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Abstract. The nano-era of semiconductor electronics introduces the necessity of simulation meth-
ods which describe the electron transport in ultra-small devices in a mixed mode where quantum-
coherent processes are considered along with the de-coherence processes of scattering. The latter
can be conveniently described in the Wigner picture of quantum mechanics, however the coherent
counterpart gives rise to heavy numerical problems. We propose a scheme which combines the ad-
vantages of the Wigner function with the Green’s function picture which is numerically efficient
in coherent cases. An equation accounting for the scattering corrections to the coherent Wigner
function is derived theoretically and a Monte Carlo algorithm for calculating these corrections is
developed and implemented. The implementation is deployedon the SEE-GRID to facilitate the
swift acquisition of results. Simulation results are presented as a final point.
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INTRODUCTION

Modeling and simulation of electronic devices is a part of a field of science which com-
bines mathematics, physics, and electrical engineering methods and uses this union to
design, analyze, and optimize the core components of integrated circuits. To the semi-
conductor industry it appears as the only alternative to an enormously expensive trial-
and-error manufacturing approach. Using device modeling and simulation the physical
characteristics of semiconductor devices are explored in terms of charge transport and
electrical behavior [1]. The increase of complexity of the physical models describing the
electron transport, as is required for progress in this field, needs to be accompanied by
the application of efficient numerical algorithms, as the computational costs otherwise
outgrow the available computational resources.

The nano-era of the semiconductor electronics raises the necessity of simulation meth-
ods which describe the electron transport in ultra-small devices as a mixed mode quan-
tum process. The latter accounts for both, quantum-coherent processes of interaction
with the device potential, and phase-breaking processes ofde-coherence due to scat-
tering with phonons and other crystal lattice imperfections. The Wigner formulation
of quantum mechanics is particularly convenient for mixed mode transport description,



since it utilizes a phase space, where many classical notions are retained. In this picture
the scattering can be accounted for in a straightforward wayby using the Boltzmann col-
lision models. While these models can be applied by using thewell-developed classical
simulation algorithms, the coherent counterpart gives rise to a heavy numerical burden.
In contrast to this the alternative formulation of quantum transport in terms of Green’s
functions, is numerically efficient in the cases of coherenttransport and problematic
when considering phase-breaking processes.

We propose and approach which combines the advantages of thetwo pictures: Green’s
function calculations of the of coherent transport determined by the boundary conditions
in the semiconductor device provide the coherent Wigner function. They determine the
initial condition for an equation of the correction obtained by subtracting the coherent
Wigner equation from the general coherent/de-coherent counterpart. Furthermore, this
equation is approximated by its classical limit.

For very small devices, where the carrier dwelling time (thetime needed for a carrier
to abandon the device through the contacts/boundaries) is accordingly short, the initial
condition may already be considered a sufficient correctionaccounting for the de-
coherence effects.

A particle model based on numerical Monte Carlo (MC) theory is derived for the
evaluation of the multidimensional integrals involved in the initial condition. An ef-
ficient implementation on a grid environment is considered,aiming to cope with the
computational requirements of the developed Monte Carlo approach.

THEORETICAL MODEL

Scattering-induced Wigner function correction

We propose an approach [2] which combines the advantages of the two pictures
describing quantum phenomena, namely the Wigner function and the Green’s function
approaches. Green’s function calculations of the coherenttransport determined by the
boundary conditions deliver the coherent Wigner functionf c

w.
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The lesser Green’s functionG< depends on the coordinatesx,x′ and energyE. Using
a center-of-mass transformationx = x1+x2

2 , s= x1− x2 the coherent Wigner function
f c
w(x,kx) is obtained from the density matrixρ(x1,x2). Furthermore,f c

w is a solution of
the coherent part of the Wigner-Boltzmann equation.
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Here Vw is the Wigner potential, while the phase-breaking processes are accounted
for by the Boltzmann scattering operator byS(k,k′), the scattering rate for a tran-
sition from k to k′. The total out-scattering rateλ (k) is linked to the scattering by



λ (k) =
∫

dk′S(k.k′). By setting the scattering rateS (and thusλ ) to zero the coher-
ent problem is obtained from (2). Thekyz dependence remains arbitrary in this case and
may be specified via the boundary conditions. Formally, the extrapolation must be such
that f c

w(x,k′x) is recovered by an integration overkyz. Moreover, the Boltzmann scat-
tering operator should cancel at the boundaries where standard equilibrium conditions
are assumed. Hence, a Maxwell-Boltzmann distributionfMB(k′yz) is assumed in theyz
directions, and the functions

f c
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are introduced. By subtracting the coherent counterpart from (2) an equation for the
correctionf ∆

w is obtained.
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The term in the last row may be determined fromf c
w and may thus be considered known.

Furthermore, the correction is zero at the device boundaries, since the same boundary
conditions are assumed in both cases.

Classical limit

The obtained equation is approximated using the classical limit.
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This approximation is valid for slowly varying potentials,so that the forceF(x) = eE(x)
is described by a linear function within the spatial supportof f ∆

w. This force induces
Newton’s trajectories for particles under its influence, which may be described by

X(t) = x−
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t
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These trajectories are initialized byx,kx,0. With these settings a trajectory is called
forward in the case oft > 0 and backward otherwise. A backward trajectory crosses the
boundary of the device at a certain timetb, so thatf ∆

w(X(tb),k(tb)) = 0. Using Equation
(5), the approximated equation can be transformed into a Fredholm integral equation of
the second kind:

f ∆
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+
∫ 0
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The free term is given by the second row of (6) and determined by f c
w. The solution

to the Fredholm integral equation may be represented as a Neumann series with terms
obtained by iterative application of the kernel to the free term. The series corresponds
to a Boltzmann kind of evolution process, where the free termcorresponds the initial
condition. Thereby, the full mixed mode problem posed by theboundary conditions is
transformed into a classical evolution of the quantum-coherent solution f c

w. However,
the latter may accommodate negative values and can thus not be interpreted as the initial
distribution of classical electrons. But it is possible to model this situation by using
positive and negative particles during the evolution process. In this fashion, the quantum
information is retained in Equation (6) by accounting for the sign of the evolving
particles. The boundary is still represented usingtb, however, its physical meaning
is changed: the boundary is purely absorbing, as all trajectories with evolution time
t < tb < 0 do not contribute to the solution. In very small devices thecarrier dwelling
time can be so short that the probability for multiple scattering events tends to zero. In
such cases the initial condition itself presents the correction f ∆

w. Otherwise the evaluation
of the initial condition is a necessary to obtain an appropriate solution. Next, the particle
approach developed to this end using numerical Monte Carlo theory is introduced.

MONTE CARLO ALGORITHM

The computational task is specified as the calculation of thevalue of the two components
f0A and f0B of the initial conditions at the given points(xi ,k j

x): f i, j
0A = f0A(xi ,k j

x) and
similarly for f0B. Particle approaches are suitable for the calculation of the inner product
of two functions: in our case it is the averaged valueIA,B(Ω) of f0A,B in a given domain
Ω of the phase space.
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The domain indicatorθΩ(x,kx) is unity, if its arguments fall withinΩ, and 0 otherwise.
ThenΩ = Ωi, j can be determined by the phase space area using a small volume∆ =

∆kx∆x around(xi ,k j
x) so thatf i, j

0A,B = IA,B(Ωi, j)/∆. Another peculiarity is the point wise
evaluation off c

w which gives rise to the approximation:
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Here we focus on the contribution of the first componentf0A(x,kx). The same approach
is employed to treat the second componentf0B(x,kx).
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Due to the use of the device domain indicatorθD, the lower bound of the time integral
can been extended to−∞, asθD takes care of providing the correct value. The backward
parametrization of the trajectories is later changed to a forward one in order to achieve a
more heuristic picture of the evolution of the real carriers. Two important properties
of the trajectories will be utilized: Since a trajectory obeys a system of first order
differential equations, any phase space point reached by the trajectory at any given time
can be used for initialization. A full notation of a trajectory X(t),Kx(t) contains the
initialization point:X(t) = X(t;x,kx,0) = xt , Kx(t) = Kx(t;x,kx,0) = kt

x. Furthermore,
by reparametrizeing a trajectory the initialization pointcan be changed fromx,kx,0
to xt ,kt

x, t so thatx = X(0,xt,kt
x, t), kx = Kx(0,xt ,kt

x, t). For stationary transport the
absolute clock is replaceable by a relative one: trajectories are invariant with respect to
a shift of both, initialization and parametrization time.

Applying this procedure to (8), with using (7) results in:
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wherek′ now denotes(kx j,k′
yz). This integral has been reformulated in such a fashion

that the terms in the curly brackets represent probability densities. The first bracket is the
normalized Gaussian distribution, while the next two brackets contain the well known
probabilities for scattering and free flight. From this integral expression, the following
algorithm is obtained:

1. Associate an estimatorξ n,m to each noden,m.
2. Loop overi, j nodes corresponding toxt andk′x integrals, and initiatel = 1,2, . . .N

trajectories from each node:
3. select thek′yl,k

′
zl values according to the term in the first curly brackets, thus

accounting for theky,kz integrals.
4. Select a wave vector according to the term in the second curly-brackets. Input

parameters arek′x j,k
′
yl,k

′
zl, the particular value of the after-scattering wave vector

is denoted byk = kt
xl,kyl,kzl.

5. The pointxt
i ,k

t
xl initializes the trajectoryKt

xl(t),X
t
l (t) at timet = 0. Generate a free-

flight time valuetl according to the term in the last curly brackets.
6. Add the weight

wl = f c
w(i, j)∆λ (k′x j,k

′
yl,k

′
zl)/λ (Kt

xl(tl),kyl,kzl)

to the estimatorξ n,m associated to the mesh noden,m nearest to the point
Kt

xl(tl),X
t
l (tl)

7. At the end of thei, j loop divideξ n,m by N.



FIGURE 1. SEEGRID Infrastructure in South-East Europe

IMPLEMENTATION OF THE ALGORITHM ON GRID

A computational grid is a computing environment which enables the unification of
geographically widely distributed computing resources into one big (super)computer
[3]. The individual computing resources commonly consist mostly of computer clusters
or several individual computers, which are interconnectedby a high-speed wide area
network. The grid is a computer system which is, at this moment, primarily intended
for supporting e-Science, however the technology itself isvery adaptable for a very
wide area of present and future computer use. The major goal of a grid is to enable the
clustering and unification of distributed computing and data processing resources. This
is done to accumulate and coordinate as much computing poweras possible and make it
available for use by applications, which have a particularly high demand for computing
resources. Examples of scientific applications greatly benefiting or even necessitating
a grid are from the fields of particle physics, climate analysis, biomedical research,
meteorology etc.

The algorithm under consideration, which has been described in a previous Section,
requires considerable computational power and time to obtain accurate results. There-
fore, a hundred jobs using different input data have been runon grid clusters included in
the SEE-GRID infrastructure.

The SEE-GRID infrastructure contains computational and storage resources, which
are made available by more than fifteen partners from different countries in South East
Europe, for scientific applications. An illustration of thedistributed nature of the SEE-
GRID is given in Figure 1. Currently, the SEE-GRID provides more than 35 clusters
with a total number of CPUs greater than 2000 and a storage capacity exceeding 400
TB [4].



TABLE 1. Similarities and differences between a grid and a PC.

PCs or workstations Grid clusters
Login with a username and Login with digital credentials;
password ("Authentication") single sign-on ("Authentication")

Use rights given to user Use rights given to user
("Authorisation") ("Authorisation")

Run jobs Run jobs
Manage files: create them, Manage files: create them,
read/write, list directories read/write, list directories

Components are linked by a busServices are linked by the Internet
Operating system Middle ware

One admin domain Many admin domains

This Grid infrastructure was built using the gLite middleware [5], which provides Web
Service APIs for most of its services, and also provides new types of services, such as
the gLite WMS, gLite FTS, AMGA, etc. The middle ware also improves the reliability
and scalability of other services. The following lists services available in the SEE-GRID:

• Each of the SEE-GRID clusters provides the mandatory services:
– Computing element (CE) - provide user access to grid resources
– Worker nodes (WN) - execute jobs, perform calculations
– Storage element (dCache, DPM or classic SE) - reliable data storage
– MON box (Monitoring and accounting) - monitor the current grid status and

report completed jobs and their resource use
• The worker nodes provide the computational resources, while the storage elements

provide storage resources
• The set of services, which are not tied to a specific site are called core services. In

the SEE-GRID the core services are distributed among partners. They include:
– VOMS (Virtual organization management system)
– MyProxy
– R-GMA registry/schema server (distributed data-base)
– BDII (provides comprehensive information about the resources)
– WMS (distributes and manages the jobs among different grid sites)
– FTS (file transfer service)
– AMGA (meta data catalog)

The differences and similarities how users can make use of a grid on the one hand and
workstations or PCs on the other hand are shown in Table 1.

Our tests are performed mainly on two main grid clusters - BG03-NGCCP and BG-4-
ACAD which are situated in the Institute for Parallel Processing. The specifications of
the grid clusters used in our experiments are:

• The BG03-NGCC grid cluster has 25 worker nodes, which contain 2xIntel Xeon
E5430 2.66 GHz Quad Core CPU (total 200 Cores,> 400 kSI2000) with 16 GB
RAM on each node.
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FIGURE 2. A potential profile of an RTD under investigation (left). Theinitial (coherent) density, the
two computed correction integrals, and the correction of the density due to scattering (right).

• The BG04-ACAD has 40 worker nodes with 2xOpteron 2,4 GHz (total 80 cores>
120 KSI2000), 4GB RAM on each node, and a low-latency Myrinetinterconnect
for MPI jobs.

Numerical results are presented in the next paragraph.

NUMERICAL EXPERIMENTS

The presented algorithm has been applied to a resonant tunneling diodes (RTDs) as
shown in the left part of Figure 2. As previously indicated, the initial density is obtained
by using a Green’s function calculation. This data is then fed to the implementation of
the presented Monte Carlo algorithm. The formulated Monte Carlo algorithm is easily
parallelized as the individual tasks do not share interdependencies and hence have no
need for communication once calculation has been started. This low communication
makes this application very suited for deployment on a grid.An almost linear speed
is obtained by running several different instances of the Monte Carlo code and then
simply averaging the all the results of the individual simulation runs. Care has only
to be taken to account for this kind of parallelization in therandom number generator
to avoid distortions of the probabilities. Since the noise of the obtained results only
decreases proportional to

√
n, with n being the number of samples, the quality of the

results greatly benefit from the opportunities of running multiple jobs simultaneously,
which are provided by the grid. The overall simulation time may thereby be decreased
from approximately one week to a single day.

The results from these calculations are depicted in the right part of Figure 2. An
increase of the density within the quantum well regions can be observed, which may be
attributed to scattering. Furthermore the correction tensto 0 in the contact regions, as
has been predicted in the theoretical considerations.



CONCLUSIONS

A scheme to treating quantum phenomena in a mixed mode, whichaccounts for both, a
coherent description as well as the coherence breaking scattering mechanisms has been
presented. After a theoretical derivation of the procedureand a presentation of the used
run time environment of the grid, numerical results from an implementation have been
presented.
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