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Abstract

As nowadays semiconductor devices are characterized by active lengths on the nanometer scale, it is important to use models
including fully the quantum mechanical effects. In this paper we focus on the Wigner equation, a convenient reformulation of the
Schrödinger equation in terms of a phase-space, and present a Monte Carlo technique to solve it, based on signed particles. Then
we adapt the concept of potential decomposition, widely utilized to simplify the numerical treatment of the Wigner equation, to
our method. Both approaches are compared to the direct solution of the Schrödinger equation. We show that excellent agreement
is reached with our Monte Carlo technique which is also computationally efficient. The numerical experiment chosen for the com-
parisons consists of a Gaussian wave packet tunneling through a realistic source-to-drain potential profile. This is a technologically
relevant situation for today’s semiconductor devices for which quantum mechanical effects are prominent.
© 2014 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The continuous scaling of semiconductor devices is nowadays at a point, where active lengths are of the order of
only a few tens of nanometers. Effects such as particle tunneling through source-to-drain potential profiles are now
highly relevant and cannot be ignored. They must be included in simulations to achieve reliable, predictive results.
From this perspective, only full quantum models are capable of describing the appropriate physics. A well-known
model is the Wigner equation, an equivalent phase-space reformulation of the Schrödinger equation [23].

Despite the numerical difficulties, there has been a high interest around the Wigner formalism. Efforts towards
the simulation of this model started several decades ago and were based on finite difference discretization methods
[13]. Serious problems were introduced by the treatment of the diffusion term (� k)/m* · ∇xfW. Indeed, the Wigner
quasi-distribution function fW(x, k, t) oscillates very rapidly in the phase-space (with both positive and negative values).

This can eventually cause problems in the calculation of the derivatives by means of finite difference methods [6].

Recently, two new approaches to solve the Wigner equation, based on Monte Carlo (MC) techniques, have been
developed. They both avoid the problem of evaluating the diffusion term, since they use the integral characteristics
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f the Liouville operator, which are Newtonian trajectories. The first model [20–22,12] is an ensemble MC technique
ased on the concept of quantum affinity, a real number having the meaning of a stochastic weight (ranging in the
et [− ∞ ;1]) similar (but not equal) to what happens in MC methods for the statistical enhancement of Boltzmann
ransport simulations [7,11], which is calculated according to the Wigner potential [12]. The method has proved to be
eliable and applicable to several technologically relevant situations such as the simulation of one-dimensional (1D)
esonant tunneling diodes. Despite its success, the method can hardly be applied to multi-dimensional simulations due
o the demand of significant computational resources. In fact, the number of particle states in the ensemble increases
uring the simulation according to the complexity of the problem [12]. The second model [19], based on the concept
f signed particles [8], is time-dependent, can take into account general initial and boundary conditions (BCs) and,
o some phenomenological extent, can include the effects of lattice vibrations [17] (one should note that open BCs
n the Wigner formalism still represent an open problem [14], in this paper we use absorbing BCs only which are in
greement with [3]). By exploiting some of the tenets of quantum mechanics, such as indistinguishability of particles
nd energy quantization, along with the classical notions of trajectories, ensembles and signed particle generation, it is
ossible to depict a MC approach to the Wigner equation, which is time-dependent and multi-dimensional [10,18,17].

Finally, a concept shown to be very successful and useful for the simulation of nanometer scaled semiconductor
evices is the decomposition of the potential profile [4]. This method consists in separating the full potential acting
n the domain in two parts, a smooth (classical) component and a rapidly varying (quantum) component. This allows
he inclusion of quantum corrections in precedently implemented Monte Carlo simulators. However this concept is
hallenged by recently developed multi-dimensional Wigner MC methods [18].

In this paper we utilize the signed particle Wigner MC method (full WMC) [19] and simulate the evolution of a
aussian wave packet moving in a pre-calculated potential profile corresponding to a 1D n+ − n − n+ diode. Then,
e adapt the potential decomposition [4] to our MC method and apply it to the same numerical experiment. Finally,

hese approaches are compared to the time-dependent Schrödinger equation. An excellent quantitative agreement is
emonstrated between the full WMC and the solutions of the Schrödinger equation.

. The Monte Carlo approach to solving the Wigner equation

The Wigner equation is an intuitive formulation of quantum mechanics in terms of a quasi distribution function
W = fW(x, k, t) defined over a phase-space. It reads [9]:

∂fW

∂t
+ 1

�
∇kε(k) · ∇xfW = Q[fW ] (1)

ith

Q[fW ](x, k, t) =
∫

dk′VW (x, k − k′, t)fW (x, k′, t) (2)

nd

VW (x, k, t) = 1

i�2π

∫
dx′e−ik · x′

(
V

(
x + x′

2
, t

)
− V

(
x − x′

2
, t

))
(3)

known as the Wigner potential). Here the function V = V(x, t) is the (eventually time-dependent) electrostatic potential
efined over the spatial domain.

Now, it is possible to reformulate the Wigner equation over a semi-discrete phase-space. Indeed, by introducing
he quantity �k = π/LC (where LC is a cut-off length, sometimes know as the coherence length), the k-space can be
xpressed as a set of multiples k = m�k (with m an integer). The semi-discrete Wigner equation reads
∂fW

∂t
+ �

m∗ m�k · ∇xfW =
+∞∑

m′=−∞
VW (x, m′)fW (x, m − m′) (4)
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The transport problem is completed by specifying the initial and boundary conditions for (4). The unknown is the
Wigner quasi-distribution function which is used to calculate the expectation value 〈A〉(t) of a given macroscopic
quantity A = A(x, k), which can be expressed in terms of a series [8,10]

〈A〉 =
∫ ∞

0
dt′

∫
.xi

∞∑
m′=−∞

fi(xi, m
′)e−

∫ t′
0

γ(xi(y))dy
g(xi(t

′), m′, t′) (5)

where

γ(x) =
∞∑

m=−∞
V+

w (x, m) (6)

with V+
w is the positive part of Vw. The function fi = fi(x, m) is the initial condition and g = g(x, m, t) is the solution of

the adjoint equation [8], whose kernel Γ = Γ (x, m, m′) is defined as

Γ (x, m, m′)
γ(x)

=
{

V+
w (x, m − m′)

γ(x)

}
−

{
V+

w (x, −m + m′)
γ(x)

}
+ {δm,m′ } (7)

Following the reasoning of [8] and [10] the kernel can have a physical interpretation. In its formulation three particles
appear, the initial one and two new ones. Indeed, by means of the probability

V+
w (x, l)

γ(x)
(8)

we generate the first state m − m′ = l (with the same particle sign of the initial one) and, with the same probability,
we generate the second state m′ − m (with the sign flipped with respect to the original one). A MC algorithm for the
integration of the semi-discrete Wigner equation (4) is now depicted (full WMC). After any free flight, the initial
particle creates two new particles with opposite signs. Their new wave-vectors are calculated from the offsets (around
the initial wave-vector) +l and −l where l = m − m′. One should note that, being this approach of MC nature, it has the
immediate advantage of being highly scalable on parallel machines [1].

The process of creating new couples is exponential [8] and a technique must be utilized to maintain the number
of particles manageable. We exploit the fact that particles are indistinguishable and annihilate, when they are in the
same phase-space cell with opposite signs. Thus, by fixing a recording time step at which we check if particles are
annihilating, we can remove (annihilate) a significant number of redundant particles during the simulation. Only non-
annihilating particles are kept, being the ones contributing to the construction of the solution. This method is known
as creation–annihilation technique and has proved to be efficient, in particular, when millions of particles are involved
[10].

3. Decomposition of the electrostatic potential

The decomposition of the electrostatic potential is a well-known approach typically utilized to simplify the numerical
complexity involved in the simulation of the Wigner equation [4]. It has been successfully applied to one-dimensional
situations [12,8,2]. Our goal is to use this technique to make comparisons against the full WMC method described in
the previous section. It consists of separating the electrostatic potential into a smooth classical component and a rapidly
varying quantum component. This approach is originally defined for the case of a continuous phase-space. Since the
full WMC method involves a semi-discrete phase-space, we modify the decomposition accordingly.

The original method is based on the Fourier analysis of the potential V = V(x), which is known to diverge for k = 0 in
the continuous case. In order to avoid this problem, a cut-off wavelength λc and a cut-off wavenumber qc are introduced

qc = (2π)/λc. Thus, the electrostatic potential can be decomposed over the device in two main contributions, a classical
(slowly varying) and quantum (rapidly varying) contribution.

V (x) = Vcl(x) + Vqu(x) (9)
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Fig. 1. Decomposition of the electrostatic potential.

n a continuous phase-space, the classical component Vcl = Vcl(x) is defined as [4]:

Vcl(x) = 1

2π

∫ qc

−qc

dqV̂ (q)eiqx (10)

ˆ (q) is the Fourier transform of the potential (low-pass filter with cut-off qc). In order to assure that we stay inside the
evice, the transform domain is truncated accordingly (otherwise it would span over the range [− ∞ , + ∞]) and we
ssume that the electrostatic potential is constant outside the device (i.e. constant voltage in the leads).

Taking into account the semi-discrete nature of the phase-space and the truncated Fourier domain, it is possible to
ewrite the classical contribution in a discrete form.

Vcl(xj) =
∑

lwjlV (xj)∑
lwjl

(11)

ith

wjl = sin[(j − l)qc�x]

(j − l)qc�x
(12)

In the continuous approach [4], the value for λc can be chosen in a rather arbitrary fashion and the index l varies in
he range −(nk/2) ≤ l ≤ nk/2 (range of the Fourier transform), where nk is also arbitrary. Since the transform (11) does
ot correspond to a numerical discretization any longer, but rather to the transform due to the discrete nature of the

-space, λc and nk cannot be chosen arbitrarily anymore. In the semi-discrete case two theoretical constraints appear.
irst of all, to make the decomposition meaningful, the classical component has to be smooth. Second, we must stay

n the same grid defined by the Wigner MC method (described by the quantity �k). Naturally, this still leaves some
reedom in the choice of λc and nk, but, from the performed numerical experiments, we observe that the best choice is
c = 2LC and nk = Nk, where Nk is the maximum index allowed in the Wigner MC approach (positive direction of the
-space). In our case, other choices produce a non-smooth classical potential which invalidates the use of a potential
ecomposition.
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Fig. 2. Evolution of a Gaussian wave packet inside a realistic potential at 10 fs and 20 fs. Comparison between Schrödinger, full WMC, and potential
decomposition.

4. A numerical experiment

We now present a numerical experiment consisting of a Gaussian wave packet moving in a realistic electro-

static potential which is obtained from a previous self-consistent semi-classical MC simulation [15]. The device is a
n+ − n − n+ Silicon diode with lengths equal to 100 nm, 50 nm and 100 nm respectively. The n+ doping concentration
is 1024 m−3 while in the n region is 1022 m−3. The applied bias is equal to 0.05 V (drain contact). The wave packet
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Fig. 3. Evolution of a Gaussian wave packet inside a realistic potential at 30 fs and 40 fs.

tarts to move in the proximity of the drain contact (left side of the domain) towards the source contact (right side of the
omain). The packet is expected to tunnel through the potential hump, in other words a barrier, visible in the channel
middle of the domain), see the (black) continuous curve in Fig. 1. The evolution of the packet is calculated in three
ifferent ways: the full WMC method, the potential decomposition technique, and a time-implicit finite differences

iscretization of the Schrödinger equation [5] (and all methods use the same spatial discretization). We consider the
olution of the discretized Schrödinger equation as the benchmark and compare it to the other two methods. We show
hat the full WMC technique is applicable to realistic situations, such as source-to-drain tunneling in diodes. In addition,
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Fig. 4. Evolution of a Gaussian wave packet inside a realistic potential at 50 fs and 60 fs.

we show that it is numerically efficient and the solution is in better agreement with the benchmark solution compared
to the results obtained with the decomposition technique.

In the Schrödinger formalism, the initial wave packet has the following form
2 2
Ψ0(x) = Ae−((x−x0) )/(2σ )e−ik0x

with A a normalization constant, x0 the initial position, σ the spread of the packet, and k0 the initial wave vector.
Usually, the corresponding Wigner initial conditions are calculated by applying a Wigner–Weyl transform [20,12]. It
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Fig. 5. Evolution of a Gaussian wave packet inside a realistic potential at 70 fs and 80 fs.

s to note that this transform does not take into account the semi-discrete nature of the phase-space and thus must be
odified accordingly. It is possible to obtain a semi-discrete Wigner–Weyl which reads

∫ +(LC/2) ( ′ ′ )

fW (x, n�k, t) = 1

LC −(LC/2)
dx′e−in�kx′

ρ x + x

2
, x − x

2
, t , (13)
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Fig. 6. Evolution of a Gaussian wave packet inside a realistic potential at 70 fs and 80 fs.

where the function ρ = ρ(x, y, t) is the density matrix. The Wigner initial condition now reads

2 2
∫ +(LC/2) ′2 2 ′
f 0
W (x, n�k) = A′e−((x−x0) )/σ

−(LC/2)
dx′e−(x )/(σ )−i2(n�k−k0)x (14)

A′ is a normalization constant. The semi-discrete initial conditions are now in integral form and have to be integrated
numerically. For our purposes, we use a Gaussian quadrature technique.
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Fig. 7. Evolution of a Gaussian wave packet inside a realistic potential at 90 fs, 100 fs, 110 fs and 120 fs, respectively.

.1. Results

Fig. 1 shows the potential profile (black continuous) decomposed into two components, a slowly varying one
classical, blue dot dashed) and a rapidly varying one (quantum, red dashed). The initial Gaussian wave packet is

volved in that potential profile, until a final time equal to 120 fs is reached. This represents a very long final time
or such a situation which is useful to show the excellent accuracy of the full WMC. The three models (full WMC,
ecomposed potential technique, and Schrödinger) are compared in Figs. 2–7. In particular, Figs. 2 and 3 show the
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evolution of the wave packet at 10 fs, 20 fs, 30 fs and 40 fs. While the agreement between the three models seems to be
good up to 30 fs, differences start to appear at 40 fs. Indeed the result of the potential decomposition technique (blue
dot dashed line) starts to diverge from the solution of the discretized Schrödinger equation (red continuous line) and the
result of the full WMC model (black dashed line). On the contrary, quantitative agreement still holds for the result of the
full WMC method and the Schrödinger equation. Figs. 4 and 5 show the further evolution of the wave packet at 50 fs,
60 fs, 70 fs, and 80 fs. The differences between the models become now more pronounced. The results of the full WMC
method are still in agreement with the solution of the discretized Schrödinger equation. Finally Figs. 6 and 7 report
the evolution of the system at 90 fs, 100 fs, 110 fs, and 120 fs. The agreement between the solutions of the discretized
Schrödinger equation and the full WMC model is excellent even for such long simulation times. Instead, the solution
obtained with the decomposition technique agrees only qualitatively. Furthermore, the numerical resources exploited
by the full WMC method are of the same order as those of the potential decomposition technique, since it exploits the
annihilation technique [10].

5. The simulator and hardware

The simulator used to obtain the results presented in this paper is a modified version of Archimedes, the GNU
package for the simulation of carrier transport in semiconductor devices [15]. This code was first released in 2005, and,
since then, users have been able to download the source code under the GNU Public License (GPL). Many features have
been introduced in this package. In this particular project, our aim has been to develop a full quantum time-dependent
nanodevice simulator including phonon scattering effects. The code is entirely developed in C and optimized to get
the best performance from the hardware. It can run on parallel machines using of the OpenMP standard library. The
results of the present version are posted on the nano-archimedes website, dedicated to the simulation of nanodevices
[16].

The results have been obtained using the HPC cluster deployed at the Institute of Information and Communication
Technologies of the Bulgarian Academy of Sciences. This cluster consists of two racks which contain HP Cluster
Platform Express 7000 enclosures with 36 blades BL 280c with dual Intel Xeon X5560 @ 2.8 GHz (total 576 cores),
24 GB RAM per blade. There are 8 storage and management controlling nodes 8 HP DL 380 G6 with dual Intel X5560
@ 2.8 GHz and 32 GB RAM. All these servers are interconnected via non-blocking DDR Infiniband interconnect at
20 Gbps line speed. The theoretical peak performance is 3.23 Tflops.

6. Conclusions

In this paper the concept of potential decomposition has been described and modified for the case of a semi-discrete
phase-space occurring in the time-dependent signed particle Wigner Monte Carlo method. In particular, we discussed
the possible choices for the parameters qc and nk, which produce a smooth classical component. Both methods, with and
without decomposition, were compared against the solution of the Schrödinger equation. The numerical experiment
chosen for the comparisons consists of a Gaussian wave packet tunneling through a realistic, precalculated, source-
to-drain potential profile. We have shown that the results of the full WMC technique are in excellent agreement with
the solution of the Schrödinger equation even for very long final simulation times, unlike, when coupled to a potential
decomposition. In this numerical experiment, the Wigner Monte Carlo technique has proved to be reliable, applicable
to technologically relevant situations, and reasonable in terms of demand on resources. The full WMC method does
not require the use of a potential decomposition. It performs excellent calculations without any extra numerical burden.
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