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We present atomistic valence force field calculations of thermal transport in Si nanowires of

diameters from 12 nm down to 1 nm. We show that as the diameter is reduced, the phonon

density-of-states and transmission function acquire a finite value at low frequency, in contrast to

approaching zero as in the bulk material. It turns out that this effect results in what Ziman described

as the “problem of long longitudinal waves” [J. M. Ziman, Electrons and Phonons: The Theory of
Transport Phenomena in Solids (Clarendon, Oxford, 1962)], which states that the thermal

conductivity of a material increases as its length is increased due to the vanishing scattering for

long-wavelength phonons. We show that this thermal transport improvement also appears in

nanowires as their diameter is decreased below D¼ 5 nm (not only as the length increases),

originating from the increase in the density of the long wavevector modes. The observation is

present under ballistic transport conditions, and further enhanced with the introduction of phonon-

phonon scattering. Because of this, in such ultra-narrow nanowires, as the diameter is reduced,

phonon transport is dominated more and more by lower energy phonons with longer mean-free

paths. We show that �80% of the heat is carried by phonons with energies less than 5 meV, most

with mean-free paths of several hundreds of nanometers. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4858375]

I. INTRODUCTION

In bulk semiconductors and insulators, the thermal re-

sistance arises from phonon-phonon scattering because of

the anharmonicity of the inter-atomic potential. At room

temperature, phonon-phonon scattering processes are strong

and dominate the behavior of the thermal conductivity (jl).

A large part of the heat in semiconductors is carried by long

wavelength longitudinal phonons, which have extremely

long mean-free-paths (MFP) for scattering as well. In fact, it

was pointed out that the MFP of the long wavelength longi-

tudinal phonons diverges as their frequency tends to zero,

resulting in the thermal conductivity to be a function of the

size of the bulk solid, and diverging as the size of the solid

increases.1,2 The most commonly employed single-mode-

relaxation-time (SMRT) approximation for the solution of

the Boltzmann transport equation (BTE) for phonons,3,4 uses

an x2-dependent phonon-phonon (Umklapp) scattering

rate.5,6 This model, in combination with the 3D bulk densi-

ty-of-states (DOS), which is proportional to the x2 at low

frequencies, removes this ambiguity, and successfully

explains the thermal conductivity of various semiconductors

over a wide range of temperatures (also after appropriately

including other common scattering mechanisms, such as

defect scattering and grain-boundary scattering).

The thermal conductivity of 1D channels, such as carbon

nanotubes (CNTs), nanoribbons, and silicon nanowires (NWs)

has also been addressed in several recent studies,7–16 since such

channels attracted significant attention for heat management

and thermoelectric applications.17–19 The divergence of jl with

the size of the solid, or the “problem of long longitudinal
waves” as referred to by Ziman,1 is stronger in this case, since

the DOS in 1D structures is no longer x2-dependent, but has a

finite value even at x ¼ 0,20 which increases the importance of

low wavevector phonons. Indeed, several theoretical and exper-

imental works have pointed out that thermal conductivity in 1D

systems deviates from Fourier’s law, or even increases with

increasing channel length, either linearly, logarithmically, or

following some power law.7–9,21–23 By including additional

scattering mechanisms to the 3-phonon Umklapp mechanism

usually employed, such as terms constant or linear in x,16,24,25

3-phonon processes of second order,7 highly anharmonic

potentials,26,27 employing the exact solution of the Boltzmann

equation,21 or molecular dynamics (MD),10 the divergence is

reduced, but it is still persistent, especially at low temperatures.

In this work, we revisit this problem for ultra-narrow Si

NWs of diameters below 12 nm using the atomistic modi-

fied-valence-force-field (MVFF) method for the calculation

of the phonon modes and two approaches for phonon trans-

port: (i) the Landauer approach for ballistic transport, and

(ii) the BTE for diffusive phonon transport. We show that

the issue of long-wavelength phonons turns out to be much

more significant in 1D systems compared to the bulk mate-

rial: (1) not only for low temperatures but also at room tem-

perature, (2) and not only as the length of the channel is

increased but as the diameter is reduced as well, resulting in

an improvement of thermal transport with increasing

confinement. This was previously reported using MD simula-

tions;10 however, in this work, we explain it in simple terms

related to: (i) the increase in the DOS of the low frequency,a)E-mail: {karami | neophytou | kosina}@iue.tuwien.ac.at
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low wavevector modes with diameter reduction, (ii) the nar-

rowing of the so-called “phonon window function” that

determines phonon transport, favoring low wavevectors. We

show that this effect does not qualitatively depend on the na-

ture of scattering or the scattering model itself. It is observed

under ballistic conditions, whereas the introduction of

phonon-phonon or moderate phonon-boundary scattering

mechanisms pronounce it even more, as long as high fre-

quency modes are scattered more that low frequency modes

(as, for example, in the case of the usual 3D bulk phonon

scattering models that we also employ here). Our calcula-

tions indicate that more than 80% of the heat is carried by

low energy, long wavelength phonons.

II. APPROACH

A. The problem of long longitudinal waves

When considering the classical description of the energy

distribution of phonons, in the Debye approximation, the

heat conductivity of acoustic modes is given by1,9

jl ¼
kB

3X

ðxD

xmin

v2
s sðxÞDOSðxÞdx; (1)

where vs is the corresponding sound velocity, xmin ¼ 2pvs=L
is the minimum allowed phonon frequency, which is deter-

mined by the longest allowed wavelength at a given channel

length L, and xD is the Debye frequency. As the bulk den-

sity-of-states is proportional to DOSðxÞ � x2, the Umklapp-

limited thermal conductivity in 3D (with usually sU � 1=x2

(Refs. 5 and 6)) is bounded, even when the contribution of

the long MFP phonons (as x! 0) is included

jl �
ðxD

2pvs=L

v2
s dx � xD � 2pvs=L (2)

since the second term of Eq. (2) goes to zero as the length

increases.

In the case of 1D structures, on the other hand, the total

DOS is finite for low frequencies DOSðxÞ ¼ L=pvs,
28 which

does not allow the cancellation of the sðxÞ � 1=x2 term.

Therefore, the Umklapp-limited thermal conductivity of a

1D system is given by

jl /
ðxD

2pvs=L

1

x2
dx � L; (3)

indicating a linear divergence with the channel length.

Physically, this means that the lowest wavevector that con-

tributes to thermal conductivity is determined by the length

of the channel. For an infinite channel, longer and longer

wavevectors of finite DOS are involved, which causes diver-

gence in the thermal conductivity, in contrast to bulk.

Several works in the literature attempt to add corrections that

would bound jl as the channel length increases,7,21 although

large jl could still be possible in 1D. Some authors still use

the bulk dispersion even for ultra-narrow channels,29–31

others include a constant specularity parameter for surface

roughness that adds a constant term in the total scattering

rate and removes the singularity for x! 0.12,32–34 A differ-

ent approach was proposed recently by Mingo et al., where

an additional rate of a second order 3-phonon scattering

mechanism without x-dependence was introduced for ther-

mal transport in carbon nanotubes as7

1

sU2

¼ A0T2; (4)

where A0 is a frequency independent constant. This is just an

order of magnitude approximation, which removes the singu-

larity for low frequency phonons, although very high thermal

conductivities are still achieved. A study of the exact solu-

tion of the phonon BTE in carbon nanotubes showed a satu-

ration in jl as the length increased to the millimeter range,21

which could prove the suitability of using the sU2 of Eq. (4).

The importance of the long wavelength phonons, how-

ever, is not only pronounced by the length of the channel. In

this work, we show that the reduction in the diameter of the

NW can also result in the same effect. This is attributed to

two important events: (i) NWs have a finite phonon DOS at

low frequencies that also increases as the diameter is reduced,

in contrast to bulk. (ii) Low temperature or scattering events

narrow the so-called “phonon window function” preferen-

tially towards these low-frequency phonons, which then tend

to dominate thermal transport. This is demonstrated under

both ballistic and diffusive transport conditions.

B. Low-dimensional phonon transmission and DOS

For the calculation of the phononic bandstructure, we

employ the modified valence force field method (MVFF).35,36

In this method, the interatomic potential is modeled by the

following bond deformations: bond-stretching, bond-bending,

cross-bond-stretching, cross-bond-bending-stretching, and

coplanar-bond-bending.35 The model accurately captures the

bulk Si phonon spectrum as well as the effects of confine-

ment.36 The model and its validity for nanoscale Si and Si

NWs is presented in previous works.14,36 It has the advantage

of being able to treat atomistically relatively large NW diam-

eters, up to 12 nm, with thousands of atoms in the cross sec-

tion unit cell, and therefore can capture the transition of the

phononic dispersion and of the thermal properties from 3D to

1D channels. Using the phononic dispersion, the density of

states and the transmission (number of modes at given

energy) are calculated as follows:

DOS xð Þ ¼
X

i

DOSi xð Þ ¼
X

i

X
q

d x� xi qð Þð Þ; (5)

�Tph xð Þ ¼ M xð Þ ¼ p
2

X
i;q

d x� xi qð Þð Þ
@xi qð Þ
@q

: (6)

The transition from the 3D-like features to 1D-like features

is shown in Fig. 1, which depicts the transmission function

per unit area as a function of frequency for NWs of diame-

ters D¼ 12 nm, 2 nm, and 1 nm. The inset of Fig. 1 shows

the density of phonon states per unit volume of these NWs

versus frequency. Note that we use the h100i transport orien-

tation throughout this manuscript. The basic features we
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describe, however, are valid for different orientations as

well. The transmission of the 12 nm NW as well as the DOS
follows the usual x2 relation at low frequencies. For the thin-

ner diameters, however, the transmission and DOS are con-

stant/finite at low frequencies, and increase as the diameter

is reduced. The fact that there is a constant transmission at

x¼ 0 rad/s for the acoustic branches leads to a strong mani-

festation of the “long-wavelength problem” in the thermal

transport. The density, and importance, of the

long-wavelength modes in carrying heat increases, which

improves thermal transport as the NW diameter is reduced.

Below, we examine this effect under ballistic transport con-

ditions and afterwards extend the findings to diffusive pho-

non transport conditions.

III. RESULTS

A. Ballistic transport

An effective way to demonstrate the influence of the

increasing low frequency phonons on thermal transport is by

examining the differential (or frequency spectrum) of the

ballistic thermal conductance versus energy. This quantity

(normalized by the NW area A) is calculated as14,37,38

dKl xð Þ
Adx

¼ pkB
2T

6A

X
i

ð
vg;iðqÞWph:ð�hxÞd x� xiðqÞð Þdq; (7)

where Wph:ð�hxÞ is the phonon window function that deter-

mines the conductance, defined as13,39

Wph:ð�hxÞ ¼ 3

p2kBT

�hx
kBT

� �2 e�hx=kBT

e�hx=kBT � 1ð Þ2
: (8)

This function has strong temperature dependence as

shown in Fig. 2. At 300 K, the phonon window function

(blue line in Fig. 2) is a wide and flat function, covering

most of the energy spectrum.13 Therefore, under ballistic

conditions at room temperature, the entire energy spectrum

contributes to the thermal conductance. For lower

temperatures, on the other hand, the window function

becomes narrower, and preferentially weighs the low fre-

quency phonon contribution to thermal transport, whereas

the high frequency phonons do not contribute.

The differential of the ballistic conductance for NWs of

different diameters is shown in Fig. 3(a) for the low phonon

energy region up to 10 meV (the energy region we are mostly

interested in). Here, room temperature, T¼ 300 K, is used.

Clearly, the contribution of low frequency phonons increases

FIG. 1. The normalized transmission function (number of propagating

modes per unit area) for Si nanowires of diameters D¼ 1 nm (blue), 2 nm

(red), and 12 nm (green). Inset: The density of phonon states per unit volume

and energy for the same NW diameters.

FIG. 2. The phonon window function that determines the thermal conduct-

ance in the case of ballistic transport conditions for various temperatures. As

the temperature decreases, the window function becomes narrower.

FIG. 3. (a) The differential contribution to the ballistic thermal conductance

of low frequency phonons of energies up to 10 meV at room temperature

T¼ 300 K. Nanowire diameters D¼ 1 nm (black-triangle), D¼ 2 nm (red-

triangle), D¼ 3 nm (blue-circle), D¼ 6 nm (red-square), and D¼ 12 nm

(green-triangle) are shown. The contribution of the low frequency modes

increases with decreasing diameter. Inset: The differential contribution to

the ballistic thermal conductance in the entire energy spectrum. (b) The

same as in (a) for low temperatures T¼ 20 K.
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as the NW diameter is decreased, a consequence in the

increase in their density of states. Note that the contribution

of high frequency phonons, however, decreases compared to

NWs of larger diameters, as shown in the inset of Fig. 3(a).

This is because confinement reduces the number of phonon

branches, primarily at higher frequencies. Figure 3(b) shows

the same quantity but for lower temperature, T¼ 20 K. The

contribution of low frequency phonons increases also in the

case of lower temperatures.

The effect of low wavevector modes, however, is not

noticeable on the total thermal conductance at room temper-

ature. The total thermal conductance of the NWs versus di-

ameter for various temperatures is shown in Fig. 4. At room

temperature, the ballistic thermal conductance of NWs is

almost diameter invariant (black line for T¼ 300 K in

Fig. 4). The reason is because the contribution of the low-

frequency modes with diameter reduction is small compared

to the contribution of the rest of the spectrum, which consists

of a large number of subbands; and at room temperature,

most of the spectrum contributes to transport due to the flat

phonon window function. The situation is different at lower

temperatures where the window function is much narrower

(Fig. 2). In that case, only the low energy part of the phonon

spectrum contributes to transport, which has a strong NW di-

ameter dependence, as shown in Fig. 3(b). The overall ther-

mal conductance at lower temperatures in Fig. 4, therefore,

increases as the diameter is reduced. An increase of �5� is

observed at T¼ 20 K as the diameter is decreased from

D¼ 5 nm to D¼ 1 nm (green-triangle line). The increase is

reduced as the temperature raises; and at 300 K, no benefit is

observed in thermal transport with diameter reduction.

The important observation here is that the increase in

the density of low-frequency, low wavevector phonon

modes, becomes important in heat transport when the pho-

non window function becomes narrower. Low temperature is

one way that causes window narrowing. Below, we examine

the influence of the increasing low wavevector phonon den-

sity under diffusing conditions and discuss whether a con-

ductivity increase could also be observed.

B. Diffusive transport

In the case of diffusive transport, where phonons

undergo phonon-phonon or phonon-boundary scattering, the

window function is multiplied by the phonon-phonon scatter-

ing lifetime as sph:�ph:Wph:. In general, the low-frequency,

low-wavevector modes undergo weaker scattering, compared

to the high frequency modes.5,6,39 This also makes the win-

dow function narrower in energy, preferably selecting the

low frequency modes for transport.

To investigate the influence of the low frequency modes

in narrow NW diameters under diffusive thermal transport

conditions, we employ the phonon lifetime approximation

in the phononic Boltzmann transport equation as3,29

jl ¼ kB

X
i;q

siðqÞvg;iðqÞ
2 �hxiðqÞ

kBT

� �2
e�hxiðqÞ=kBT

e�hxiðqÞ=kBT � 1ð Þ2
; (9)

where vg;iðqÞ ¼ @xiðqÞ=@q is the group velocity of a phonon

with wavevector q in subband i, and siðqÞ is the scattering

time. For the calculation of the relaxation times, we still

adopt the usual bulk formalism for Umklapp scattering

employed in the literature for 3D phonons5,6

1

sU
¼ BxiðqÞ2T exp �C

T

� �
; (10)

where B ¼ 2:8� 10�19s=K and C ¼ 140 K.39

To the phonon-phonon scattering rate of Eq. (10), we

added the scattering mechanism A0T2 as proposed by Mingo

et al. and described by Eq. (4) using Matthiessen’s rule. We

then calibrated our phonon-phonon thermal conductivity cal-

culations for Si NWs against the MD simulation results of

Donadio et al.10 and the results of Luisier40 for NW diame-

ters up to D¼ 5 nm as shown in Fig. 5(a). These calculations

were performed assuming room temperature T¼ 300 K and

NWs in the h100i transport direction. The parameter A0

of the 3-phonon second order processes was set to

A0¼ 15000/sK2, which provides a good agreement between

our results and these two other studies for the entire diameter

range considered. Our results are also in good agreement

with these studies for temperatures other than room tempera-

ture (not shown here). A clear increase in the thermal con-

ductivity by �5� is observed as the diameter is decreased.

This increase can be directly attributed to the increasing im-

portance of the low-frequency longitudinal modes as the di-

ameter is reduced, after the transmission and DOS acquire a

finite value (Fig. 1). Indications about thermal conductivity

improvements due to phonon confinement can be found in

other works as well, for Si NWs and other materi-

als.8,10,11,30,41 This is the first time, however, that we connect

this increase to the finite value that the phonon DOS acquires

for the low-frequency phonons.

We need to stress here that we do not claim that the scat-

tering model described by Eq. (10), and originally used and

calibrated to 3D bulk phonons, is fully appropriate for the

ultra-narrow nanowires considered in this study, whose

modes we describe with 1D dispersions as well. However,

although the model assumes 3D phonons, it is commonly

FIG. 4. Ballistic thermal conductance of Si NWs versus diameter for differ-

ent temperatures. The increase in conductance with diameter scaling is noted

when applicable.
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employed in the calculation of the thermal conductivity in

nanostructures.12,42 The reason why such a model derived

for 3D channels provides sufficient accuracy for nanostruc-

tures is that even for 1D channels, the atomic vibrations are

still in 3D and not constrained in one particular direction.7,12

And unlike the case of electronic transport, the phonon

Umklapp scattering rate is not in general proportional to

DOS, which only in 3D follows a x2 dependence.25 The rea-

sons are discussed by Hepplestone in Ref. 25 as follows: The

three-phonon scattering is a consequence of the cubic anhar-

monic term of elastic potential V3, which involves the deriv-

atives of the potential with respect to displacement vectors in

3D. The displacement vector is related to frequency, which

appears eventually in relaxation time. As the vibration of

atoms is always in 3D (even in low dimensional systems),

the form of relaxation time in one-dimensional systems is

expected to be close to that of 3D bulk materials.

There are additional explanations why the scattering

rates will not increase as the DOS increases. 1D dispersions

make it more difficult to satisfy simultaneously the momen-

tum and energy conservation for the three phonon scattering.

In 3D, for example, a surface in the Brillouin zone of avail-

able states exists that satisfies these requirements. In 2D, the

surface becomes a line; whereas in 1D, only single points

satisfy such requirements, which makes low frequency pho-

nons less subjective to scattering.7 This is the reason that

even in more sophisticated MD calculations, the conductivity

still diverges and the scattering rates do not follow the

increase in the DOS of the low frequency phonons.10

Modifications and extensions of the simplified 3D bulk

x2 transport model are described in the literature to improve

its validity for nanostructures, still under the assumption of

3D phonons.43,44 The modification proposed by Mingo

et al.,7 which includes an additional frequency independent

scattering mechanism �A0T2, is the one we employ in this

work. Other models, derived specifically for 1D channels,

i.e., case carbon nanotubes,16,24 propose the addition of both

a constant and a linear frequency term to the already

squared-frequency term. The scattering rate is then propor-

tional to �A0þ (A1T)xþ (A2T)x2, which is also dominated

by the x2 term.16,24

The main point here, however, is that in all cases, any

additional term introduces larger scattering for higher fre-

quencies. The consequence of this is the narrowing of the dif-

fusive phonon window function, which is now multiplied by

the relaxation times, sph:�ph:Wph:. Figure 5(b) compares the

ballistic window function to the diffusive window function,

both at room temperature. The diffusive window function

then has a similar narrowing shape as the one for lower tem-

peratures in Fig. 2, and preferentially increases the impor-

tance of low-frequency phonons. The stronger scattering for

high frequency phonons compared to low frequency ones or

equivalently longer mean-free-paths for low-frequency pho-

nons, is a general feature, also supported by more sophisti-

cated calculations for different nanostructures and different

scattering mechanisms as well.45–47 That explains why the

traditional simplified Umklapp model based on 3D phonons

still works adequately for nanostructures (at least qualita-

tively). In different nanochannel cases, the actual physics of

scattering could significantly vary; but if this feature is pres-

ent, we claim that the density of low-frequency modes will

increase with diameter reduction, and the thermal conductiv-

ity can increase as well. Indeed, our calculations in Fig. 5(a)

show that for the D¼ 1 nm NW, the thermal conductivity can

increase back to the bulk value, in very good agreement with

molecular dynamics calculations,10 although the accuracy of

our model is questionable at such low diameters. We should

also note that this narrowing of the sph:�ph:Wph: function is

not sensitive to the value of A0 we use to calibrate our data,

even if A0 increases or decreases by orders of magnitude.

IV. DISCUSSION

In this section, we discuss three consequences of the

increase in the long wavevector, low frequency mode den-

sity, and their increasing importance in thermal transport

through the phonon window narrowing. As the NW diameter

is reduced: (i) a larger part of the heat is carried by lower fre-

quency phonons, (ii) a larger part of the heat is carried by

longer mean-free-path phonons, (iii) the detrimental effect of

phonon-boundary scattering could be partially compensated

by the increase of the longitudinal mode density under mod-

erate roughness amplitudes.

The importance of the longitudinal modes is indicated in

the colorplot of Fig. 6(a), which shows the contribution of

each phonon state to the ballistic thermal conductance of the

D¼ 2 nm NW at T¼ 300 K. The dark-red color of the longi-

tudinal acoustic (LA) mode indicates that most of the heat is

FIG. 5. (a) Room temperature phonon-phonon limited thermal conductivity

for Si nanowires versus diameter. Blue-dots: This work. Black-triangle:

Molecular dynamics results by Donadio et al.10 Red-square: Calculation by

Luisier.40 (b) The phonon window function that determines the thermal con-

ductance in the case of ballistic transport denoted Wph: (blue line) and

phonon-phonon scattering diffusive transport denoted sph:�ph:Wph: (red line).

With the introduction of scattering, the window function becomes narrower.
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carried by this low frequency, low wavevector mode. A large

contribution is also attributed to the transverse acoustic (TA)

and flexurial acoustic (FA) modes. The phonon states on the

higher energy quasi-optical and optical modes carry only lit-

tle heat due to their low phonon group velocities. To quantify

the increasing importance of the low frequency modes with

decreasing diameter, Fig. 6(b) shows the cumulative ballistic

thermal conductance versus energy at room temperature. In

bulk Si, the low frequency modes carry little heat under bal-

listic conditions as indicated by the black line from the work

of Jeong et al.39 Nanowires with larger diameters, e.g.,

D¼ 12 nm, exhibit similar behavior, as shown by the green

line marked by triangles. For narrower diameter NWs, lower

energy phonons become even more important. For D¼ 2 nm

and D¼ 1 nm, �40% and �60% of the heat, respectively, is

carried by phonons with energies below 20 meV. It is inter-

esting to notice the steep slope of the D¼ 1 nm curve (blue

line) at low energies, indicating the increase in the mode

density at low frequencies. The steepness abruptly decreases

after E¼ 60 meV, indicating the decrease in the mode den-

sity at higher energies.

The corresponding results for the case of phonon-

phonon limited scattering conditions are shown in Figs. 6(c)

and 6(d). In this case, the low-frequency modes carry most

of the heat even in the bulk material, as indicated by the

black line from the work of Jeong et al.39 Almost half of the

heat is carried by phonons of energies below 10 meV.

Nanowires with larger diameters, e.g., D¼ 12 nm, again ex-

hibit similar behavior, as shown by the green line marked by

triangles; and as under the ballistic conditions, for narrower

NW diameters, lower energy phonons become even more

important. For D¼ 2 nm and D¼ 1 nm, �80% of the heat is

carried by phonons with energies below 5 meV. The impor-

tance of the low-frequency modes, therefore, is stronger

compared to the ballistic case, and the increasing density of

these modes as the NW diameter is reduced could lead to

most of the heat being carried by such low frequencies.

A useful quantity that more clearly demonstrates the im-

portance of the differences between the thermal conductivity

of the NWs with larger diameters versus the NWs with ultra-

narrow diameters is the cumulative phonon-phonon scatter-

ing limited thermal conductivity versus the phonon MFP.

The MFP for a phonon of momentum q in branch i is calcu-

lated as ki qð Þ ¼ si qð Þ�i qð Þ; where �i qð Þ is the phonon group

velocity. This is shown in Fig. 7 for the NWs with diameters

from D¼ 12 nm (green line) down to D¼ 1 nm (black line).

For the wider NWs, the heat is carried almost uniformly by

phonons of MFPs from one nanometer to several micro-

meters, as in the case of bulk Si.39,48 As the diameter is

reduced, however, the portion of phonons with long MFPs

increases. For the D¼ 2 nm and D¼ 1 nm NWs, for example,

a large part of the thermal conductivity, almost 80%, is car-

ried by phonons of MFPs longer than 1 lm, corresponding to

the low-frequency, long-wavelength phonons.

We finally note that in our work, we mostly considered

the effect of increasing low frequency mode density on the

ballistic thermal conductance and provided possible indica-

tion of its even stronger importance in the case of phonon-

phonon limited scattering conditions. Ultra-narrow NWs,

however, suffer from enhanced phonon-boundary scattering,

which is the main reason the Si nanostructures are promising

thermoelectric materials.17,49 We point out here that the

increase in the thermal conductance because of the increase

in low frequency modes could also be noticeable under

FIG. 6. (a) The phonon dispersion of the D¼ 2 nm h100i nanowire. The col-

orplot shows the contribution of various phonon states to the ballistic ther-

mal conductance (red indicates the highest, and blue the lowest thermal

conductance). (b) The cumulative ballistic thermal conductance versus

energy for NWs of D¼ 1 nm (blue-dots), 2 nm (red-square), and 12 nm

(green-triangle). The black-solid line shows the cumulative thermal conduct-

ance of bulk Si from Jeong et al.39 (c) and (d) Same as in (a) and (b) but

phonon-phonon scattering conditions are assumed in the calculation of the

thermal conductivity.

FIG. 7. The cumulative thermal conductivity versus phonon mean-free-path

for NWs with diameters D¼ 12 nm down to D¼ 1 nm at room temperature

under phonon-phonon limited scattering conditions.
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moderate phonon-boundary scattering conditions as well.

The reason is again that even in this case, the high frequency

“flatter” quasi-acoustic and optical modes scatter more

severely compared to the low-frequency, high group velocity

modes. As indicated in Refs. 47 and 50, the stronger influ-

ence of the boundary scattering originates from the mismatch

in the flat dispersion modes along the transport direction of

the NW caused by the rough geometry. Note that the stron-

ger boundary scattering for higher frequencies is even the

case for different materials such as graphene nanoribbons as

we showed in Ref. 46 through non-equilibrium Green’s func-

tion simulations. Therefore, under weak roughness condi-

tions, the thermal conductivity could still show an increase,

or at least a weaker decrease as the diameter is reduced.

Under stronger roughness conditions in ultra-narrow NWs,

i.e., roughness amplitude as large as 20% of the diameter,

however, the phonon mean free path and the thermal conduc-

tivity are very close to what the Casimir limit predicts (fully

diffusive phonons at all frequencies, with phonon MFPs lim-

ited by the NW diameter) as discussed in Ref. 45, and the

effects we describe might not be noticeable.

V. CONCLUSIONS

In this work, we study the thermal properties of ultra-

thin silicon nanowires using the atomistic modified valence-

force-field method for the computation of the phonon

bandstructure and the Landauer ballistic transport as well as

the diffusive Boltzmann transport methods. We show that

the “problem of long-wavelength phonons” as described by

Ziman and others, which causes divergence in the thermal

conductivity of quasi-1D1 channels with increasing length, is

also present in Si NWs. The divergence occurs not only as

the length is increased but as the diameter is reduced as well.

We connect this to the fact that in ultra-narrow nanowires,

the density-of-states and the transmission function of long-

wavelength phonons acquires a finite value, as compared to

zero in the bulk materials, which increases their importance

in carrying heat and results in thermal transport improvement

as the diameter is reduced below 5 nm. This results in a strik-

ing anomalous increase in the thermal conductance (at low

temperatures) and thermal conductivity (at all temperatures,

we examine up to T¼ 300 K) as the diameter is reduced

below 5 nm. The consequence of this effect is that a larger

portion of heat is carried by low frequency phonons in ultra-

narrow nanowires as compared to bulk, i.e., almost 80% of

the heat is carried by phonons with energies below 5 meV

and predominantly long mean-free-paths.
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