributed time intervals (see Section 2). This kind of noise was
observed for electron traps27 in nMOSFETS and is referred to as aRTN. Just as in
the case of tRTN, the noise signal is generated by charge transfer reactions between
the states 2 and 1′. The recurrent pauses of the noise signal (see Fig. 19) originate
from transitions into the metastable state 2′, which is electrically indistinguishable
from the state 2. These interruptions correspond to the timeduring which the defect
dwells in this state and no charge transfer reaction can takeplace. Thereby it has
been presumed that the NMP transitionT2′→1 occurs on larger time scales than the
return to the state 2 through the transitionT2′→2. The slow capture time constantτs

c
in Fig. 19 defines the mean time interval during which noise isobserved. Its value
is given by the inverse of the transition rate 1/k22′ . The slow emission time constant
τs

e = 1/k2′2 corresponds to the mean time interval until the next noise period starts.
One should keep in mind that when adopting the concept of aRTNto hole traps

in pMOSFET, it may also explain the tRTN behavior seen in TDDSmeasurements.
During TDDS stress, this sort of defects are forced into one of the states 2 and
1′ where they produce an RTN signal. As in aRTN, they undergo a transition to
the metastable state 2′ thereby stopping to produce a noise signal. However, this
special sort of defects is characterized by a slow emission time constantτs

e, which
is much larger than the typical measurement time of TDDS. As aconsequence, the
next transition back to the state 2 and the subsequent noise period are shifted out
of the experimental time window of TDDS and will not be recorded during the
measurement run. According to this explanation, tRTN can also be explained as a
stimulated variant of aRTN.

In summary, the multi-state model can account for the features from the time
constant plots and is consistent with the observation of tRTN as well as aRTN. This
fact is presented here since it is regarded as an additional support for the validity of
this model.

11 Conclusion

With the departure from the established reaction-diffusion model, charge trapping in
BTI has recently attracted scientific interest. Therefore,the nature of charge trapping
has remained vaguely understood for a long time and has been intensively studied
within our group. In this chapter we presented a detailed derivation of our charge
trapping model, termed multi-state model, in which the focus was on correctly mod-
eling microscopic processes involved in BTI. In order to support understanding of
the tendencies in this model, we have also given analytical expressions, which still
capture the main physics underlying charge trapping in BTI.
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For the verification of our model, we have chosen the TDDS technique since
it allows to analyze the behavior of single defects. The evaluation of our multi-
state model was based on five criteria including the curvature in the capture times,
the gate bias and temperature dependences, and the fixed as well as the switching
oxide hole trap behavior. So far, all these features have only been reproduced by the
multi-state model, which strongly indicates that the this model is based on correct
assumptions. Interestingly, the model gives also an explanation for temporary and
anomalous RTN, thereby further corroborating its validity.
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