
Chapter 17
The Capture/Emission Time Map Approach
to the Bias Temperature Instability

Tibor Grasser

Abstract Recent results suggest that the bias temperature instability can in good
approximation be understood as the collective response of an ensemble of indepen-
dent defects. Although the kinetics of charge capture and defect creation clearly
require the presence of charge carriers in the channel, they appear reaction rather
than diffusion limited. While a number of peculiar features in these kinetics have
been revealed recently, the most striking feature remains the wide distribution
of reaction rates, or equivalently, time constants. By modeling the activation
energies of the time constants via bivariate Gaussian distributions in what we call
capture/emission time maps, a wide range of experimentally observed features
can be explained in closed analytical form. Examples are the temperature- and
bias-independent power-law time exponent during stress including saturation at
longer times, the long logarithmic-like recovery traces, as well as differences and
similarities between DC and AC stress.

17.1 Introduction

Numerous studies conducted over the last couple of decades have shown that at
least two types of defects contribute to the bias temperature instability (BTI), namely
oxide and interface defects [1–7]. Considerable evidence has piled up in recent years
suggesting that oxide defects are mainly responsible for the recoverable component
of BTI [8–11], while interface defects are mostly permanent in typical experimental
windows [12–15].
Charge exchange between the channel and oxide defects has traditionally been

modeled using a simple Shockley–Read–Hall (SRH) model [16]. The SRH model
was originally developed for bulk defects, but later extended in an empirical manner
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to describe oxide defects by the introduction of a WKB tunneling factor [17–20].
Detailed time-dependent defect spectroscopy (TDDS) studies have shown, however,
that the oxide defects contributing to NBTI are of a more complicated nature [9,10,
21, 22]. In particular, transitions between the different charge states are consistent
with nonradiative multiphonon (NMP) processes, as has already been observed in
random telegraph noise studies [23]. Furthermore, metastable states seem to be an
essential aspect since they explain the switching trap behavior [10,21,24,25] as well
as the frequency dependence of the capture time constant [26–30]. Nevertheless, the
most intriguing feature appears to be the wide distribution of both the capture and
the emission time constants [31]. These time constants may even be too short to
be experimentally observable (<1μs) as well as extremely large (>1ks). While the
chemical nature of these oxide defects has not been unanimously identified [32–
34], it is this distribution of time constants which essentially determines the typical
recovery behavior of a device following bias temperature stress [31, 35–38].
Interface states, at least at SiO2/Si interfaces, are most likely due to silicon

dangling bonds at the silicon–insulator interface, known as Pb centers [33, 39, 40].
The creation dynamics are much harder to study experimentally since both capture
and emission time constants are rather large. Also, in every BTI experiment the
recoverable component R appears to overshadow the build-up of the permanent
component P [15]. Thus, a number of attempts have been made at characteriz-
ing P:

• Application of measurement methods which (hopefully) dominantly measure
interface states, such as charge-pumping techniques [13, 41–43].

• Attempts to removeR by for instance accelerating recovery by switching the gate
voltage into accumulation.

• Attempts to guess from the dominant behavior of R on the underlying evolution
of P (the universal recovery idea) [44, 45].

Unfortunately, all these methods introduce uncertainties:

• First, charge-pumping currents have to be converted to the typically measured
threshold-voltage shifts used to characterize R to make the components com-
parable. However, it is not clear whether only interface states contribute to
those recombination currents and how the density-of-states in the fraction of the
bandgap visible to charge-pumping has to be extended to the remainder of the
bandgap to allow for a meaningful comparison [15, 41, 46].

• Second, all attempts in removing R by the application of controlled discharge
pulses appear to leave some unspecified remaining fraction of defects behind,
since not all defects react to switches of the gate bias [24, 47]. Furthermore, the
devices may show a tendency to go back to their pre-pulse rather than to their
pre-stress state [15].

• Finally, while the universality appears to capture an interesting aspect of R, it
is not clear what physical process is responsible for such a behavior and how
accurate such an extraction scheme is.
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As a consequence, we know much less about P than we know about R, making
the available models more rudimentary. In particular, it remains controversial
whether R and P are created in a coupled manner [48, 49] or not [11, 37, 50].
Nonetheless, similar to R, the creation/annealing time constants of P also show
a wide distribution. This is also consistent with electron-spin-resonance data on
creation and annealing of Pb centers [51].
Since the wide distribution of the time constants is responsible for both the build-

up and the recovery of R and P, this distribution essentially determines the time-
dependence of the degradation. As such, it appears natural to seek a description
of BTI based on these distributions [31, 36–38]. A particularly useful observation
in enabling a simple description is that despite their multi-state nature, charging
and discharging of individual oxide traps responsible for R can be well described
by an effective first-order process [20], at least for lower frequencies [29]. While
not that much is known about P, available experimental data appear to indicate
that the same is true for P [4, 28]. In the following we will summarize our recent
attempts in developing such a model which describes the build-up of R and P as
the collective action of a large number of individual defects, each described by a
first-order process.

17.2 The Capture and Emission Times

In order to describe the defects, we first have to specify their capture and emission
times as a function of bias and temperature. While the models used for oxide and
interface traps are fundamentally different, they can still be approximately brought
into the same mathematical form, yielding effective capture and emission times

τc = τ0eβEc and τe = τ0eβEe (17.1)

with β = 1/kBT , kB the Boltzmann constant, and T the absolute temperature.
In general, the effective time constant τ0 will depend only weakly on bias and
temperature, while the effective capture and emission barriers Ec and Ee can have
a strong bias dependence. In the following, the assumptions required to bring
available physical models for oxide and interface defects into the simple form (17.1)
will be summarized.

17.2.1 Oxide Defects

We begin our discussion with oxide defects, which have been shown [10,24,29,47]
to have at least four states, 1, 1′, 2′, and 2, see Fig. 17.1. The unprimed states
1 and 2 are assumed to correspond to the stable equilibrium configuration in the
neutral and positive charge states, while 1′ and 2′ are their metastable counterparts.
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Fig. 17.1 Top: The four states of oxide defects extracted from DC TDDS experiments [10, 52].
Each defect has two stable states, 1 and 2, and possibly two metastable states 1′ and 2′. The
metastable state 2′ seems to be always present, while the existence of the metastable state 1′ decides
on whether the trap behaves like a fixed or a switching trap [24,53]. Bottom: An effective two-state
approximation of the four-state defect using the first-passage times τ12 and τ21 [10, 20]

The transitions between the states are described by 8 rates, ki j. In a first-order
description, we neglect the switching state 1′. This approximation is valid as long as
the gate voltage remains above the threshold voltage but misses the rapid decrease
of the emission time once the device is biased into depletion or accumulation [47].
Transitions between these states appear to be consistent with a Markov process,
which in essence means that the defect forgets its past once it has arrived in a certain
state. These transitions are stochastic processes, where the transition events for each
individual transition are exponential distributed. The parameter of this distribution
gives the mean transition time. Neglecting state 1′, the first passage times [54, 55]
for an overall transition from 1 to 2 define the effective capture and emission times
as [20]

τc =
k12′+ k2′1+ k2′2

k12′ k2′2
and τe =

k2′2+ k22′+ k2′1
k22′ k2′1

, (17.2)

which is not quite in the simple form (17.1) yet. While the first passage times
exactly describe the mean of the overall distribution of the capture and emission
times, replacing the four-state defect model (or three-state model in this case) by
an effective two-state model approximates the distributions of the stochastic capture
and emission events by exponential distributions [20]. Nonetheless, this appears to
be an excellent approximation [10].
The physics behind the initial charge capture transition 1→ 2′ can be modeled at

various levels of detail. In order to obtain the simplest results possible, we consider
only the ground state of the neutral and the metastable positive configuration (E1 and
E2′) and assume that all holes are located at the valence band edge EV directly at
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Fig. 17.2 Definition of the symbols required to describe the adiabatic defect potential of the
simple model without the switching state 1′. The vibronic energy, which is the sum of the electronic
and vibrational energies, is shown relative to the substrate valence band in state 2, that is, E2 = 0

the interface, see Fig. 17.2. The transitions are described using NMP theory [56–60]
based on linear electron–phonon coupling [61], with the rates given in the classical
(high-temperature) limit by

k12′ = pvthσ e−x/x0 e−βE12′ , (17.3)

k2′1 = pvthσ e−x/x0 e−βE12′ e−β E1F, (17.4)

where p is the surface hole concentration, vth the thermal velocity, σ the capture
cross section, x0 the parameter in the simplified WKB tunneling expression, and
E1F = E1 − EF the distance of the trap level from the Fermi-level. For linear
electron–phonon coupling the NMP barrier is obtained as

E12′ =
(ER+E2′1)

2

4ER
(17.5)

where E2′1 = E2′ −E1, ER = Sh̄ω as the lattice relaxation energy, ω the oscillator
frequency determined by the curvature of the parabolic adiabatic potential [62],
and S the Huang–Rhys factor which gives the number of phonons required for the
optical transition. For strong electron–phonon coupling (ER� E2′1), the quadratic
dependence simplifies to E12′ = ER/4+E2′1/2, which we will use in the following
for the derivation of the analytical results. It is convenient to express the flat-band
defect energy levels E10 and E2′0 relative to EV0, the flat-band valence band edge,
by introducing E1= E10−EV0 and E2′ = E2′0−EV0. Assuming to first order that the
charges trapped inside the oxide have only a small impact on the electric field, we
have E2′1 = E2′0−E10− qxF = E2′ −E1− qxF , with x the distance of the trap into
the oxide, F the oxide field, and Ei0 the trap level for F = 0. The sign conventions
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are such that x is positive and F is positive for a negative bias at the gate (NBTI).
Inserting the above into the rates delivers

k12′ = pvthσ e−x/x0 e−β (ER+2E2′ )/4 e+β (E1+qxF)/2, (17.6)

k2′1 = Nv vthσ e−x/x0 e−β (ER+2E2′ )/4 e−β (E1+qxF)/2, (17.7)

where Boltzmann statistics have been assumed for simplicity, p = Nvexp(β EVF).
The barrier crossing rates for the transitions 2′ � 2 are expressed by a simple
Arrhenius law with an attempt frequency ν = 1013 s−1

k2′2 = νe−βE2′2 and k22′ = νe−β (E2′2+E2′ ). (17.8)

We proceed by rewriting the first passage times using the definitions τi j = 1/ki j as

τc = τ12′ + τ2′2
(
1+

τ12′
τ2′1

)
= τ12′ + τ2′2

(
1+

Nv
p
e−β (E1+qxF)

)
, (17.9)

τe = τ22′ + τ2′1
(
1+

τ22′
τ2′2

)
= τ22′ + τ2′1

(
1+ eβE2′

)
. (17.10)

This is an interesting result. (a) First, we see that τc at very high fields becomes bias
independent and is only determined by the barrier between 2′ and 2, τc ≈ τ2′2. (b)
Both time constants can potentially show a strong exponential bias dependence, via
the dependence on τ12′ and τ2′1. (c) While both time constants τ12′ and τ2′1 depend
on E1, this dependence is not normally relevant for τe, which is dominated by τ22′ .
(d) Finally, under typical NBTI conditions, recovery is measured at low F where
τ2′1 is small, so τe ≈ τ22′ , that is, recovery is dominated by the barrier from 2 to 2′.
Only for biases lower than about the threshold voltage, the pathway 2� 1′ → 1 can
be triggered when accessible (switching traps). As such hole emission even from
below EV will have a barrier since holes can no longer simply “bubble up” as in the
SRH picture [20].
In principle, all parameters appearing in (17.9) and (17.10) are different for each

defect, including the surface hole concentration p due to the random location of
the current percolation paths [63, 64]. Unfortunately, not much is known at present
about the nature of these distributions, so we have to invoke a few bold assumptions
here: first, it has been demonstrated [65] that τc and x are uncorrelated for those
defects contribution to RTN. Whether this also holds for NBTI is unknown at
the moment, but we will nonetheless assume in the following x = x, its average
effective value. Lacking evidence to the contrary, all other parameters are assumed
to follow a Gaussian distribution for simplicity. A particularly noteworthy issue is
the following: since many parameters (e.g., ER, E1, E2′ ) which control the defect
behavior result from a certain defect constellation, it appears likely that some hidden
correlations exist. Note also that for defects contributing to NBTI, E1 is typically
smaller than zero, since the defect has to lie below the valence band to be initially
neutral (to be more precise, the defect level has to lie below the Fermi-level at the
read-out or recovery voltage).
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Fig. 17.3 The effective capture time τc is a function of all three partial rates. Shown are two
defects from [10] together with a fit to the model

0 0.5 1 1.5 2 2.5 3
-VG  [V]

10-2

100

102

Ti
m

e 
C

on
st

an
ts

  [
s]

τe
τ22’Defect A1

0 0.5 1 1.5 2 2.5 3
-VG  [V]

10-2

100

102
Ti

m
e 

C
on

st
an

ts
  [

s]
τe
τ22’Defect A4

Fig. 17.4 The effective emission time τc is dominated by τ22′ for VG above the threshold voltage.
Shown are two defects from [10] together with a fit to the model. Defect A1 is a switching trap
while the emission time of A4 appears independent of VG. The switching behavior results from
a backward transition via the pathway 2� 1′ → 1 but is ignored in the present discussion for
simplicity. See [47] for an extended data set and modeling results toward lower VG

17.2.1.1 Low Fields

For low fields during stress, Fig. 17.3 indicates that τc is dominated by the
τ2′2τ12′/τ2′1 term, while Fig. 17.4 shows that τe is bias independent. Thus we have

τc = τ2′2
τ12′
τ2′1

= νe−β (EVF+E2′2+E1+qxF), (17.11)

τe = τ22′ = νe−β (E2′2+E2′ ) = νe−βE22′ . (17.12)

As can be seen, τc depends exponentially on the electric field F . The above
also implies that there is some explicit correlation between τc and τe due to
the occurrence of E2′2 in both expressions in addition to the unknown hidden
correlations in the parameters.
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Fig. 17.5 Left: Simple double-well model used for the creation of interface states. Right: State
diagram for interface states. The double-well model is used to describe the transitions 1 � 2,
while a change of the charge state can be obtained using a SRH model

17.2.1.2 Medium Fields

At medium stress fields, τc is basically given by τ12′ and we have τc = τ12′ and
τe = τ22′ . In this regime no obvious correlation exists and any experimentally
observed correlation must be due to hidden correlations in the parameters. This
issue is discussed in the next section using a simple model for the creation of the
interface states.

17.2.1.3 Strong Fields

At strong fields, the capture time will be dominated by the bias-independent barrier
E2′2 and thus become bias-independent. The emission time, on the other hand, will
be dominated by the bias-dependent barrier E2′1 and increase significantly.

17.2.2 Interface Defects

Since inside typical measurement windows NBTI degradation is dominated by the
activation and annealing of oxide defects, much less is known about interface states,
the creation of which appears nonetheless universally acknowledged [11,13,37,50,
66]. As the details of the creation dynamics are unclear at the moment, the creation
of interface states from a precursor state 1 is typically modeled using a simple
double-well model into the neutral state 2 [11, 37, 50, 67], see Fig. 17.5. Again, as
with the hole trapping model, the barriers are assumed to be statistically distributed
[4, 51, 67]. Alternatively, some groups advocate a reaction–diffusion mechanism
[50, 68, 69], which we consider inadequate due to the lacking direct experimental
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evidence [70] and additional theoretical difficulties [71, 72]. The charge state of the
amphoteric defect is then determined using an SRH model [73]. Since in this picture
the charge state can change rapidly, we limit our attention to the creation process
1� 2. In the simple double-well model, we obtain the classical over-the-barrier
rates

τc = νeβEc and τe = νeβEe . (17.13)

As hinted at previously, we will study in the following the distributions of τc and τe
for a large number of defects. Written in the form (17.13), no correlation between
these two time constants would be obtained if Ec and Ee were independent random
variables. However, given that the adiabatic potential describing the double-well is
a result of the various forces acting on the atoms, such an independence is unlikely.
Quite to the contrary, one can expect a hidden correlation between the parameters
Ec and Ee, since it is unlikely that changes in the defect configuration only impacts
the barrier EB without altering the levels E1 and E2. As such, if we choose to write
Ec = EB−E1 and Ee = EB−E2, a distribution of EB will affect both Ec and Ee since

τc = νeβ (EB−E1) and τe = νeβ (EB−E2) = τceβ (E1−E2). (17.14)

Even in this case, the energies EB, E1, and E2 cannot be expected to be independent.
Nonetheless, to make the model even simpler, we assume that it is the quantities
EB1 = EB − E1 and E12 = E1 − E2 that are independently distributed. The only
justification we have at the moment is that this assumption appears to capture the
essence of the experimental data, in particular the observed correlation between τc
and τe.

17.3 The Capture/Emission Time Map

We now proceed from individual defects of either type to a large collection of both
types. Assume we have a collection of independent defects with a distribution of
capture and emission times. In the interval [τc,τc+dτc] and [τe,τe+dτe] the number
of defects contributing to ΔVth is g(τc,τe)dτc dτe, where the capture/emission time
distribution (“the map”) g has dimension V/s2. Depending on the stressing history
of the device, all defects with similar τc and τe values can be expected to have a
similar occupancy. This occupancy, h(τc,τe), is 1 if all defects in that interval fully
contribute to ΔVth and 0 if they do not contribute at all. For the assumed first-order
processes, h is simple to calculate as a consequence of arbitrarily switching gate
voltages between a high and low level. Then, by multiplying hwith g and integrating
over the whole domain, ΔVth can be calculated at any time, provided g remains
constant. Apparently, this is roughly the case, although defect transformations have
been occasionally observed [10,37,74–77], which will be neglected in the following.
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Mathematically, the total ΔVth is thus obtained by summing up the contri-
butions of all defects with a particular combination of τc and τe, embodied by
g(τc,τe)dτcdτe, weighted by the occupancy h(τc,τe) as

ΔVth(ts, tr)≈
∫ ∞

0
dτc

∫ ∞

0
dτe g(τc,τe)h(τc,τe;ts, tr). (17.15)

As said before, the occupancy function h depends on the history of stress and
recovery cycles the device has been exposed to and on the details of the physical
process. A simple case is obtained for a collection of defects following first-order
processes, which have been subjected to a DC stress phase of duration ts and a
recovery time tr,

h(τc,τe; ts, tr) =
(
1− e−ts/τc

)
e−tr/τe (17.16)

provided that the occupancy is 0 at the initial read-out voltage and 1 after a stress
duration ts� τc. Note that τc is taken at the stress voltage, while τe is considered at
the recovery voltage. To simplify the integration, we employ the approximation

h(τc,τe;ts, tr)≈ H(ts− τc)H(τe− tr). (17.17)

where H is the unit step function. Although this approximation is somewhat crude,
as the two transitions contained in h cover a decade in time, it gives us a very simple
and intuitive connection between ΔVth and g,

ΔVth(ts, tr)≈
∫ ts

0
dτc

∫ ∞

tr
dτe g(τc,τe). (17.18)

In words this means that ΔVth is given by the sum of all defects charged until ts
but not yet discharged after tr. Equation (17.18) can now be used to give a simple
method for the extraction of g by simply taking the negative mixed partial derivative
of a given ΔVth stress/recovery data set [78],

g(τc,τe)≈−∂ 2ΔVth(τc,τe)
∂τc ∂τe

. (17.19)

Note that completely permanent defects with τe → ∞ do not show up in the CET
map. Given the wide distribution of the defect time constants, it is advantageous
to represent the CET map on logarithmic axes. Transformation of the variables
gives [20]

g̃(τc,τe)≈− ∂ 2ΔVth(τc,τe)
∂ log(τc)∂ log(τe)

= τcτe g(τc,τe). (17.20)
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While g gives the density of defects per unit time, for example information on how
much ΔVth is gained/lost in a second, g̃ gives the density on a logarithmic scale, for
example on how much ΔVth is gained/lost per decade.
An example of g̃ extracted from experimental ΔVth(ts, tr) data is shown in

Fig. 17.6. Note that while a correlation between τc and τe exists, it is weak and a
significant density is obtained in the whole experimental window.

17.3.1 Occupancy Patterns

In (17.16), we have already given the occupancy of a defect after a certain stress and
relaxation time under the assumption of an initial empty and finally fully occupied
defect. This can be easily generalized as shown in the following.

17.3.1.1 DC Stress

Given that the defect has the occupancy f (t0) at time t0, its occupancy after a stress
time of duration ts is

f (t0+ ts) = fs+( f (t0)− fs)e−tsks , (17.21)

while after an additional recovery time tr one has

f (t0+ ts+ tr) = fr+( f (t0+ ts)− fr)e
−trkr . (17.22)
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Fig. 17.7 Depending on the measurement scheme, a certain fraction of the CET map can
contribute to ΔVth. Left: An on-the-fly setup (OTF) misses τc < t0. Middle: A measure-stress-
measure (MSM) setup misses τe < tr. Right: An AC stress results in a trapezoidal region

The occupancy after infinitely long stress would be fs, while after an infinitely
long recovery we have fr. Both occupancies follow directly from the bias- and
temperature-dependent rates

fs = k12/(k12+ k21)|stress, ks = k12+ k21|stress, (17.23)

fr = k12/(k12+ k21)|relax, kr = k12+ k21|relax. (17.24)

As initial condition we assume that all defects have their equilibrium occupancy at
the off-voltage, f (t0 = 0) = fr and measure only the deviation from fr, which reads

Δ f (ts) = ( fs− fr)(1− e−tsks). (17.25)

Upon termination of the stress, we have after a recovery time of tr

Δ f (ts, tr) = Δ f (ts)e−trkr , (17.26)

which is of the same form as (17.16), except for the prefactor ( fs − fr). This
prefactor cannot be extracted from macroscopic data and will be tacitly moved into
the CET map g. Note that if the equilibrium occupancies differ from 0 or 1, this
means that the defect produces RTN.
As before, if we assume now a collection of defects with distributed ks and kr,

(17.25) and (17.26) can be used to calculate the occupancy of each defect after
a stress time ts and recovery time tr: from (17.25) it follows that all defects with
ks < 1/ts will remain unoccupied, while (17.26) says that all defects which were
occupied during stress will already be unoccupied again if kr > 1/tr. These two
conditions describe a rectangular area in the CET map, shown in Fig. 17.7.

17.3.1.2 AC Stress

The above procedure can be easily generalized to digital on-off (AC) stress [36, 38,
79], with duty factor α and period T . After the first cycle we have the occupancies

s1 = fs+( fr− fs)s (17.27)

r1 = fr+(s1− fr)r (17.28)
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with s = exp(−αT ks) and r = exp(−(1−α)T kr). Continuing this scheme recur-
sively for n cycles, we obtain a simple geometric series in B = sr, which eventually
gives

Δsn = ( fs− fr)(1−Bn)
1− s
1−B

, (17.29)

Δrn = Δsnr. (17.30)

After a certain stress time ts, the cycle number is obtained via n = �ts/T�. Since n
will be a large integer number in practical cases, we consider it a continuous variable
to simplify the notation, n≈ ts/T . The dominant term in (17.29) is Bn, or

Bn = (sr)n = e−nT (αks+(1−α)kr) .
= e−nαTkAC (17.31)

with kAC
.
= ks+ kr/γ and γ = α/(1−α). Thus, we have

Δsn = ( fs− fr)(1− e−αtskAC)
1− e−αTks

1− e−αTkAC
. (17.32)

Equation (17.32) gives the occupancy of a certain defect with effective rates ks and
kr after a stress time ts. The first exponential factor gives a transition from 1 to 0
when αts ≈ 1/kAC, thereby giving the upper bound of the trapezoidal region shown
in Fig. 17.7. For small ks and kr, the last term can be approximated using exp(−x)≈
1− x as

1− e−αTks

1− e−αTkAC
≈ ks

ks+ kr/γ
. (17.33)

This term results in the diagonal of the trapezoidal region [36]. To see this, take a
fixed kr (or τe), for which this term becomes 0 for small ks (large τc) and 1 for large
ks (small τc), with the transition occurring roughly at ks = kr/γ , or τc = τeγ .

17.3.2 The Capture Time Map

Occasionally, we are not that much interested in the details of recovery, for example
when we want to determine the worst-case degradation under constant bias stress.
We can then simplify the problem to a certain degree by collapsing the τe axis of
the full distribution g(τc,τe). For instance, a typical measure-stress-measure (MSM)
setup will require a certain delay tM with which the degradation can be determined.
Thus, in order to calculate the degradation at a certain stress time ts measured with
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a certain measurement delay tM, we integrate over the τe axis starting from tM until
infinity, see Fig. 17.7. This includes the contribution of all defects τe > tM because
they have not yet emitted their charge. We therefore define the capture time map as

gc(τc, tM) =
∫ ∞

tM
g(τc,τe) dτe (17.34)

which completely determines ΔVth as

ΔVth(ts, tM) =
∫ ts

0
gc(τc, tM) dτc = Gc(ts, tM) (17.35)

because Gc(0, tM) must vanish. In fact, if we chose to normalize gc(τc, tM), it would
be just like the probability density function of ΔVth while G(τc) would correspond
to the cumulative distribution function. However, as we shall see in the sequel, this
analogy should not be taken too far, since g and gc can have a negative sign if non-
first-order processes are considered. This is for instance the case when the prediction
of the reaction–diffusion model is cast into this formalism. Also, the loss of defects
over time may result in negative entries in g. While these more subtle points will not
be discussed in the following, they may prove crucial in the near future and are the
reason why g is referred to as map rather than distribution.
In delay-free experiments, which have become known as on-the-fly (OTF)

measurements [80, 81], the measurement delay is zero and the capture time map
covers the whole τe axis. In practice, however, a delay-free experiment requires
determination of a reference value for the calculation of ΔVth. This reference value
is determined with a certain delay tM at the stress voltage, which corresponds to

ΔVOTFth (ts, tM) =
∫ ts

tM
gc(τc,0) dτc. (17.36)

As a result, even OTF measurements do not capture all defects as the lower part of
the τc axis is missed. The opposite is true for MSM setups which cover the complete
τc axis but only a part of the τe axis. The difference between the two setups is
visualized in Fig. 17.7.
Equations (17.35) and (17.36) now provide a simple procedure for the extraction

of gc(τc, tM) from a given ΔVth(ts, tM),

gc(τc, tM) =
dΔVth(τc, tM)

dτc
and gc(τc,0) =

dΔVOTFth (τc, tM)
dτc

, (17.37)

the first including the delay of the MSM measurement while the second being valid
for OFT data with τc > tM.
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17.3.3 The Logarithmic Capture/Emission Time Map

So far we have defined the two-dimensional capture/emission time map as well
as its reduced one-dimensional counterpart, the capture time maps. These maps
give the density of defects having certain time constants on a linear axis. As we
shall see in the sequel, it is useful to transform the density onto logarithmic axes.
Such a transformation is inspired by the typically observed power-law degradation
behavior, which corresponds to a straight line on a double logarithmic plot, as well
as by the typically observed logarithmic recovery. In particular, the latter implies
that about the same amount of charge is lost per decade in time, see Fig. 17.6.
We start by introducing

θc = log(τc/τ0) and θe = log(τe/τ0) , (17.38)

with a suitably chosen τ0. For the time being, τ0 serves the purpose of a normal-
ization constant, while θ is merely the logarithm of a normalized time constant.
However, as physical models for the time constants can usually be cast into the
form τ = τ0exp(θ ), this already implies the basic structure of the physical model,
as hinted at in (17.1).
Instead of integrating over τ , we rewrite the integration of g as an integration

over θ

ΔVth(ts, tr) =
∫ ts

0
dτc

∫ ∞

tr
dτe g(τc,τe)

=

∫ log(ts/τ0)

−∞
dθc

∫ ∞

log(tr/τ0)
dθe g(τ0eθc ,τ0eθe)τ0eθc τ0eθe . (17.39)

With θs = log(ts/τ0), θr = log(tr/τ0), and

g̃(θc,θe) = g(τ0eθc ,τ0eθe)τ0eθc τ0eθe (17.40)

we can finally write

ΔVth(ts, tr) =
∫ θs

−∞
dθc

∫ ∞

θr
dθe g̃(θc,θe) = G̃(θs,∞)− G̃(θs,θr). (17.41)

Equation (17.40) handles the transformation from the linear to the logarithmic
scale, with g̃(θc,θe) as the logarithmic CET map. Conversely, we have the inverse
transformation

g(τc,τe) =
g̃(log(τc/τ0), log(τe/τ0))

τcτe
. (17.42)



462 T. Grasser

Similarly, the transformation rules for the linear and logarithmic capture time
maps are

g̃c(θc) = gc(τ0eθc)τ0eθc and gc(τc) =
g̃c(log(τc/τ0))

τc
. (17.43)

With the logarithmic capture time map, ΔVth can be obtained as

ΔVth(ts) =
∫ θs

−∞
g̃c(θc) dθc = G̃c(θs). (17.44)

17.3.4 Properties of the Capture Time Map

So far we have derived theoretical relations which describe the connections between
the various maps and the experimentally observed degradation. No assumptions
on their functional forms have been made. Naturally, any experimentally observed
degradation and recovery behavior will require a unique CET map.
For simplicity, we start with the capture timemap, which can be calculated from a

knownΔVth(ts). Experimentally, two functional forms of ΔVth(ts) are of importance,
namely the logarithmic degradation, log(ts/t0), particularly for short-time data [82,
83], and the power-law tn

s [50, 68]. The capture time maps required to produce such
a time behavior will be derived in the following.

17.3.4.1 Logarithmic Time Behavior

Assume that the experimentally observed degradation follows a logarithm in time,

ΔVth(ts) = A log(ts/t0) (17.45)

starting from a certain time ts≥ t0 as sketched in Fig. 17.8. In NBTI data, the point t0
is typically outside the measurement window [83]. According to (17.37) we obtain

gc(τc) =
dΔVth(τc)
dτc

=
A
τc
, (17.46)

which corresponds to the p.d.f. of a log-uniform distribution. This is easier to see
when gc is transformed on the logarithmic θc axis using (17.43)

g̃c(θc) = gc(τ0eθc)τ0eθc = A (17.47)

for θc ≥ log(t0/τ0) and shown in Fig. 17.8.
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Fig. 17.8 Left: Logarithmic time evolution of ΔVth. Right: The corresponding logarithmic capture
time map
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Fig. 17.9 Left: Power-law time evolution of ΔVth. Right: The corresponding logarithmic capture
time map

17.3.4.2 Power-Law Time Behavior

Assume now that the degradation follows a power-law in time,

ΔVth(ts) = A
( ts

t0

)n
(17.48)

as shown in Fig. 17.9. By making use of (17.37) as before, we obtain

g(τc) =
dΔVth(τc)
dτc

= A
n
tn
0

1

τ1−n
c

(17.49)

for ts ≥ t0. On the logarithmic axis we have

g̃(θc) = An
(τ0

t0

)n
enθc . (17.50)
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Fig. 17.10 Left: Power-law time evolution (solid line) as a short-time property of a Gaussian
distribution (dashed line) ΔVth. Right: The corresponding logarithmic capture time map

This can be written as a function of τc(θc) as

g̃(τc) = A
n
tn
0

τn
c . (17.51)

In words, a power-law degradation in time requires a logarithmic density which
increases following a power-law in τc with the same exponent n, see Fig. 17.9.

17.3.4.3 Discussion

In summary, the two cases of the logarithmic and power-law time-dependence will
result from the following distributions

Logarithmic : gc(τc)∼ 1/τc g̃c(θc)∼ const.
Power−Law : gc(τc)∼ 1/τ1−n

c g̃c(θc)∼ enθc = τn
c

The power-law exponent typically observed is rather small, say n = 0.15, which
results in g(τc) ∼ 1/τ0.85c . This is reminiscent to the problem of 1/ f noise [84]:
theoretically, a uniform distribution in θ results in 1/ f noise. Experimentally,
however, one often sees something more like 1/ f α , with exponents close to unity,
which then would correspond to a “power-law” distribution.
The fundamental question that springs to mind is how these distributions will

behave for larger τc. For example, a perfect power-law requires an indefinitely
increasing g̃c, which is clearly not a sensible option. It is thus important to realize
that g̃c measured over a limited time window can only provide some local snapshot
of a more general distribution, which eventually has to saturate and fall off. A natural
example for such a distribution would be a Gaussian distribution on a logarithmic
scale, see Fig. 17.10. As will be discussed in more detail below, a wide Gaussian
distribution will produce a power-law in time over many decades, albeit with a slight
curvature. Indeed, while such a deviation from the power-law can also be attributed
to the influence of the measurement delay [68, 85, 86], a curvature can be clearly
observed also in long-term OTF data [49, 87–89].
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17.3.5 Physical Origin of the Capture Time Map

As discussed above, one cannot expect the power-law degradation to continue
indefinitely in time. The most obvious explanation would be that the (partial)
distribution enθ is the tail of a more realistic distribution that, after having reached
its peak, eventually levels off with increasing θ .

17.3.5.1 Tail of a Gaussian Distribution

The natural choice for such a distribution would be the Gaussian distribution of θ
as g̃c(θc) = ΔVmaxth f (θc) with

fg(θ ) =
1√
2πσ

exp
(
− (θ − μ)2

2σ2
)

(17.52)

Taking the Taylor expansion of log( f ) at some θ0 < μ we have

fg(θ )≈ fg(θ0)e−nθ0enθ =
1√
2πσ

exp
(θ 20 − μ2

2σ2
)
enθ (17.53)

with the power-law exponent

n =
[ 1

fg(θ )
d fg(θ )
dθ

]
θ=θ0

=
μ−θ0

σ2
. (17.54)

Recall that θ0 < μ was assumed, so n > 0 as it should be.
We have already shown that for a certain region around θ0 a Gaussian distribution

results in a power-law in time. The full time evolution including the curvature and
eventual saturation can be obtained from g̃c(θc) = ΔVmaxth fg(θc) as

ΔVth(ts) =
ΔVmaxth

2
erfc

(μ− log(ts/τ0)√
2σ

)
. (17.55)

17.3.5.2 Tail of a Logistic Distribution

Rather than using a Gaussian distribution, which results in awkward error functions
when integrated, the use of the logistic distribution

fl(θ ) =
1
s

exp
(μ−θ

s

)
(
1+ exp

(μ−θ
s

))2 (17.56)



466 T. Grasser

0 1 2 3 4 5
θ

0

0.05

0.1

0.15

0.2

0.25
PD

F
Logistic
Gauss

0 1 2 3 4 5
θ

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

PD
F

Logistic
Gauss

Fig. 17.11 Left: On a linear scale, the logistic distribution appears to be very similar to a Gaussian
distribution. For this comparison the same mean and standard deviation (μ = 2.5 and σ = 0.5)
were chosen. A slight increase in the standard deviation of the logistic distribution to 0.56 would
further increase the visual similarity (not shown). Right: On a logarithmic y-axis, one can see that
the tails of the logistic distribution are linear in θ while for the Gaussian distribution they depend
quadratically on θ . As a consequence, the Gaussian distribution always has a curvature on a log-lin
plot

has been suggested [90], with mean μ and parameter s. The standard deviation of the
logistic distribution is σ = sπ/

√
3. When plotted using a linear y-axis, the logistic

distribution appears like a Gaussian hump, see Fig. 17.11. In contrast to the Gaussian
distribution, however, it can be easily integrated and results in the Fermi function

Fl(θ ) =
1

1+ exp
(μ−θ

s

) . (17.57)

Because of this property, the logistic distribution is sometimes called Fermi-
derivative distribution [90]. The most tempting choice to explain the power-law is
to assume θ � μ [90], for which the logistic distribution can be approximated by

fl(θ )≈ 1s exp
(θ − μ

s

)
, (17.58)

which would perfectly correspond to the density g̃(θ ) required for a power-law in
time. Then, the power-law exponent would be given by n = 1/s = π/

√
3σ . Albeit

tempting, we will see later that this is an unfortunate choice, since onemay be lead to
the wrong conclusion that the logistic distribution is incompatible with experimental
data. To obtain the “correct” results, we expand the distribution in a more general
fashion as in the Gaussian case, which leads to

n =
1
s

exp
(μ−θ

s

)
+ 1

exp
(μ−θ

s

)
− 1

. (17.59)
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The above will only give the conventional n≈ 1/s for θ far below the mean, that is,
θ � μ . However, as will be shown in the following sections, it is only this more
general form of the power-law exponent which is consistent with experimental
data. In this general case, the time evolution of ΔVth resulting from a logistic
distribution is

ΔVth(ts) =
ΔVmaxth

1+ eμ/s
(τ0

ts

)1/s
. (17.60)

17.3.6 Simple Thermal Activation Model

So far we have established that an exponential density g(θc) = enθc is required for
a power-law in time. Also, this exponential density can be justified as the tail of
either a Gaussian or a logistic distribution. What remains to be seen is the physical
meaning of the relation τc = τ0eθc . In other words, what physical model would give
time constants of the form τc = τ0eθc?
As already hinted at in the discussion on the physical models around (17.1), the

most obvious choice that springs to mind is the Arrhenius law, τc = τ0eβEc . In that
case, the physical meaning of θ would be given by the activation energy of the
process,

Ec = θc/β . (17.61)

Also, rather than assuming that θc is distributed according to a certain distribution,
it appears more sensible to assume that it is the activation energy itself which is
distributed. The difference between these two assumptions is fundamental, as in the
latter case the distribution of θc will depend on temperature while in the former case
it will not. Whichever option is correct can then be easily determined by verifying
the “built-in” temperature dependence of the model with experimental data.
For the simple distributions discussed here, we only need to be concerned about

the mean Ēc and the standard deviation σc of the activation energy. It follows from
basic statistical laws that the according moments of the transformed distribution θ
are μ = Ēc/kBT and σ = σc/kBT .
The fundamental question to answer here is whether these distributions are

compatible with the experimentally observed temperature-independent power law
exponents. At a first glance, this is anything but obvious and has led to claims that
such distributions are incompatible with data. We start by writing the time evolution
of a Gaussian distribution

ΔVth(ts) =
ΔVmaxth

2
erfc

( Ēc− kBT log(ts/τ0)√
2σc

)
, (17.62)
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which can be approximated by a power law around a certain measurement window
given by τ0exp(θ0). The slope of this power law is obtained from (17.54) and
(17.61) as

n =
Ēc/kBT −θ0
(σc/kBT )2

(17.63)

and apparently depends on temperature. However, the important point to see here
is that the measurement point θ0 is determined by the experimental window and
is therefore not temperature-dependent. If θ0 were much smaller than Ēc/kBT ,
n would be clearly temperature-dependent. If, however, θ0 is say about half
of Ēc/kBT , the data will appear temperature-independent in a certain window
around θ0.
Let us now try to work out under what circumstances (17.63) can give a

temperature-independent n and whether such a scenario makes physical sense. We
start by assuming that we measure the degradation at two different temperatures, say
T1 and T2. As we have to be consistent with the experimental observation that n is
temperature-independent, we require n to have the same value at both temperatures,

Ēc/kBT1−θ0
(σc/kBT1)2

=
Ēc/kBT2−θ0
(σc/kBT2)2

. (17.64)

From this we see that a given measurement range around θ0 determines the required
mean activation energy Ēc

Ēc = θ0kB(T1+T2). (17.65)

Then, in order to give a certain temperature-independent power law slope n, for
instance n = 1/6, we can calculate the required σc from

n =
Ēc/kBT1−θ0
(σc/kBT1)2

(17.66)

as

σ2c = θ0
kB2

n
T1T2. (17.67)

Long-term power-law exponents are usually determined in the range 100s to 1ks.
This rather firmly sets the value of θ0, for instance to θ0 ≈ log(250s/τ0). When we
now assume T1 = 100 ◦C and T2 = 200 ◦C, we obtain from (17.65) a mean activation
energy of Ēc = 2.25eV. Finally, with n = 1/6 we obtain from (17.67) a standard
deviation of σc= 0.5eV. Both Ēc and σc appear sensible parameters of a distribution
of activation energies in an amorphous oxide. The conditions on the parameters can
be relaxed when we merely require a roughly temperature-independent n.
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Fig. 17.12 OTF measurement on a 1.4nm PNO device at two temperatures fitted by Gaussian
(left) and a logistic (right) distribution of activation energies. Both fits are virtually indistinguish-
able in the measurement window, reproduce the temperature-independent power-law, but differ
slightly in their long term prediction. The reference value of the measurement was obtained at
tM = 1ms, which is emulated in the fits by subtracting ΔVth(tM) and visible as a rapid increase in
ΔVth for ts > tM

Similar conclusions can be drawn for the logistic distribution. However, in
the approximation where the logistic distribution is expanded far away from the
maximum, as is usually done in literature, the resulting power-law exponent n will
be linearly temperature-dependent, n = kBT/s. As stated above, this is contrary
to experimental observations. However, this must not be mistaken as a failure
of the logistic distribution itself, but rather as a consequence of an unfavorable
approximation. Suitable approximations can only be obtained when the distribution
is expanded somewhere closer to the mean rather than in the tail, quite similar to
the Gaussian case, see Fig. 17.12. While both fits have virtually the same quality
inside the measurement window, they behave slightly different at longer times.
Since the Gaussian distribution appears a more natural choice for the distribution
of activation energies, it will be preferred in the following. Another reason is that
the mathematical advantage of the logistic distribution cannot be exploited for the
two-dimensional capture/emission time maps.

17.4 The Analytic CET Map

In the following we try to generalize our previous observations to derive an
empirical analytical model for the CET map. The model is based on the following
assumptions:

• The CET map will consist of two distributions, one describing the recoverable
component R, the other the more permanent contribution P. Lacking firm
evidence to the contrary, we take the simplest route and assume for the time
being that these components are independent.
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• We have also seen before that many experimental features like the power-law
dependence can be captured by a Gaussian distribution for τc, which appears a
natural choice.

• We assume that the effective activation energies are distributed, which results in a
particular “built-in” temperature dependence of the model. The bias-dependence,
on the other hand, must be added by making some parameters of the model bias-
dependent [37].

• Visual inspection of the numerically extracted CET map in Fig. 17.6 shows that
the emission times become larger with increasing capture times, implying a
correlation between the two. The simplest way to express this mathematically
is to write the activation energy of τe in the form Ee = Ec+ ΔEe, where ΔEe
describes an uncorrelated part of Ee. Again, we assume that ΔEe follows a
Gaussian distribution.

In the following we assume that both oxide traps and interface traps can be written
in the form (17.14)

τc = τ0eβEc and τe = τceβ ΔEe. (17.68)

Again, the only justification of this assumption will be the agreement with experi-
mental data demonstrated later on. In order to proceed, we need to know the joint
probability density function g(τc,τe) which characterizes the distribution of both
time constants. In general, all three quantities in the above, τ0, Ec, ΔEe will be
distributed. RTN experiments [65] show no correlation between the depth of the
defect into the oxide, which should essentially determine the distribution of τ0 via
theWKB factor, and τe and τc. Also, the time constants will dependmuch weaker on
a distribution of τ0 compared to a distribution of the energies. We therefore assume
that the energy distribution to be the dominant contribution. As such, we need to find
a model for the joint distribution g(Ec,Ee), with Ee = Ec+ΔEe. This distribution is
easy to construct via the conditional “probability” g(Ee|Ec) and noting that

g(Ec,Ee) = g(Ee|Ec)g(Ec). (17.69)

The conditional probability g(Ee|Ec) is the probability of obtaining a certain value
of Ee for a fixed Ec. Since we assume ΔEe to be Gaussian distributed with standard
deviation σΔe, we have

g(Ee|Ec) = 1
σΔe

φ
(Ee− (Ec+ μΔe)

σΔe

)
. (17.70)

Thus, in total we obtain

g(Ec,Ee) =
1

σcσΔe
φ
(Ec− μc

σc

)
φ
(Ee− (Ec+ μΔe)

σΔe

)
(17.71)
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Fig. 17.13 The CET map is
modeled in the
activation-energy-space using
two bivariate Gaussian
distributions, one for the
recoverable component, fr,
and one for the more
permanent component, fp

which is a bivariate Gaussian distribution. We will use such a bivariate Gaussian
distribution to describe both the recoverable and the “permanent” part of the
degradation as sketched in Fig. 17.13. The following properties of the above joint
distribution are worth mentioning:

• The marginal distribution for Ee, which is obtained by integrating g(Ec,Ee) over
Ec, is a Gaussian with μe = μc+ μΔe and σ2e = σ2c +σ2Δe.

• The correlation coefficient is ρ = σc/σe. Note that this correlation coefficient is a
consequence of our Ansatz for Ee and thus not directly a parameter of the model.

By introducing the normalized variates

x(Ee) =
Ee− (μc+ μΔe)

σe
and y(Ec) =

Ec− μc
σc

, (17.72)

the bivariate Gaussian distribution (17.71) can be written in standard form

f (x,y,ρ) =
φ(y)√
1−ρ2

φ
( x−ρy√

1−ρ2

)
. (17.73)

In order to calculate the response to DC stress, we need the sum over all defects
with τc < ts and τe > tr, which corresponds to all defects being charged up to
ts and not yet discharged at tr. By transforming ts and tr to their corresponding
energies and then into our normalized (x,y) space as a = x(log(tr/τ0)/β ) and
b = y(log(ts/τ0)/β ), the fraction of all defects contributing is given by the integral

F(a,b,ρ) =
∫ b

−∞
dy

∫ ∞

a
dx f (x,y,ρ) =

∫ b

−∞
dyφ(y)

∫ ∞

a
dxφ

( x−ρy√
1−ρ2

)

=

∫ b

−∞
φ(y)Q

( a−ρy√
1−ρ2

)
dy (17.74)

with the standard integral of the Gaussian distribution

Q(x) =
∫ ∞

x
φ(x)dt = 1

2

(
1− erf

( x√
2

))
= 1
2 erfc

( x√
2

)
. (17.75)
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Unfortunately, the integrand of F(a,b,ρ) consists of a Gaussian function multiplied
by an error function, which cannot be integrated in closed form. In fact, the
calculation of bivariate normal integral poses a standard problem in statistics and
numerous solutions to the problem have been proposed over the last decades [91–
93]. However, most of these approximations are too crude for our purpose, since our
expression needs to capture the integral over a wide range of times and temperatures.
A slightly more involved yet simple approach has been suggested recently [94],
which is based on approximating erf(x) in Q(x) as

erf(x)≈ 1− e−c1x−c2x2 (17.76)

for x > 0 with two fitting parameters c1 and c2. The values for x < 0 are obtained
from erf(−x) = −erf(x). A least squares fit in the interval 0 ≤ x ≤ 3 gives c1 =
1.0950 and c2 = 0.756508 and a relative error smaller than 0.2% for x > 0.34 and
smaller than 3% for 0≤ x≤ 0.34. The beauty of this approximation is a consequence
of the fact that the Gaussian distribution when multiplied by an exponential of a
second-order polynomial can be rearranged into a shifted and scaled distribution
which can then be integrated and expressed as combinations of normal integrals

Φ(x) =
∫ x

−∞
φ(x)dt = 1

2

(
1+ erf

( x√
2

))
= 1
2 erfc

(
− x√

2

)
. (17.77)

A slight price to pay comes from the piecewise integration for x ≤ 0 and x > 0,
which corresponds to a ≤ ρb and a > ρb. After some tedious but straightforward
manipulations one obtains the slightly daunting but highly accurate expressions

F(a,b) = Φ(b)−Φ
( a

ρ

)
+
1
2r2
exp

(r21− 2a2C2
2r22

)

×
{
exp

(
−a

C1
r22

)
Φ
(a/ρ− r1

r2

)

+ exp
(

a
C1
r22

)[
Φ
(a/ρ + r1

r2

)
−Φ

(b+ r1− 2C2ρ(a− bρ)
r2

)]}
(17.78)

valid for shorter recovery times (a≤ ρb), while for longer recovery times (a > ρb)
we have

F(a,b) =
1
2r2
exp

(r21− 2a(C1+ aC2)

2r22

)
Φ
(b− r1− 2C2ρ(a− bρ)

r2

)

with

C1 = c1η , C2 = c2η2, η = 1/
√
2(1−ρ2), (17.79)

r1 = c1ρη , r22 = 1+ 2c2(ρη)2. (17.80)
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Fig. 17.14 The auxiliary
integrals F and Fγ used to
calculate the degradation after
DC and AC stress

A slightly less accurate but more compact version is obtained by setting c1 =
√
3

and c2 = 0. By introducing c =
√
3η we then obtain for a≤ ρb

F(a,b) = Φ(b)−Φ
( a

ρ

)
+ 1
2 e

c2ρ2/2

×
{
e−caΦ

( a
ρ
− cρ

)
+ eca

[
Φ
( a

ρ
+ cρ

)
−Φ(b+ cρ)

]}
, (17.81)

while for a > ρb we have

F(a,b) =
1
2
ec2ρ2/2e−caΦ(b− cρ). (17.82)

With the above we can write ΔVth after a DC stress of duration ts and after a
recovery time tr as (see Fig. 17.7)

ΔVth(tr, ts) = ArGr(tr, ts)+ApGp(tr, ts) (17.83)

with the auxiliary functions describing the permanent and recoverable peaks

Gr(tr, ts) = F
(kBT log(tr/τ0r)− μΔer− μcr

σer
,
kBT log(ts/τ0r)− μcr

σcr
,

σcr
σer

)
(17.84)

Gp(tr, ts) = F
(kBT log(tr/τ0p)− μΔep− μcp

σep
,
kBT log(ts/τ0p)− μcp

σcp
,

σcp
σep

)
,

(17.85)

where Ar and Ap give the maximum degradation obtainable from each peak. The
limiting case of zero delay (a → −∞) is simply obtained as F(a,b) = Φ(b), in
agreement with the discussion in Sect. 17.3.5.1.
If the experiment is carried out in an on-the-fly manner, we have zero delay

(a→−∞). However, the degradation is measured relative to the value obtained after
a certain measurement delay ts = t0, see Fig. 17.7. Thus, we have

ΔVth(0, ts) = Ar
(

Gr(0, ts)−Gr(0, t0)
)
+Ap

(
Gp(0, ts)−Gp(0, t0)

)
. (17.86)

Finally, for the calculation of AC stress with period T and a duty-factor γ we
need the auxiliary integral (see Figs. 17.7 and 17.14)
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Fγ(a,b1,b2,ρ) =
∫ b2

−b1
dy

∫ ∞

−a
√
1−ρ2+ρy

dx f (x,y,ρ)

=
∫ b2

−b1
dyφ(y)Q

(−a
√
1−ρ2+ρy−ρy√
1−ρ2

)

= (Φ(b2)−Φ(b1))Φ(a), (17.87)

which is fortunately very simple to calculate. With the auxiliary functions F and Fγ ,
the total ΔVth can be constructed at any time of an AC stress sequence. For instance,
at the end of theVL period, where the recovery time is tr = (1−α)T , we would have

ΔVth((1−α)T, ts) = Ar
(

Gr((1−α)T,αT)+Gγr((1−α)T,αts)
)
+

Ap
(

Gp((1−α)T,αT )+Gγp((1−α)T,αts)
)
, (17.88)

where Gγr and Gγp are defined analogously to Gr and Gp.

17.4.1 Bias Dependence

While the temperature dependence is inherently considered by the distribution of the
activation energies, the bias dependence of the CET maps is modeled by assuming
the amplitude of each component to followA=(Vstress/Vs0)m, with the stress voltage
Vstress and constants Vs0 and m. Also, as previous studies on individual defects
have shown [10], the mean values of the distribution are expected to approximately
follow μc = μc0+ kVstress and Δ μe = Δ μe0− kVstress, with a constant k. The main
effect of k is to shift the capture times toward shorter values without affecting the
emission times. However, by fitting the model to experimental data, the effect of the
bias on the mean values was found to be small and completely negligible for the
permanent component, which is somewhat surprising given the strong exponential
bias dependence of the individual defects.

17.4.2 Experimental Validation

Finally, the model is evaluated on a 2.2 nm SiON technology [95], where very
detailedMSMdata was acquired for the construction of the CETmaps. Recording of
each dataset required about 1–2 weeks. Figure 17.15 shows the analytic CET model,
which contains all essential features visible in the numericalmap shown in Fig. 17.6.
In particular, the rightward slant of the distribution with increasing capture times,
which previously necessitated the introduction of the higher-order polynomials
for the mean and standard deviation of the single normal distribution [78], is
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Fig. 17.15 Left: The analytic CET map extracted for the data shown in Fig. 17.16, which contains
all essential features visible in Fig. 17.6. Right: The analytic activation energy map for the same
data set
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Fig. 17.16 Comparison of the analytic model using the activation energies of Fig. 17.15 to
experimental data at different stress biases and temperatures. Excellent agreement is obtained for
all stress and relaxation times in the extremely wide experimental window—also on a logarithmic
scale (second column, right-most figure)

well captured by the superposition of two bivariate normal distributions. By
simultaneously extracting the analytic distribution for a number of datasets recorded
at different Vstress and TL, a bias- and temperature-dependent analytic CET map is
obtained. A convincing comparison of the analytic model to experimental data for
a number of Vstress/TL combinations is given in Fig. 17.16 using the parameters of
Table 17.1.
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Table 17.1 Parameters used for the analytic CET maps of Figs. 17.15 and 17.16

τ0 (ns) μc (eV) σc (eV) μΔe (eV) σΔe (mV) Vs0 (V) m k

R 98 0.55 0.43 −0.2 0.26 5.22 3.58 4.4×10−3 eV/V
P 0.59 1.6 0.31 0.32 0.48 3.04 3.74 0

17.5 Conclusions

Starting from a rigorous microscopic description of oxide defects and a somewhat
less rigorous description of interface states, we have suggested a physics-based
analytic model for BTI which covers DC, AC, and duty-factor dependent stress
and the subsequent recovery as a function of stress voltage and temperature. Since
the model is intuitively based on the occupancy of defects in the capture/emission
time maps, it can be easily generalized to other more complicated stress/recovery
patterns.
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