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The calculation of the Wigner potential (WP) in

two-dimensional simulations consumes a consider-

able part of the computation time. A reduction of

the latter is therefore very desirable, in particular

for self-consistent solutions, where the WP must be

recalculated many times. We introduce an algorithm

– named box discrete Fourier transform (BDFT) –

that reduces the computational effort roughly by a

factor of five.

The semi-discrete Wigner potential is defined as

VW (r,PΔk) ≡
1
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δV (s; r) ≡ V (r+ s)− V (r− s) , (2)

where s is bounded by a finite coherence length, L.

The momentum vector PΔk is discretized in steps

of Δk = π
L

. The discretization of position vectors r

and s yields our 2D computational domain (Fig. 1)

for which the fully discretized WP,
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1

iMN

M−1
�

m=0

N−1
�

n=0

e−i2Δk(pmΔx+qnΔy)

δV

�

x±

�

m−
M

2

�

Δx, y ±

�

n−
N

2

�

Δx

�

,

(3)

must be calculated at each mesh node.

Eq. (3) is akin to a DFT of (2), convention-

ally calculated using an FFT algorithm, which has

O(N log2 N) complexity. To derive our BDFT al-

gorithm, we adopt the idea of the one-dimensional

sliding DFT [2], [3], which has O(N) complexity.

The algorithm calculates the Fourier coefficients

of a sequence {xc..xc+N−1} using the coefficients

calculated for {xc−1..xc+N−2}:

Xc(p) = ei
2πp

N (Xc−1(p) + xc+N−1 − xc−1) . (4)

The two sequences differ by a single value, just

like each row/column of the coherence boxes of

adjacent nodes. We exploit this observation and

calculate the DFT of the first N values of all M ′

rows in the domain, using an FFT algorithm. In the

resulting M ′×N matrix of Fourier coefficients, we

calculate the DFT of the first M values of every

column. After this initialization, Vw (0, 0, p, q) is

known and we start moving the coherence box in a

column-wise manner across the domain and apply

(4) to calculate the row/column DFTs as needed.

This initialization approach shows favourable se-

rial performance and cache complexity; however, a

parallelized implementation would require multiple

(modified) initializations.

To allow the application of (4) to calculate (3),

we have to reformulate (1) using a substitution of

variables (Fourier shift theorem), such that

VW (r,PΔk) =
2

L
Im

ˆ L/2

−L/2
dse−i2PΔk·sV (r+ s)

This formulation has the further advantage of halv-

ing the computation time by avoiding to calculate

the DFT of the potential difference. We also note

that (4) allows, unlike the FFT, to easily compute

only selected momentum (p) values (under justified

physical assumptions), thereby offering a further

possibility to reduce the computational costs.

Fig. 2 shows a potential profile for which the WP

(Fig. 3) has been calculated and demonstrates the

expected anti-symmetry. Fig. 4 shows the WP for

fixed values of x and pΔkx. The BDFT algorithm

was benchmarked against an FFT implementation

using the FFTW library [1], with a setup detailed

in Table II. Table I makes evident that the BDFT

reduces the computation time by at least a factor

of five. The performance of the FFT algorithms

selected by the FFTW library strongly depends on

the transform size (coherence length), whereas the

BDFT algorithm scales at a constant rate with size.
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Fig. 1. Coherence box of size Lcoh = (MΔx,NΔy),
centred at (x, y) in the discretized domain, of size Ldev =
(M ′Δx,N ′Δy), surrounded by semi-infinite contact regions.

.

TABLE I

COMPUTATION TIME OF 2D WIGNER POTENTIAL

Ldev [a.u.] Lcoh [a.u.] BDFT [s] FFT [s] Speed-up [1]

100 100 0.12 0.75 6.3

200 100 0.47 2.53 5.4

300 99 0.96 10.66 11.1

300 100 1.00 5.77 5.8

300 101 1.04 61.25 55.9

400 100 1.78 10.27 5.8

500 100 2.80 17.84 6.4

TABLE II

BENCHMARK AND SETUP SPECIFICS

Hardware Intel Core 3110M; 8 GB (dual channel)

OS Ubuntu 13.10 (64 bit)

Compiler gcc 4.8.1

flags -O3 -fastmath -march=native

FFT library FFTW 3.3 (SIMD enabled)

interface \ flags dft_r2c_2d \ FFTW_MEASURE
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Fig. 2. A Gaussian potential (allows an analytic expression,

for comparison) is superimposed on a ramp and represents the

profile used in the presented calculations.
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Fig. 3. The normalized Wigner potential,

Vw (x = 50, y = 50, p, q) with the expected anti-symmetry,

Vw(·, p, q) = Vw(·,−p,−q), as seen in the colour map.
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Fig. 4. The normalized Wigner potential,

Vw (x = 50, y, p = 0, q), for fixed values of x and pΔkx.
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