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Abstract. The nano-era of semiconductor electronics introduceselessity of simulation meth-
ods which describe the electron transport in ultra-smallass in a mixed mode where quantum-
coherent processes are considered along with the de-cmeepeocesses of scattering. The latter
can be conveniently described in the Wigner picture of quannhechanics, however the coherent
counterpart gives rise to heavy numerical problems. Wegqwea scheme which combines the ad-
vantages of the Wigner function with the Green'’s functioctymie which is numerically efficient
in coherent cases. An equation accounting for the scadteximrections to the coherent Wigner
function is derived theoretically and a Monte Carlo alduritfor calculating these corrections is
developed and implemented. The implementation is deployethe SEE-GRID to facilitate the
swift acquisition of results. Simulation results are presd as a final point.

Keywords: Wigner function, Monte Carlo method, Grid computing

INTRODUCTION

Modeling and simulation of electronic devices is a part ok&dfof science which com-
bines mathematics, physics, and electrical engineerirthads and uses this union to
design, analyze, and optimize the core components of @tegcircuits. To the semi-
conductor industry it appears as the only alternative toramrreously expensive trial-
and-error manufacturing approach. Using device modelimbsamulation the physical
characteristics of semiconductor devices are exploredrmg of charge transport and
electrical behavior [1]. The increase of complexity of timygical models describing the
electron transport, as is required for progress in this fieésbds to be accompanied by
the application of efficient numerical algorithms, as thenpatational costs otherwise
outgrow the available computational resources.

The nano-era of the semiconductor electronics raises tresaty of simulation meth-
ods which describe the electron transport in ultra-smalics as a mixed mode quan-
tum process. The latter accounts for both, quantum-coh@recesses of interaction
with the device potential, and phase-breaking processele-@bherence due to scat-
tering with phonons and other crystal lattice imperfectionhe Wigner formulation
of quantum mechanics is particularly convenient for mixesmtisntransport description,



since it utilizes a phase space, where many classical resgiretained. In this picture
the scattering can be accounted for in a straightforwardlwyaysing the Boltzmann col-
lision models. While these models can be applied by usingvtiedeveloped classical
simulation algorithms, the coherent counterpart givestasa heavy numerical burden.
In contrast to this the alternative formulation of quantuamsport in terms of Green'’s
functions, is numerically efficient in the cases of cohefeahsport and problematic
when considering phase-breaking processes.

We propose and approach which combines the advantagestofdipéctures: Green'’s
function calculations of the of coherent transport detegdiby the boundary conditions
in the semiconductor device provide the coherent Wignectfan. They determine the
initial condition for an equation of the correction obtaingy subtracting the coherent
Wigner equation from the general coherent/de-coherenttegpart. Furthermore, this
equation is approximated by its classical limit.

For very small devices, where the carrier dwelling time (thee needed for a carrier
to abandon the device through the contacts/boundariesf@dingly short, the initial
condition may already be considered a sufficient correciocounting for the de-
coherence effects.

A particle model based on numerical Monte Carlo (MC) thearylérived for the
evaluation of the multidimensional integrals involved hetinitial condition. An ef-
ficient implementation on a grid environment is considerthing to cope with the
computational requirements of the developed Monte Cantoageh.

THEORETICAL MODEL

Scattering-induced Wigner function correction

We propose an approach [2] which combines the advantagdseotfwo pictures
describing quantum phenomena, namely the Wigner functdntlae Green'’s function
approaches. Green’s function calculations of the cohdransport determined by the
boundary conditions deliver the coherent Wigner functifn

p(x,X) = —2|/G< X, X E)dE fo(x, Ky) = /dse "‘Xs‘p(er2

S
=) (@@
-5 O
The lesser Green’s functioB< depends on the coordlnatles and energyE. Using
a center-of-mass transformatign-= Xl;XZ, S = X1 — X2 the coherent Wigner function
f (X ky) is obtained from the density matrpx(xy, x2). Furthermore £ is a solution of
the coherent part of the Wigner-Boltzmann equation.
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Here V,, is the Wigner potential, while the phase-breaking processe accounted
for by the Boltzmann scattering operator B{k,k’), the scattering rate for a tran-
sition from k to k’. The total out-scattering rat®(k) is linked to the scattering by



A (k) = [dk’S(k.k"). By setting the scattering rat (and thusA) to zero the coher-
ent problem is obtained from (2). Tlg, dependence remains arbitrary in this case and
may be specified via the boundary conditions. Formally, #teapolation must be such
that f5(x, k) is recovered by an integration ovky,. Moreover, the Boltzmann scat-
tering operator should cancel at the boundaries where atdregjuilibrium conditions
are assumed. Hence, a Maxwell-Boltzmann distribufigg(k;,) is assumed in thgz
directions, and the functions
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are introduced. By subtracting the coherent counterparnh f(2) an equation for the
correctionfy is obtained.
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The term in the last row may be determined fréfrand may thus be considered known.
Furthermore, the correction is zero at the device bounslasiace the same boundary
conditions are assumed in both cases.

Classical limit

The obtained equation is approximated using the classiodl |
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This approximation is valid for slowly varying potentiassy that the forc& (x) = eE(x)

is described by a linear function within the spatial supmdrfZ. This force induces
Newton’s trajectories for particles under its influencejalihmay be described by
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These trajectories are initialized byky,0. With these settings a trajectory is called

forward in the case df> 0 and backward otherwise. A backward trajectory crosses the

boundary of the device at a certain titigeso thatf4 (X (ty),Kk(tp)) = 0. Using Equation

(5), the approximated equation can be transformed into @héten integral equation of

the second kind:
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The free term is given by the second row of (6) and determinedgb The solution
to the Fredholm integral equation may be represented as m&lauseries with terms
obtained by iterative application of the kernel to the frelrt. The series corresponds
to a Boltzmann kind of evolution process, where the free teomesponds the initial
condition. Thereby, the full mixed mode problem posed byltbendary conditions is
transformed into a classical evolution of the quantum-cehiesolutionf$. However,
the latter may accommodate negative values and can thue matelpreted as the initial
distribution of classical electrons. But it is possible todel this situation by using
positive and negative particles during the evolution psscin this fashion, the quantum
information is retained in Equation (6) by accounting foe teign of the evolving
particles. The boundary is still represented usigighowever, its physical meaning
is changed: the boundary is purely absorbing, as all trajes with evolution time
t <ty < 0 do not contribute to the solution. In very small devicesdhgier dwelling
time can be so short that the probability for multiple scatgeevents tends to zero. In
such cases the initial condition itself presents the ctimed4. Otherwise the evaluation
of the initial condition is a necessary to obtain an appaiprsolution. Next, the particle
approach developed to this end using numerical Monte Cléory is introduced.

MONTE CARLO ALGORITHM

The computational task is specified as the calculation ofahee of the two components
foa and fog of the initial conditions at the given points',k}): fgd = foa(X,k}) and
similarly for fog. Particle approaches are suitable for the calculationeirther product
of two functions: in our case it is the averaged vallng(Q) of foag in @ given domain
Q of the phase space.
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The domain indicatoBq (X, ky) is unity, if its arguments fall withirf2, and 0 otherwise.
ThenQ = Q") can be determined by the phase space area using a small vAleme

Ak around(x, k) so thatfyl 5 = 1ag(Q)/A. Another peculiarity is the point wise
evaluation off$ which gives rise to the approximation:
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Here we focus on the contribution of the first componiatx, ky). The same approach
is employed to treat the second componigtx, k).
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Due to the use of the device domain indicafigr the lower bound of the time integral
can been extended teco, asfp takes care of providing the correct value. The backward
parametrization of the trajectories is later changed toadod one in order to achieve a
more heuristic picture of the evolution of the real carriéi@o important properties
of the trajectories will be utilized: Since a trajectory gbea system of first order
differential equations, any phase space point reachedeblyadjectory at any given time
can be used for initialization. A full notation of a trajentaX(t),Ky(t) contains the
initialization point:X (t) = X(t; X, ke, 0) =X, Ky(t) = Kx(t; X, ky,0) = k.. Furthermore,
by reparametrizeing a trajectory the initialization powatn be changed from, ky,0
to X, Kt so thatx = X(0,xX, K, 1), ke = Ky(0,xt K, t). For stationary transport the
absolute clock is replaceable by a relative one: trajee:kcm're invariant with respect to
a shift of both, initialization and parametrization time.

Applying this procedure to (8), with using (7) results in:
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wherek’ now denotegk;,ky,). This integral has been reformulated in such a fashion
that the terms in the curly brackets represent probabiétstties. The first bracket is the
normalized Gaussian distribution, while the next two bedskcontain the well known
probabilities for scattering and free flight. From this or& expression, the following
algorithm is obtained:

1. Associate an estimat§f™ to each nod@&, m.

2. Loop overi, j nodes corresponding b andk, integrals, and initiatt=1,2,...N
trajectories from each node:

3. select thek;, k), values according to the term in the first curly brackets, thus
accounting for thdy, k; integrals.

4. Select a wave vector according to the term in the secong-btackets. Input
parameters ark;,k;,k;,, the particular value of the after-scattering wave vector
is denoted bk = K, kyi, ky.

5. The pointd, K, initializes the trajectorK}, (t), X[ (t) at timet = 0. Generate a free-
flight time valuet; according to the term in the last curly brackets.

6. Add the weight

Wi = fa ( A)‘ k;pk}//h V4| /)‘ xl(tl> Y|7kZ|>

to the estimatoré™™M associated to the mesh nodem nearest to the point
K5 (1), X' (t)
7. At the end of the, j loop divideé™™ by N.
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FIGURE 1. SEEGRID Infrastructure in South-East Europe

IMPLEMENTATION OF THE ALGORITHM ON GRID

A computational grid is a computing environment which eeabihe unification of
geographically widely distributed computing resource® iane big (super)computer
[3]. The individual computing resources commonly consiestty of computer clusters
or several individual computers, which are interconnettgd high-speed wide area
network. The grid is a computer system which is, at this mdmetmarily intended
for supporting e-Science, however the technology itselfag/ adaptable for a very
wide area of present and future computer use. The major d@ajod is to enable the
clustering and unification of distributed computing andadatocessing resources. This
is done to accumulate and coordinate as much computing peyasssible and make it
available for use by applications, which have a particylaijh demand for computing
resources. Examples of scientific applications greatlyeb®#ng or even necessitating
a grid are from the fields of particle physics, climate analybiomedical research,
meteorology etc.

The algorithm under consideration, which has been destiiba previous Section,
requires considerable computational power and time toimlatecurate results. There-
fore, a hundred jobs using different input data have beewnurid clusters included in
the SEE-GRID infrastructure.

The SEE-GRID infrastructure contains computational andagfe resources, which
are made available by more than fifteen partners from diftszeuntries in South East
Europe, for scientific applications. An illustration of tdestributed nature of the SEE-
GRID is given in Figure 1. Currently, the SEE-GRID providesrsithan 35 clusters
with a total number of CPUs greater than 2000 and a storagecitggexceeding 400
TB [4].



TABLE 1. Similarities and differences between a grid and a PC.

PCs or workstations Grid clusters
Login with a username and Login with digital credentials;
password ("Authentication™) | single sign-on ("Authentication")
Use rights given to user Use rights given to user
("Authorisation™) ("Authorisation™)
Run jobs Run jobs
Manage files: create them, Manage files: create them,
read/write, list directories read/write, list directories
Components are linked by a bysServices are linked by the Internet
Operating system Middle ware
One admin domain Many admin domains

This Grid infrastructure was built using the gLite middlee§b], which provides Web
Service APIs for most of its services, and also provides ryged of services, such as
the gLite WMS, gLite FTS, AMGA, etc. The middle ware also iropes the reliability
and scalability of other services. The following lists seeg available in the SEE-GRID:

» Each of the SEE-GRID clusters provides the mandatory sesvic
— Computing element (CE) - provide user access to grid ressurc

— Worker nodes (WN) - execute jobs, perform calculations
— Storage element (dCache, DPM or classic SE) - reliable datage

— MON box (Monitoring and accounting) - monitor the currenidgstatus and
report completed jobs and their resource use

« The worker nodes provide the computational resourcesegvithd storage elements
provide storage resources

« The set of services, which are not tied to a specific site dledcaore services. In
the SEE-GRID the core services are distributed among patrtibey include:
— VOMS (Virtual organization management system)

— MyProxy

— R-GMA registry/schema server (distributed data-base)

— BDII (provides comprehensive information about the resesy

— WMS (distributes and manages the jobs among different ged)s
— FTS (file transfer service)

— AMGA (meta data catalog)

The differences and similarities how users can make use idl @g the one hand and
workstations or PCs on the other hand are shown in Table 1.

Our tests are performed mainly on two main grid clusters - BGIGCCP and BG-4-
ACAD which are situated in the Institute for Parallel Praiag. The specifications of
the grid clusters used in our experiments are:

« The BG03-NGCC grid cluster has 25 worker nodes, which car2aintel Xeon
E5430 2.66 GHz Quad Core CPU (total 200 Cores400 kSI12000) with 16 GB
RAM on each node.
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FIGURE 2. A potential profile of an RTD under investigation (left). Timiial (coherent) density, the
two computed correction integrals, and the correction efdénsity due to scattering (right).

« The BG04-ACAD has 40 worker nodes with 2xOpteron 2,4 GHz(t80 cores>
120 KSI2000), 4GB RAM on each node, and a low-latency Myringtrconnect
for MPI jobs.

Numerical results are presented in the next paragraph.

NUMERICAL EXPERIMENTS

The presented algorithm has been applied to a resonantlinmmgodes (RTDs) as
shown in the left part of Figure 2. As previously indicatdw tnitial density is obtained
by using a Green’s function calculation. This data is thehttethe implementation of
the presented Monte Carlo algorithm. The formulated MoraddCalgorithm is easily
parallelized as the individual tasks do not share intenddpecies and hence have no
need for communication once calculation has been started. [dw communication
makes this application very suited for deployment on a ghid.almost linear speed
is obtained by running several different instances of thentddCarlo code and then
simply averaging the all the results of the individual siatigdn runs. Care has only
to be taken to account for this kind of parallelization in taeadom number generator
to avoid distortions of the probabilities. Since the noi$eh@ obtained results only
decreases proportional tgn, with n being the number of samples, the quality of the
results greatly benefit from the opportunities of runningtiple jobs simultaneously,
which are provided by the grid. The overall simulation timaymthereby be decreased
from approximately one week to a single day.

The results from these calculations are depicted in thet pgint of Figure 2. An
increase of the density within the quantum well regions @oliserved, which may be
attributed to scattering. Furthermore the correction ten3 in the contact regions, as
has been predicted in the theoretical considerations.



CONCLUSIONS

A scheme to treating quantum phenomena in a mixed mode, aobunts for both, a
coherent description as well as the coherence breakintegogtmechanisms has been
presented. After a theoretical derivation of the procedune a presentation of the used
run time environment of the grid, numerical results from mplementation have been
presented.
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