Chapter 15
On the Microscopic Limit of the RD Model

Franz Schanovsky and Tibor Grasser

Abstract The popular reaction—diffusion model for the negative bias temperature
instability is discussed from the viewpoint of stochastic chemical kinetics. We
present a microscopic formulation of the reaction—diffusion model based on the
reaction—diffusion master equation and solve it using the stochastic simulation
algorithm. The calculations are compared to the macroscopic version as well
as established experimental data. The degradation predicted by the microscopic
reaction—diffusion model strongly deviates from the macroscopic version and the
experimentally observed behavior. Those deviations are explained as necessary
consequences of the physical processes involved. The presented results show the
impact of the unphysical assumptions in the reaction—diffusion model. Further, we
generally question the suitability of the mathematical framework of reaction rate
equations for a reactive-diffusive system at the given particle densities.

15.1 Introduction

The first model for NBTI was put forward by Jeppson and Svensson in 1977 [1].
This model was based on the following ideas, which are illustrated in Fig. 15.1.
Due to the lattice mismatch between silicon and silicon dioxide, some of the silicon
atoms do not have an oxygen neighbor. A silicon atom in this situation has one
unpaired valence electron, which is called a dangling bond. This dangling bond
is visible in electronic measurements as it gives rise to states within the band-
gap [2]. During the manufacturing process the wafer is exposed to a hydrogen-rich
atmosphere so that hydrogen atoms can penetrate through the oxide and passivate
the silicon dangling bonds, leading to a removal of the band-gap states.
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Fig. 15.1 The basic concept behind the reaction—diffusion model for NBTI. (a) Silicon dangling
bonds at the Si-SiO, interface are initially passivated by hydrogen atoms. (b) During stress,
hydrogen atoms are liberated leaving behind the unpassivated silicon dangling bonds which
degrade the device properties. (¢) The time evolution is determined by the depopulation of the
interface due to the flux of hydrogen into the oxide

During stress, the presence of holes at the interface and the increased temperature
leads to a liberation of the hydrogen atoms. The remaining silicon dangling bonds
become electrically active carrier traps. According to the model, the depassivation
and repassivation of dangling bonds at the interface reach an equilibrium in a very
short time [3,4], and it is the constant flux of hydrogen atoms (or some hydrogenic
species) away from the interface that determines the temporal evolution of the
degradation. Because of the two proposed stages—the electrochemical reaction at
the interface and the subsequent diffusion of the hydrogenic species—this model
bears the name reaction—diffusion (RD) model.

The mathematical framework of the model is based on a macroscopic description
using a rate equation for the interface reaction and a Fickian diffusion equation
for the motion of the hydrogen in the oxide. Central actors are the density of
depassivated silicon dangling bonds at the interface Nj, = [Si*], and the concen-
tration of hydrogen in the oxide H = [H](x,7) and at the interface H;; = [H](0,?).
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Fig. 15.2 Basic features of the degradation predicted by the RD model for NBTIL. In the initial
phase, the depassivation reaction with rate kr dominates, giving rise to a degradation that increases
linearly with time. After the depassivation and repassivation reactions have reached an equilibrium,
the degradation is determined by the flux of hydrogen, which gives rise to a power-law with an
exponent of 1/4

During degradation, a fraction N of the initially passivated silicon dangling bonds
Ny = [SiH]y is depassivated according to

I Ny
ot

= ke(No — Nit) — keNieHj, (15.1)

with the depassivation (forward) rate k¢ and the repassivation (reverse) rate k;. The
hydrogen liberated at the interface then diffuses into the oxide as

0H J’H

= =-D5o (15.2)

with the diffusion coefficient D. The RD model became popular among reliability
engineers as it features a simple mathematical description and a small set of
parameters which have a sound physical interpretation. Most importantly, as shown
in Fig. 15.2, this model predicts a constant-stress degradation that initially grows
linearly with time and then follows a power-law of the form [3,4]

keNo

1/4
T (Dt)'/*, (15.3)

Nit<l‘) =

This power-law degradation corresponded well with experimental results of the
1970s.
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Fig. 15.3 Typical recovery trace as predicted by the RD model for NBTI using (15.4)—(15.6),
which is similar for all variants of the RD mechanism. The comparison with experimental data [7]
shows that the RD predicted recovery occurs much too late and proceeds much too fast

In later experiments, power-law exponents were found that differed from the 1/4
prediction of the model. These findings led to a modification of the original RD
model to account for different diffusing species such as Hy [5]. For almost four
decades, the reaction—diffusion idea was the unquestioned standard interpretation
for NBTT until around 2005 NBT recovery moved into the focus of the scientific
attention. The experiments showed that NBTI recovery starts immediately (even
before a microsecond) after the removal of stress and extended over several
decades, continuing even after more than 10°s [6, 7]. This behavior stands in
strong contrast to the predictions of the RD model, which predicts a recovery
that proceeds within four decades, centering around the duration of the preceding
stress phase [8, 9]. A comparison of a typical experimental NBT recovery trace
and the corresponding prediction of the RD model is shown in Fig. 15.3. Several
extensions to the RD model have been put forward, such as dispersive transport
of the hydrogenic species [4, 6], but none could give the observed experimental
behavior. The current state-of-the-art RD-based modeling supplements the RD
theory with empirical hole-trapping expressions. It is assumed that short-time (1)
degradation and recovery is dominated by hole trapping into oxide and interface
defects, while the long-term degradation and recovery are determined by the RD
mechanism [10-13]. The RD theory employed in these modeling efforts is the
modified RD model [14—-16] that has been developed as an extension of the classical
RD models and explicitly considers diffusion of H and H, and their interconversion
reactions. Classical models assume an instantaneous transition between the liberated
interfacial hydrogen and the diffusing species, usually H, [5]. The reactions present
in the modified RD model are the interface reaction SiH = Si* + H, the dimerization
reaction 2H = Hj, and the diffusion of both species. The mathematical framework
is an extension of (15.1) and (15.2) [15, 16],
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Fig. 15.4 (Left) According to Mahapatra et al. [11], the inability of the macroscopic reaction—
diffusion model (15.4)—(15.6) to predict the experimentally observed NBTI recovery is due to the
one-dimensional description of the diffusive motion which makes it too easy for the hydrogen to
find its dangling bond. (Right) A correct description of the three-dimensional atomic motion, so
the argument, leads to much richer repassivation kinetics and thus to a distribution of repassivation
times

ON:

8;‘ = k(No — Ny) — keNiHy, (15.4)
oH 0*H

8H2 82H2 kH 2 kH

Tt p,——cy U Thph 15.
ot 202 T3 2 (15.6)

with the additional parameters kg and kg, which are the reaction rates for dimeriza-
tion and atomization, respectively. Again the motion of H and Hj is described by a
simple diffusion law with the corresponding diffusion coefficients D and D, [17].
The combination of this modified reaction—diffusion model with empirical hole-
trapping somewhat improves the match with experimental DC and AC stress data.
The failure of the RD model to properly describe NBT recovery is shifted out of the
time window of some experiments, but essentially remains.

Quite recently it was claimed that the misprediction of recovery is due to the one-
dimensional description of the diffusing species in the macroscopic model (15.5)
and (15.6) [11]. As illustrated in Fig. 15.4, it was suggested that this formulation
makes it too easy for the hydrogen atom to find a dangling bond to passivate because
the one-dimensional diffusion considers only two options of motion: forward and
backward jumping. In a higher-dimensional description the diffusion and reaction
kinetics are much richer:

1. The atoms can move in all three dimensions equally likely, leading to a
distribution of arrival times at the interface during recovery.

2. Hp-molecules dissociate at a dangling bond, creating a passivated dangling bond
and a free hydrogen atom that does not immediately find another dangling bond
to passivate.

3. Hydrogen atoms arriving later have to hover along the interface to find an
unoccupied dangling bond.



384 F. Schanovsky and T. Grasser

0.04 T T T .
0.03 -
>
E 00
k=]
5] Dx 0.1
Dx1
0.01 - Dx5
Dx 10
Average
0 | |
1072 10°

Stress time/s

Fig. 15.5 Numerically calculated recovery traces for different diffusion coefficients during recov-
ery and the average of these traces. In accord with [11], this average trace shows a recovery that
proceeds over more time-scales than the individual traces

A simple estimate of the recovery in this hypothetical three-dimensional model is
given in [11]. This estimate tries to mimic the different repassivation kinetics arising
in the atomic description within the framework of the usual macroscopic RD model.
To account for the longer “effective” recovery paths, the diffusion coefficients in
the macroscopic model are reduced by different factors during recovery and the
resulting recovery traces are averaged. Although this approach gives a recovery
that proceeds over more time scales, as shown in Fig. 15.5, no derivation for the
quasi-three-dimensional description is given and its physical validity is at least
questionable. One of our targets is to test the claims of [11] within a firm theoretical
framework.

We have derived and implemented a microscopic formulation of the RD model
[18, 19], in order to study the behavior of the RD mechanism on the atomic scale.
This effort was made not only to test the claims of [11], but also to investigate
general issues of the rate-equation-based description in the context of MOS relia-
bility. As a literature study reveals, reaction—diffusion systems have been studied
in numerous scientific communities from both the theoretical and the experimental
side for more than a century [22-28]. Although the mathematical framework of the
RD model (15.4)—(15.6) seems physically sound and the description using densities
and rate equations is commonly considered adequate, it is a well-known and
experimentally confirmed result of theoretical chemistry that the partial differential
equation-based description of chemical kinetics breaks down for low concentrations
[22]. Additionally, in reaction—diffusion systems bimolecular reactions, such as the
passivation and the dimerization reaction, require a certain proximity of the reactant
species, termed reaction radius [23, 28]. Usually the elementary bimolecular
reactions happen almost instantaneously and it is the required collision, i.e., the
reduction of the distance between two reactants below the reaction radius, which is
the rate-limiting step [22]. In chemical kinetics, these reactions are called diffusion-
limited or diffusion-controlled reactions [24].
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Fig. 15.7 An idealized atomic model of an MOS structure and the average dangling bond distance
of 4.5nm, which spans several interstitial positions. It is intuitively clear that an elementary
reaction between particles separated by this distance is strongly influenced by diffusion

It is easy to show that diffusion must play a dominant role in the bimolecular
reactions in the RD model for NBTI. The density of bonding defects on oxidized
silicon (100) surfaces is about 1 x 10'2cm™2 [20]. Figure 15.6 schematically shows
a uniform random distribution of dangling bonds on a silicon (100) surface that
corresponds to a density of 5 x 10'>cm™2, which is a usual assumption for Ny [15,
21] in the RD model (15.1) or (15.4). The average distance between two nearest
neighbors at this density is d = No '/ ~ 4.5nm. An atomic model of the Si-SiO,
interface as in Fig. 15.7 shows that two points separated by this distance have a large
number of atoms in between. The assumption of an elementary reaction over this
distance is clearly inappropriate, so any reaction between particles of this separation
must involve a diffusive step.
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Once established by the atomic viewpoint above, the diffusive influence on the
bimolecular reactions leads to contradictions in the RD model and its physical
interpretation. The predicted degradation of the RD model that is compatible with
experimental data is only obtained if the hydrogen atoms that are liberated during
stress compete for the available dangling bonds and dimerize at a certain rate. Both
requirements involve diffusion over distances much larger than the nearest neighbor
distance, which takes about 2s at a commonly assumed diffusion coefficient of
D =10"Bcm? /s [15,21]. The reaction radius py of the dimerization reaction can
be estimated from the Smoluchowski theory for irreversible bimolecular reactions
[23,25,26]

ki

— . 15.
4rnD 15.7)

PH

While a reasonable reaction radius is in the regime of the average radius of the
oxide interstitials, which is about 4 A [29], the application of (15.7) to published
dimerization rates gives values ranging from 70 um for the parametrization of [21]
to thousands of kilometers for other parametrizations [15]. Although both values
for py seem quite unreasonable, they only indicate a limited physical validity of
the selected parametrization. An evaluation of the physical validity of the reaction—
diffusion model itself requires a more detailed study using a computational model
that properly treats the stochastic chemical kinetics involved. For the present study
of the microscopic properties of the RD mechanism we have developed an atomistic
reaction—diffusion simulator, which is described in the following.

15.2 Stochastic Description of Reaction-Diffusion Systems

Our microscopic RD model attempts to mimic the proposed mechanisms of the
reaction—diffusion model at a microscopic level. The basic actors are H atoms, H,
molecules, and the silicon dangling bonds at the interface. The investigations are
carried out at the stochastic chemistry level. Several approaches have been used in
the chemical literature for the stochastic simulation of reaction—diffusion systems
[25, 26]. These approaches can roughly be categorized as grid-based methods or
grid-less methods [26], owing to the description of the diffusion of the reactants,
see Fig. 15.8. Grid-less methods propagate the coordinates of the diffusing species
through Newton’s equations of motion, quite similarly to molecular dynamics
methods. Instead of explicitly treating all atoms of the solvent and their effect on
the trajectory of the diffusors, the motion of the diffusing particles is perturbed by
an empirical random force to generate a Brownian motion. Bimolecular reactions
happen at a certain rate as soon as two reaction partners approach closer than a
given radius. Although this technique suffers from its sensitivity to the time-step
and the specific choice of the random force, it is a popular choice for the simulation
of reaction—diffusion processes in liquid solutions where real molecular-dynamics
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Fig. 15.8 Schematic illustration of the stochastic modeling approaches to reaction—ditfusion
systems. (Left) In grid-less methods, a molecular trajectory is generated from the transient solution
of Newton’s equations of motion as in molecular dynamics simulation. The interaction with the
solvent is modeled by a random force that acts on the diffusors. Bimolecular reactions occur when
two particles approach closer than the reaction radius (indicated as circles around the particles)
(Right) In grid-based methods diffusion proceeds as jumps between the sub-domains defined by
the grid. Bimolecular reactions occur when two particles occupy the same grid-point

simulations are not feasible [25,26]. In grid-based methods the simulated volume
is divided into small domains and each diffusing particle is assigned to a specific
domain. The motion of the diffusors proceeds as hopping between the grid-points.
In these models the bimolecular reactions happen at a certain rate as soon as two
reactants occupy the same sub-volume. The advantage of this approach is that it
can be formulated on top of the chemical master equation. This equation can be
solved without artificial time-stepping, as explained in the following section. A
problem of the grid-based method that is repeatedly discussed in chemical literature
is the choice of the spatial grid as it induces a more or less unphysical motion in
liquid solutions. Additionally, the probability to find two particles on the same grid
point and in consequence the rate of bimolecular reactions are quite sensitive to the
volume of the sub-domains [26].

In the reaction—diffusion model for NBTI, the diffusion of the particles proceeds
inside a solid-state solvent. Contrary to diffusion in gases or liquids, the motion of
an impurity in a solid-state host material proceeds via jumps between metastable
states as illustrated in Fig. 15.9. This hopping diffusion is understood as a hopping
process over energetic barriers. In the case of H or Hy, which do not react with the
host atoms, these barriers arise from the repelling Coulomb interaction between the
electron clouds of the host lattice and the diffusor. The minima of the potential
energy surface are thus the interstitial positions of the host lattice [30, 31]. In
between the jumps, the motion of the atom is randomly vibrational rather than
diffusive. This discreteness of motion not only strongly suggests the use of a grid-
based method, where the grid points are interstitial positions of the host lattice,
but also induces a natural discretization into the reaction—diffusion equations. As a
consequence, the description based on macroscopic diffusion equations in the RD
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Fig. 15.9 Schematic trajectory of an inert interstitial atom diffusing in a solid-state host material.
The potential energy barriers of the host material are indicated as black grid. The diffusion itself
proceeds via jumps between the interstitial positions. In between the jumps, the atom vibrates
randomly around an energetic minimum

model (15.5) and (15.6) are only valid at distances that are much larger than the
interstitial radius and it has to be assumed that at very short distances a description
using hopping diffusion is more accurate.

15.3 The Chemical Master Equation

From the considerations of the previous section we conclude that the most appro-
priate description of the physics considered in the present work is obtained from the
reaction—diffusion master equation approach [25-28]. Within the natural lattice of
interstitial positions the actors of our RD system exist in well-defined and discrete
states. Once the chemical states and reactions that comprise the chemical system
under consideration are defined, their dynamics can be described as a random
process that switches between the states [32, 33]. Mathematically, the state of the
chemical system is described as a vector X. In addition, a set of reaction channels
is established, which cause the transitions between the discrete states of this vector.
Due to the unpredictable nature of the dynamics of the microstates, the time at which
areaction takes place is not a deterministic quantity. Instead, if the chemical system
is in a given state X, at time ¢, for every reaction channel y a reaction rate ¢, can
be defined, so that cydz is the probability of the reaction taking place between ¢ and
t +dr [33]. Different chemical states have different reaction rate constants for their
reaction channels. These reaction rate constants depend only on the current state of
the chemical system irrespective of the previous states of the system. In this case a
function can be defined for every reaction channel that assigns a specific rate to a
specific state cy = ay(Xy). These functions are called the propensity functions [33].
The change induced by the reaction channel 7y is described using the state change
vector Vy. The thus formulated model describes a memory-less random process
with discrete states, which is usually called a Markov process [34]. The removal
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Fig. 15.10 Illustration of the ( D
example system discussed in
the text. The system exists in
one of the two states X; and
X,. Transitions between these kip,v1

states are caused by two @/\‘
reaction channels with the \/GD
state-change vectors V| and ky,v2

V>, and the associated rates
k 12 and k21

of memory from the system occurs through the thermal equilibration, which is
assumed to happen much faster than the chemical reactions. According to the theory
of stochastic chemical kinetics [32, 33], the evolution of this system over time can
then be described by a chemical master equation

b r
—an’t> = D lay(X = Vy)P(X—Vy,1) — ay(X)P(%,1)], (15.8)
r=1

where P(X,t) = P(X = X,t|X,19) is the probability that the stochastic process X (¢)
equals X at time 7, given that X (o) = Xo.

The master equation approach can be illustrated using the simple example of a
system with two states X; and X, [34], see Fig. 15.10. The system has two reaction
channels 1 and 2, which connect the two states through the state change vectors V;
and V, as

X1+vVi=Xx, and X+ =X (15.9)

The propensity functions a; and a, assume the form

ai(¥1) =ki2, ai(x2) =0, (15.10)
az()_ﬁ) :O,and az(fz) :k21. (15.11)

The master equation for this system consequently reads

W) — o1 P(52.0) — kiaP (1) (15.12
w = kiaP(¥1,1) — ko1 P(¥s,1) (15.13)

As the system can only exist in one of the two states at a time, it follows that

P(%1,1) = 1= P(Z.1) = p(t), (15.14)
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which reduces the master equation of the two-state system to

dp(t)
ot

:k21(1—p(t))—k12p(t). (15.15)

This is the rate-equation of the two-state system, which is equivalent to the master
equation for this simple example.

Within the theoretical framework of the chemical master equation, all the
microphysical details elaborated in the previous section are now contained in the
propensity functions ay and the state-change vectors v, for the I'" reaction channels.

15.4 States and Reactions in the Microscopic RD Model

The main actors of the microscopic RD model are the H atoms and the H»
molecules. The state vector X of the system consequently contains the interstitial
positions and bonding states of all actors. The reactions employed in our simulations
are the hopping transport between interstitial sites, the passivation/depassivation
reaction, and the dimerization/atomization reaction. These reactions are treated as
elementary reactions and are formalized in the reaction channels given in Fig. 15.11.
The stochastic chemical model is solved using the stochastic simulation algorithm
(SSA) explained in Sect. 15.5.

In the microscopic RD model employed in this work the interstitial sites form
a regular and orthogonal three-dimensional grid and the hopping rates for the
diffusors are assumed to be constant in accord with the isotropic and non-dispersive
diffusion underlying the conventional macroscopic RD model [4]. In a real SiO,
of a MOS transistor the amorphous structure will of course lead to a random
network of interstitial sites [29] with a variety of hopping rates and a more complex
topology. However, as the power-law degradation predicted by the macroscopic RD
model requires a constant diffusion coefficient, these variations must be assumed
unimportant [17] in order to obtain agreement with the established model. As
illustrated in Fig. 15.12, the simulation region in our calculations is a rectangular
box which extends to infinity normal to the Si—SiO» interface and has closed lateral
boundaries. The Si—SiO, interface itself is represented by a special region at the
bottom of the simulation box where selected interface sites have the ability to bond
or release a diffusing hydrogen atom, see Figs. 15.11 and 15.12. The positions of the
dangling bond sites in the interface region are picked randomly, similar to Fig. 15.6.

As mentioned above, the choice of the grid size requires special attention as
it determines the probability of the bimolecular reactions. The interstitial size of
amorphous silica has been calculated for molecular dynamics generated atomic
structures and is about 4 A [29]. We take this value as the physically most reasonable
grid size.

Once the microscopic model is defined, the relation to the macroscopic RD
model (15.4)—(15.6) has to be established. Using the number of dangling bonds in
the simulation box npg, the number of hydrogen atoms passivating a dangling bond
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Fig. 15.11 Reaction channels and propensities in the microscopic RD model along with their
macroscopic counterpart. (a) The dangling bonds are represented by special sites at the bottom
of the simulation box. Empty dangling bond sites can be passivated by a free hydrogen atom.
(b) Occupied dangling bond sites do not offer a bonding reaction channel, they can only emit their
hydrogen atom. (¢, d) Within the bulk SiO,, the atoms or molecules are allowed to jump from an
interstitial /; to any neighboring site /,. (¢) When two hydrogen atoms occupy the same interstitial
position, they can undergo a dimerization at rate kg and form H;. (f) Each hydrogen molecule
dissociates at a rate kz;, back into two hydrogen atoms. For interstitial site 7, npg; is the number of
(depassivated) dangling bonds, 7, ; is the number of passivating hydrogen atoms, ny; is the number
of free hydrogen atoms, and ny,; is the number of hydrogen molecules. / denotes the step size of
the spatial grid
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np and the numbers ny; of H and ny,; of H at interstitial 7, this relation is obtained
from the discretization induced by the grid [21] as

No = 'VZVLE (15.16)
n —n
Ny = % (15.17)
H(x;) = % (15.18)
1
NH,i
Ha(xi) = =, (15.19)

where W, L and h are illustrated in Fig. 15.12 and V; is the volume of interstitial i
which is V; = A* in this work. The relation between the rates of the macroscopic
model and the microscopic propensity functions are given in Fig. 15.11. Initially, all
hydrogen atoms are passivating silicon dangling bonds

np(t = 0) = npg, (15.20)

in accordance with the assumptions of the macroscopic RD model.

15.5 Solution of the Master Equation

Now that the chemical states and reactions are defined we can calculate the time
evolution of the chemical system from the chemical master equation (15.8). As
explained above, this equation is a stochastic differential equation which assigns a
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probability at time ¢ to any state vector X, given that X =Xyatt =tg. As in the simple
example above, for a system with a small set of states {X],...,Xq}, a direct solution
can be attempted, which results in a coupled system of € differential equations
[34]. However, in many situations the number of states will be large or even infinite,
rendering a direct solution of the master equation unfeasible or even impossible. A
feasible alternative is the SSA [32] explained in Fig. 15.13, which is also known as
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the kinetic Monte Carlo method. Instead of solving the differential equation (15.8),
a realization of the stochastic process X is generated using pseudo-random numbers.
The SSA does not have any algorithmic parameters and is a mathematically exact
description of the system defined by the states and reaction channels [32]. Averages
of the probability distribution P(X,¢) are trivially calculated over several simulation
runs, although care has to be taken to ensure the randomness of the pseudo-random
numbers between two runs to avoid correlation effects.

15.6 Results and Discussion

Two different systems have been studied in detail: a model system and a “real-world-
example.” The model system is used to study the general features of the microscopic
reaction—diffusion process. It is parametrized in order to clearly show all relevant
features at a moderate computational effort. The parametrization of the real-world
system is based on a published parametrization of the modified reaction—diffusion
model. This system is used to relate our microscopic model to published data.

15.6.1 General Behavior of the Microscopic RD Model

The parametrization that is used to study the general behavior is given in Table 15.1.
As the time evolution in the SSA proceeds reaction by reaction, the channels with
the fastest rates determine the execution time. The computational effort scales
linearly with the number of particles in the system, which is determined by the
lateral extent of the simulation box. As the dangling bonds and in consequence
also the diffusing particles are uniformly distributed along the interface at any
time in our calculations, the reflecting boundary conditions in our calculations are
equivalent to periodic boundary conditions. Thus, our calculations correspond to an
infinitely extended Si—Si0O; interface and the lateral box size only determines the

Table 15.1 Parameters of

the model system Reaction Propensity (s
Depassivation 0.5
Passivation 4% 10*
Dimerization 2% 10°
Atomization 5
H-hopping 100
H»-hopping 100

The parameters have been selected to enable
a study of the different regimes of the micro-
scopic RD model at moderate computational
expense. The rates are given in terms of the
microscopic model as in Fig. 15.11
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Fig. 15.14 As the interaction
between the diffusing
particles is small at early
degradation times, the
computation can be
parallelized by averaging over
several simulation runs. The
figure shows that a
calculation with 10° particles
is equivalent to the average of
100 calculation runs with 10°
particles. The result of a
single 10° particle run is
shown for comparison. ks was
increased by a factor of 100
for this calculation, in order
to obtain smooth curves from
the 107 particle run
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resolution, i.e., the noise level, of the degradation curves. The computational effort
scales roughly linearly with the simulated time, which means exponential scaling for
the logarithmic abscissa that is used for BTI degradation curves. The choice of the
lateral extent of the simulation box is thus based on a trade-off between accuracy and
computational speed and has to be adapted for the study of the different degradation
regimes.

At early degradation times the low degradation level requires a high resolution,
i.e., a large number of particles is required to obtain smooth results. Fortunately, as
reactions between the hydrogen atoms or between hydrogen atoms and neighboring
dangling bonds do not happen in this regime, a good parallelization can be obtained
by averaging over separate simulation runs, see Fig. 15.14.

The earliest degradation times are dominated by the depassivation of the silicon
dangling bonds leading to a linear increase of the degradation, which is equivalent
to the initial “reaction limited” degradation of the macroscopic RD model [3].
However, the degradation predicted by the microscopic RD model quickly saturates
as an equilibrium forms between depassivation and repassivation for each dangling
bond separately. In the absence of any diffusion the time evolution of the number
of hydrogen atoms passivating a silicon dangling bond is given by

L) (15.21)

np(t = 0) = npp (15.22)
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Fig. 15.15 Comparison of the microscopic RD model with 25,000 particles averaged over 50,000
runs to its macroscopic counterpart, the single-particle expressions (15.24) and (15.25) and the
isolated dangling-bond equilibration (15.23). The earliest degradation times are dominated by the
equilibration between the depassivation and passivation reaction at every dangling bond. Around
1 ms, the departure of the hydrogen atoms from the dangling bond site begins but the interaction
between the diffusors is still negligible

with the solution

k (ki ta
np(t) = npg — 22 (1—e <"f*h3)t). (15.23)
ke + 5

A comparison of the microscopic RD model and (15.23) is shown in Fig. 15.15.
The initial behavior of the microscopic RD model stands in stark contrast to the
degradation in the macroscopic model where the linear regime continues until a
global equilibrium has formed at the interface.

As this initial behavior takes a central position in our further discussion, it
requires a deeper analysis. The microscopic single-particle regime can be accurately
described using rate equations as it does not contain any second-order reactions. The
required equations are basically those of the RD model, but as every hydrogen atom
can be assumed to act independently, the expressions for the hydrogen bonding as
well as the competition for dangling bonds are neglected. As the kinetic behavior in
this regime is strongly determined by the first diffusive steps of the hydrogen atoms,
the diffusion part of this approximation must have the same interstitial topology as
the microscopic model. As all hydrogen atoms act independently, only one atom and
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Fig. 15.16 Due to the larger
fraction of depassivated
dangling bonds, the number
of diffusing particles can be -
reduced for long-term
simulations. Three
microscopic calculations are
compared to the macroscopic -
result. The 25,000 particle oL
. . 10
simulation clearly shows the
transition between the
single-particle and the
macroscopic diffusion-limited
regime. The 1,000 particle
calculation captures the
transition region but is too L
noisy for t < 100ms. The 90
particle simulation captures
the macroscopic regime with
reasonable accuracy L
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one dangling bond need to be considered. The interface reaction and the diffusion
of the hydrogen atom is thus described as

any k;
W = —kfl’lp + h—SnDBl’lH() and (1524)
8nH,~ D
= Y, —(mm;—nm), (15.25)
ot T h?

respectively, where .4~ denotes the set of neighboring interstitials to i. Figure 15.15
compares the microscopic RD calculation with the approximations for the different
regimes at early degradation times, which shows that the single-particle approxima-
tion perfectly matches the behavior of the full model in the initial phase.

After the atoms have traveled sufficiently long distances, the interaction between
the particles becomes relevant and the single-particle approximation becomes
invalid. In Fig. 15.16 this is visible as a transition away from the single-particle
behavior toward the macroscopic solution between 1s and 1ks. As the fraction
of depassivated dangling bonds in this regime is much higher than during early
degradation times, the results are not as strongly influenced by the noise of the
SSA calculation. Consequently the number of particles can be reduced for longer
simulation times, which makes the prediction of long-term degradation possible.

Finally, Fig.15.17 compares the microscopic RD model to the macroscopic
version over the course of one complete stress cycle, where the microscopic curve
was obtained by combining calculations of different accuracy, as explained above.
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Fig. 15.17 Comparison of all regimes of the microscopic RD model to the degradation predicted
by the macroscopic RD model. Obviously there is a large discrepancy between the two descriptions
and the behavior of the physically more reasonable microscopic model is not experimentally
observed

Instead of the three regions which arise from the macroscopic RD model—treaction-
limited, equilibration, and diffusion-limited—the H-H, microscopic description has
four to five regimes depending on the particular parametrization:

The earliest degradation times (¢ < 20us in this case) are dominated by the
depassivation of dangling bonds. In this regime, the microscopic and the
macroscopic model give identical degradation behavior.

After the passivation and depassivation have reached an equilibrium between k¢
and k; separately for each Si—H bond, the fraction of depassivated dangling bonds
remains constant until the diffusion of the hydrogen atoms becomes dominant.
This regime only shows when the individual hydrogen atoms are considered and
consequently is not obtained from any model based on rate equations.

As more and more hydrogen atoms leave their initial position, the degradation is
determined by the buildup of a diffusion front along the Si—Si0O, interface and the
equilibration between the dangling bonds. This regime has a very large power-
law exponent of almost one' that is not experimentally observed. The stress time

'In our earlier studies on two-dimensional systems this exponent was around 0.8 [19], owing to
the topology dependence of this regime.
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range in which this regime is observed depends on the average distance between
two dangling bonds, the diffusion coefficient, and the interstitial size.

* As the bimolecular reactions become relevant, the macroscopic diffusion-limited
regime begins to emerge. For some parametrizations we have observed a time
window in which the initial diffusion-limited regime has the typical ¢'/4-form
that arises from the classical RD model without H, [19]. In this case the
dimerization rate is reduced by the diffusive step and the H diffusion dominates
the degradation until a sufficient amount of H, has formed.

The initial single-particle phase of the degradation is a remarkable feature of the
microscopic model. As it is incompatible with experimental data and very sensitive
to the parametrization, its relevance for real-world reliability projections has to
be investigated. For this purpose we have run calculations based on a published
parametrization of the reaction—diffusion model for NBTI, see Sect. 15.6.4.

15.6.2 Recovery

In agreement with our investigations on two-dimensional systems [18, 19], the
three-dimensional stochastic motion of the hydrogen atoms does not influence
the recovery behavior of the system after long-term stress, which contradicts the
suggestions of [11]. As shown in Fig. 15.18, a longer relaxation transient is only
obtained if the preceding stress phase does not show a power-law regime. As the
system comes closer to the macroscopic degradation behavior, the recovery in the
microscopic model also approaches the macroscopic version, which is incompatible
with experimental data [7, 8, 35]. This behavior is to be expected as the 11/6
degradation regime requires an equilibration and thus a quasi-one-dimensional
behavior. The recovery proceeds on a timescale that is at least two orders of
magnitude longer than the stress time. The lateral search of hydrogen atoms for
unoccupied dangling bonds was suggested to dominate at the end of the recovery.
However, due to the logarithmic time scale on which recovery is monitored, the
equilibration along the interface has negligible impact at the end of the recovery
trace if this equilibration proceeds about two orders of magnitude faster. Thus, the
hovering of hydrogen atoms along the interface does not influence the shape of the
recovery transient.

15.6.3 Approximations in the Macroscopic Model

After the microscopic RD theory Fig. 15.11 has been established and its general
behavior has been investigated, one can use this framework to analyze the assump-
tions that are implicit to the macroscopic RD model (15.4)-(15.6), which is still
widely considered to be an adequate approximation.
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Fig. 15.18 Recovery transients for different stress times. As the degradation transient approaches

the macroscopic diffusion limited regime (see inset), the recovery comes closer to the macroscopic

recovery, leading to a perfect match as soon as the degradation assumes the experimentally relevant
1/6

t'/° form

The most obvious approximation in the macroscopic RD model is the one-
dimensional description of diffusion. While this may seem to be appropriate as
boundary effects in the diffusion of both H and H; are negligible, it tacitly introduces
the assumption of lateral homogeneity along the interface. This homogeneity
includes the following assumptions:

e All the liberated hydrogen atoms at the interface (Hj; in (15.1) and (15.4))
compete instantaneously with all the other free interfacial hydrogen atoms for
all the available dangling bonds.

e All the pairs of hydrogen atoms at a certain distance from the Si—SiO; interface
are equally likely to undergo dimerization and form H;, independently of their
spatial separation.

As was shown above, a hydrogen atom liberated during stress initially stays in the
vicinity of its original dangling bond and thus the lateral homogeneity has to be
considered a long-term approximation. It is accurate when the diffusion of hydrogen
has led to enough intermixing so that there is no significant variability in the
concentration of free hydrogen along the interface. Following [33], this condition
can be called “lateral well-stirredness” of the system.

The second and more delicate approximation in the macroscopic RD model is the
mathematical description using rate- and diffusion-equations. In the microscopic
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Table 15.2 The parameters

employed in the real-world ke 357!

simulations ke 6x 1073 cm3s™!
ky 5.6x 107" em3s~!
kp, 95.457!
D 107 B ecm?s™!
D, 1.8126 x 10~ cm?s~!
Ny 5% 102 cm~2

The parameter set is based on the values pub-
lished in [15] but was slightly modified to give
the same degradation behavior with physically
more reasonable k; and ky

RD model, the rate at which an atom at the interface passivates a dangling bond
depends not only on the rate k; but also on the probability of finding this atom at
the position of the dangling bond. In the macroscopic model the precondition of
having an unoccupied dangling bond at the interface is described multiplicatively
as k:NjHj. At early times during degradation, when each hydrogen atom still
resides near its dangling bond, this term introduces an unphysical self-interaction
where each hydrogen atom competes with itself for its dangling bond. As the root
of this problem lies in the assumptions implicit to a formulation based on rate-
equations, the error is also present in a macroscopic model with three-dimensional
diffusion. As explained in [19], this means that a rate-equation-based RD model will
not accurately describe the degradation at early times even if higher-dimensional
diffusion and discrete dangling bonds are considered.

Similar to the passivation rate, the rate at which Hj is formed in the microscopic
RD model depends on both the dimerization rate kg and the probability of finding
two hydrogen atoms which occupy the same interstitial position. In the macroscopic
RD model, this dimerization reaction is modeled as kzH?. As thoroughly explained
in [22], this approximation is only valid for large numbers of particles, as the number
of pairs of hydrogen atoms in an interstitial goes as N(N — 1) which can only be
approximated as N? if N is sufficiently large.

All in all, the macroscopic RD model can only be considered a valid approxima-
tion of the microscopic RD model for very long stress times and a sufficient amount
of liberated hydrogen atoms. The time it takes for the macroscopic approximation
to become valid, however, may exceed the time range in which it is usually applied,
depending on the parametrization.

15.6.4 A Real-World Example

To study the behavior of the atomistic model for a real-world example, we compare
to the measurements of Reisinger et al. [7] using the parametrization of Islam et al.
[15] in a modified form, see Table 15.2. Figure 15.19 shows the results of our
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Fig. 15.19 The degradation transient predicted by the microscopic RD model for four interstitial
sizes compared to the macroscopic one-dimensional model and experimental data. Using the
parameters in Table 15.2, the prediction of the microscopic RD model is completely incompatible
with the experimental data as the onset of the 7!/ regime is delayed beyond 10% s (about 3 years) for
a reasonable interstitial size of 4 A. Increasing the interstitial size reduces the effect as it increases
the effective reaction radius for the bimolecular reactions. However, even for unphysically large
interstitial sizes, the onset of the ¢1/° regime is delayed to 10*s (h =40 /0%) or10°s (h= 2()13;)

calculations for several interstitial sizes. While the macroscopic one-dimensional
RD model fits the data very well, the kinetic Monte Carlo data shows a completely
different behavior. Again, the single-particle regime is clearly present. However,
due to the low density of dangling bonds at the interface, the single-particle regime
dominates the degradation for a large part of the stress time. For a realistic interstitial
size of 4A [29, 36], the onset of the 7!/° regime lies far beyond the experimental
window of 10° s. When the interstitial size is increased, the onset of the ¢'/° regime
moves to earlier times, which is due to the increase of the reaction radius for the
bimolecular reactions as explained above. For the given parameter set, an interstitial
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size of h = 2nm, which is the total thickness of the oxide of the device under
consideration [7], is required to at least have the 11/6 regime touch the experimental
window.

A shift of the onset of the experimentally observed regime to earlier times at a
realistic interstitial size requires a dramatic increase of either the hydrogen diffusion
coefficient or the availability of free hydrogen near the interface. An increase of
the hydrogen diffusion coefficient, however, breaks the dominance of H, flux over
the flux of atomic hydrogen and changes the predicted degradation away from the
experimentally observed ¢!/ towards '/4. Increasing the availability of hydrogen at
the interface by adjusting the ratio k¢/k; causes similar problems, as the H; diffusion
coefficient has to be lowered in order to give the same overall degradation.

This indicates that in the given microscopic model it is impossible to obtain
the experimentally observed 11/6 degradation within the experimental window at
a reasonable interstitial size.

15.6.5 Increased Interface Diffusion

The behavior predicted by the microscopic model is completely incompatible
with any experimental data, while the description is much closer to the physical
reality than the macroscopic RD model. Only two interpretations are possible
to resolve this dilemma. Either the ability of the macroscopic RD model to fit
degradation measurements has to be regarded as a mathematical artifact without
physical meaning, or the structure of the Si/S10, interface somehow accelerates the
lateral equilibration considerably. We investigated the second option more closely
by considering first-principles calculations that have shown a lowering of diffusion
barriers for hydrogen (molecules) along the Si/SiO;-interface as compared to the
bulk SiO, [37]. These findings indicate that the motion of hydrogen might proceed
at a much higher rate along the interface. As a higher diffusivity at the interface
aids the lateral equilibration, it might be the sought process that makes the one-
dimensional RD model physically meaningful. To account for it in our microscopic
model, we applied different diffusion coefficients Dy and Dg in the interface region
and in the bulk, respectively.

As can be seen in Fig. 15.20, the increase of the interface diffusion coefficient
accelerates the degradation during the initial phase as it increases the transport of
hydrogen atoms away from their dangling bonds. Interestingly, even if the interface
diffusion coefficient is increased by four orders of magnitude there is no 11/0
behavior visible, but instead the degradation takes on the typical #'/* behavior
of a hydrogen-only reaction—diffusion model. While the competition for dangling
bonds sets in earlier for increased interface diffusion coefficients, the formation
of H, is not accelerated in the same way. Inspection of the atomic diffusion
shows that the acceleration of the dimerization is much less pronounced as the
liberated hydrogen atoms constantly leave the interface region into the bulk where
the diffusion proceeds slower and the collision rate is reduced. Only in the limit
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Fig. 15.20 For increasing Dy, the departure of hydrogen atoms from their dangling bond sites
starts earlier, leading to an increased degradation at earlier times. Comparison to the classical RD
model without H, formation shows that competition for dangling bonds sets in after about 100s,
leading to a r'/4 degradation. The formation of Hj is slowly accelerated by the increased D; and
only for Dy — oo, the macroscopic behavior is obtained

of Dy — oo will the microscopic RD model match the experimentally observed
behavior. Although these extremely high interface diffusion coefficients lack any
physical justification, this is still closer to the physical reality than the assumption
of immediate equilibration along the Si—SiO,-interface at any depth that is inherent
to the usually employed one-dimensional macroscopic RD model.

As a side note we remark that in a real wafer, a nearly infinite diffusion coefficient
along the Si/SiO;-interface would make the hydrogen spread out through the waver
during stress. This would again alter the degradation slope and give rise to cross-talk
between neighboring devices that would be measurable, but has never been reported.

15.7 Related Work

Four other scientific groups have put forward microscopic RD models recently [21,
38, 39] and interestingly those investigations find a reasonable agreement between
their microscopic description and the macroscopic RD model. In the work of
Islam et al. [21] the atomic description is basically equivalent to the work presented
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here but is built upon a one-dimensional foundation which carries the same implicit
assumptions as the macroscopic model. Clearly this model cannot capture the effects
discussed in this chapter as those are solely due to higher-dimensional effects.
From a physical point of view, however, the one-dimensional approximation lacks
justification considering the results presented above.

The work of Choi et al. [39] considers the three-dimensional diffusion of the
particles based on a grid-less stochastic formulation. Although the degradation in
that work seems to match the macroscopic RD model quite well at first sight, also
strong discrepancies arise between the two for longer stress times. Interestingly,
for situations where the approach presented above predicts a degradation far below
the prediction of the macroscopic model, the degradation predicted by Choi et al.
overshoots the macroscopic model considerably. Only for an enormous density of
dangling bonds or a very large reaction radius the macroscopic behavior is obtained,
in accord with our results. The degradation behavior in [39] initially follows Ny () =
ket, which suggests that the depassivated hydrogen atoms instantly leave the reaction
radius of their respective dangling bond. The following excessively high power-law
exponent suggests that the repassivation of the silicon dangling bonds is somehow
inhibited in this formulation. The most likely explanation for this behavior is a too
low resolution of the time-stepping, in combination with the physically unjustifiable
description of the diffusive motion.

The work of Panagopoulos and Roy [38] uses a grid-based stochastic RD model
that seems to be compatible with our description. The surprisingly good agreement
between their results and the macroscopic RD model may be an artifact of the
employed method which is based on an adaptive time-stepping. Also, the paper
states that the passivation reaction occurs if a hydrogen atom is “close” to a dangling
bond. This indicates an artificial capture radius, but this is not explicitly stated. Also,
the grid spacing is not given in the paper and its physical relevance is not discussed.
However, as shown by our calculations, an unphysically large grid spacing strongly
promotes bimolecular reactions and thus induces a degradation behavior that is
(falsely) compatible with the macroscopic RD model.

Finally, Naphade et al. [40] recently presented a stochastic version of the poly
H/H> RD model. In this approach it is assumed that the diffusion of H is restricted
to the oxide, while the diffusion of H, happens in the gate contact and beyond.
The large H diffusion coefficient in these calculations in combination with the large
grid size of 1nm reduces the effect of the diffusion limitation on the bimolecular
reactions. Although this model is formulated on a stochastic description, and
is 1n better agreement with the experimental data, its physical validity is again
questionable due to the assumed H diffusion coefficient of 107> cm?/s. At this
diffusion coefficient, the hydrogen diffusion front would extend to 1cm after 100ks
of stress. Even if the assumption that hydrogen is unable to penetrate into the gate
contact holds, the isotropic nature of the diffusion process would lead to a lateral
diffusion whose front quickly exceeded the dimensions of the MOS device. This
would lead to a considerable out-diffusion of hydrogen from the gate area, resulting
in a sharp increase of Nj; and again a destruction of the 11/6 power-law degradation.
In the calculations of Naphade et al., however, this effect is not present due to the
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reflecting lateral boundary conditions which in this case are not justifiable anymore.
Apart from these issues, the poly H/H, RD model shares the shortcomings of all
RD-based models with respect to the prediction of NBTI recovery. Based on our
calculations with increased interfacial diffusion coefficients, which corresponds to
the increased oxide diffusion coefficient in the model of Naphade et al., we expect
this problem to be also present in the stochastic version.

15.8 Conclusion

Our work shows that the reaction—diffusion model for the negative bias temperature
instability, which has been used for nearly 40 years to interpret experimental data,
has a number of inherent assumptions on the underlying physics that lack any
physical justification. Those are:

1. Continuous diffusion in the sub-nm regime. Diffusion of neutral hydrogen atoms
and H, proceeds via jumps between the interstitial sites of the host material.
Positional changes that are smaller than about 4 A are atomic vibrations around
an equilibrium position and thus not diffusive in nature. This is especially
relevant as in the macroscopic modified H-H, RD model, the onset of the power-
law regime is quite discretization dependent.

2. Instantaneous well-stirredness along the interface. The one-dimensional macro-
scopic RD model, which gives the experimentally relevant '/ behavior, inher-
ently assumes that all hydrogen atoms that are liberated during stress instan-
taneously compete with all other hydrogen atoms at the interface for available
dangling bonds or dimerize with each other. However, at typically assumed
dangling bond densities of 5 x 10'>cm™2, the distance between two dangling
bonds will be about 4.5nm. At a depassivation level of 1% this means that
the average initial distance between two hydrogen atoms is even in the range
of 45nm. The reduction of this distance to the typical Hy bonding distance of
0.7 A [30] needs to be overcome by a diffusion step, which takes about 2005 at a
diffusion coefficient of 10~!3cm? /s.

3. Rate-equation-based description. It is well established in chemical literature that
bimolecular reactions are not sufficiently described by reaction rate equations if
the particle numbers are small. In a reaction rate equation system it is for instance
possible for 0.5 H atoms to form 0.25 H,, which is physically meaningless. An
accurate description in the limit of small particle numbers is only obtained from
an atomistic description.

We have implemented a stochastic three-dimensional modified reaction—diffusion
model for NBTI to study the degree to which a more realistic description changes
the predicted behavior. The model is theoretically well founded on the theory of
stochastic chemical kinetics and is understood as a consequent realization of the
physical picture behind the reaction—diffusion theory.
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The degradation predicted by the microscopic model features a unique new initial
regime in which the motion of each hydrogen atom is completely independent from
the others. This regime features a strongly increased power-law exponent that is
not observed experimentally, yet it is a necessary consequence of the liberation of
hydrogen during stress. Application of the atomic RD model to a real-world example
shows that for a realistic jump width it is impossible to obtain the experimentally
observed behavior due to the apparent diffusion limitation of the dimerization and
passivation rates. The match of the microscopic model with the macroscopic version
and experimental data can be improved by using an increased diffusion coefficient
at the interface. However, the required diffusion coefficients are many orders of
magnitude above 10~ cm? /s, which corresponds to a diffusion length of 100um
after 100ks. The lateral diffusion of the hydrogen in this case would reach way
beyond the dimensions of individual microelectronic devices, leading to cross talk
and a dramatically increased degradation due to the loss of hydrogen.

The recovery predicted by the microscopic model matches the macroscopic
counterpart as soon as the previous degradation has entered the classical diffusion-
limited regime. This behavior is due to the prerequisite that the system has to be
equilibrated along the interface before the 11/0 regime can emerge. As the recovery
happens on much larger time-scales than the stress duration, lateral equilibration
effects are invisible in recovery traces. A distribution of arrival times as predicted
by the simple estimate using different diffusion coefficients during recovery as in
[11] could not be found.

In summary, our study of the microscopic limit reveals a number of serious
problems in the traditional mathematical formulation of the reaction diffusion model
for NBTI, rendering all variants that are based on partial differential equations
physically meaningless. In a physically meaningful microscopic version of the
model, no experimental feature remains that can be accurately predicted. The
apparent match of the RD models with experimental data must therefore be
considered a mathematical artifact without any physical background.
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