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Abstract The finite iterative method is compared to an
industry-hardened fast marching method for accelerating the
redistancing step essential for Level Set-based process simu-
lations in the area of technology computer-aided design. We
discuss our implementation of the finite iterative method and
depict extensions to improve the method for process sim-
ulations, in particular regarding stability. Contrary to pre-
viously published work, we investigate real-world structures
with varying resolutions, originating from the area of process
simulation. The serial execution performance as well as error
norms are used to compare our approach with an industry-
hardened fast marching method implementation. Parallel
scalability is discussed based on a shared-memory OpenMP
implementation. We show that our approach of the finite iter-
ative method is an excellent candidate for accelerating Level
Set-based process simulations, as it offers considerable per-
formance gains both in serial and parallel execution mode,
albeit being inferior with respect to accuracy.

Keywords Finite iterative method · Redistancing ·
OpenMP · Process simulation

1 Introduction

A key ability of technology computer-aided design (TCAD)
process simulation is to simulate changes in the topogra-
phy and topology of the device structure through etching
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and deposition processes or through thermal treatment [1].
Predicting the topography evolution requires a method capa-
ble of describing geometric deformations over time. In this
respect it is primarily important to trace the motion of inter-
faces or particularly of the surface of the device structure,
giving rise to a so-called boundary tracking problem (also
frequently referred to as boundary evolution), of which the
Level Set (LS) [2] method is a widely applied technique.

The LS method has been successfully applied over the
years both in academia [3–6] as well as in industry applica-
tions, such as Silvaco’s Victory Process [7]. A central aspect
of applying the LS method to keep track of the moving bound-
ary is the so-called redistancing step, recomputing the dis-
tances between the evolving surfaces and the grid points. The
widely applied method to implement this approach is to uti-
lize the fast marching method (FMM). However, the FMM
does not favor parallel execution nor large problem sizes in
a three-dimensional setting [8]. These facts increase sim-
ulation times of the ever-growing simulation challenges—
both in size and complexity—of today’s TCAD process
simulations.

To remedy this problem, this work investigates the appli-
cation of the fast iterative method (FIM) to the field of
TCAD process simulation. In particular, we discuss a shared-
memory OpenMP parallelized implementation of the FIM
and apply it to a set of real-world surface evolution cases,
offering different problem sizes typical to the area of process
simulation. We compare serial run-time performance and
accuracy with an industry-hardened implementation of the
FMM and investigate parallel scalability.

In Sect. 2 we provide a short overview of the LS method
and the redistancing step. In Sect. 3 our approach for a shared-
memory implementation of the FIM is discussed. In Sect. 4
execution performance and quality is compared to a reference
industry implementation of the FMM.

123



878 J Comput Electron (2014) 13:877–884

2 Background

This section introduces the underlying key topics and gives
an overview of already conducted research work. We sketch
the LS method and elaborate on the necessity to redistance
the grid relative to the evolved surface. The discussion is
followed by introducing the principles of the FMM as well
as the FIM and an overview of other redistancing methods
not considered in this work.

2.1 Level set method

Within the concept of the LS method a surface (or more
generally an interface) S = ∂M of a region M is implic-
itly described by a continuous function Φ(x). The surface
is described as Φ(x) = 0 and the interior of the region is
identified by Φ(x) ≤ 0, x ∈ M. Boundary tracking relates
to an initial surface S(t = 0), where the evolution of this
surface until the end of the process time S(tp) is specified.
This specification is achieved by calculating surface veloci-
ties VS(xS) of the surface S(t = ti ) in the normal direction
at every time step and by moving the surface accordingly.

Using the implicit representation of a surface S(t), the
time evolution of the surface driven by a scalar velocity field
V (x), which can be obtained from VS(xS) by velocity exten-
sion [9], can be described by the LS equation:

∂Φ

∂t
+ V (x)‖∇Φ‖ = 0

However, the signed distance function Φ(x, t) gets dis-
torted when solving the LS equation for moving the inter-
faces within the implicit geometry representation. In order to
reconstruct the signed distance function property, redistanc-
ing algorithms must be applied while solving the boundary
tracking problem. Redistancing means to solve the Eikonal
equation [10] :

‖∇Φ(x)‖ = f (x), Φ|∂M = 0

with a speed function f (x) = 1 and with a fixed set of bound-
ary points. The solution of the Eikonal equation yields the
the signed distance field, holding the signed distances of any
point x to the surface S.

The most popular method for solving the Eikonal equation
is the already indicated FMM [11].

2.2 Fast marching method

Initially the FMM was developed for a rectangular orthog-
onal mesh [11], while later it was extended to other mesh
types, such as unstructured meshes [12] and nested Cartesian
meshes [13]. The FMM is a Dijkstra-type method, as the prin-
ciple is similar to Dijkstra’s shortest-path graph algorithm
[14,15]. The order of which the wave-front passes through

the grid nodes of the simulation domain determines the order
of computing the solution updates on the respective nodes.
The set of nodes being currently updated within an iteration
is denoted as narrow band, being typically implemented as
a heap data structure. This heap data structure represents a
computationally significant part of this method, allowing to
identify the point with the smallest signed distance from a
list of available points. However, the heap imposes a bottle
neck, as the causality principle has to be uphold, impeding
reasonable parallel scalability [8].

Despite this fact parallel implementations of the FMM
have been investigated. Typical approaches to parallelize the
FMM are based on the domain decomposition method, where
the simulation domain is decoupled into distributed sub-
domains [16,17]. Each sub-domain hosts its own heap data
structure. Additionally, so-called ghost layers are utilized
at the interfaces to adjacent sub-domains, ensuring solution
continuity. The scalability of the reported domain decom-
position algorithm is strongly dependent on load balancing
with respect to the number of mesh points on each side of the
evolving interface. Therefore, such a domain decomposition
approach is reasonable for small-scale parallelization albeit
requiring significant development overhead.

A non-domain decomposition approach based on a shared-
memory programming model and Cartesian meshes has
been investigated [18]. In contrast to domain decomposition
approaches the interfaces are distributed. A shared data struc-
ture is utilized—governed by a mutex lock—to satisfy the
causality principle. Mutex locks, however, are well-known
to impede scaling behavior. The approach does not tackle
the load-balancing problem satisfactorily, resulting in lim-
ited scalability. For instance, a part of the interface assigned
to a thread might leave the simulation domain, leaving the
thread jobless.

The FMM has been investigated with respect to paral-
lelization based on accelerators [19,20]. However, induced
by the sequential nature of the FMM the reported results
underline that the FMM method is not particularly suited for
parallelization let alone large-scale parallelization on graph-
ics adaptors.

2.3 Fast iterative method

The FIM has been originally implemented for parallel execu-
tion on Cartesian meshes [8] and later extended to triangular
surface meshes [21]. This method relies on a modification of
a label correction scheme coupled with an iterative procedure
for the mesh point update.
The inherent high degree of parallelism is due to the abil-
ity of updating the mesh points in parallel, supporting a
single instruction, multiple data parallel execution model.
Therefore, the FIM favors implementations on highly paral-
lel accelerators, such as graphics adaptors [20,22].
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Although the FIM has been originally developed for large-
scale parallelism on graphics adaptors, the inherent support
for parallelism obviously also favors small-scale parallel
shared-memory implementations.
This aspect is of particular interest to this work, as shared-
memory implementations, e.g., based on OpenMP, are eas-
ier to develop, to maintain, and to deploy compared to
accelerator-based implementations.

Investigations on shared-memory approaches have been
conducted, discussing generic test cases for two- and three-
dimensional problems [23,24]. Our work will continue this
previous work towards actual applications by investigating
the applicability of the FIM to real-world problems in the
area of process TCAD.

2.4 Other Eikonal solution methods

Aside of the FMM and the FIM other methods to solve the
Eikonal equation are available. In particular, the fast sweep-
ing method (FSM) [25] has been developed to enable parallel
redistancing, albeit favoring small-scale shared-memory par-
allelization. The FMM, FIM, and the FSM have been com-
pared in the context of computer tomography [20]. The orig-
inal FSM has been extended with respect to parallel scal-
ability on shared-memory architectures [26]. In our work
we will not investigate the FSM but focus entirely on the
FIM. The FIM’s inherent support for large-scale paralleliza-
tion on accelerators, such as graphics adaptors, offers excel-
lent potential for future extensions towards accelerator-based
implementations.

Other available methods to solve the Eikonal equation
are the algebraic Newton method, brute force redistancing,
and via a reformulation to a hyperbolic problem [27]. The
algebraic Newton method cannot be seen as a truly general
method to compute distance functions for arbitrary distance
fields, as the distance fields must be smooth. If in fact the dis-
tance field is non-smooth, as would be the case, for instance,
at corners of a square, the method would fail. Brute force
redistancing has a complexity of O(N · M), N being the
number of mesh points and M being the number of zero dis-
tance segments. The brute force algorithm thus exhibits a
poor scaling behavior due to quadratic computational costs
for high numbers of interface segments. Also, this particular
method requires an explicit representation of the interface.
It’s extraction is non-negligible and thus introduces consid-
erable computational overhead. Finally, the Eikonal equa-
tion can be reformulated into a hyperbolic partial differential
equation, enabling the solution via parallelized discretiza-
tion schemes, such as the finite element method [28,29].
However, such an approach suffers from problems regard-
ing interface movement due to numerical truncation errors
[30]. Because of the mentioned issues, the algebraic New-

ton, brute force redistancing, and hyperbolic reformulation
methods are not considered in this work.

3 Our approach

Our implementation is based on a C++ OpenMP approach on
top of regular Cartesian grids. We use a similar approach for a
shared-memory FIM implementation as reported in [23,24],
albeit using the original FIM/FSM approach to solve the
Eikonal equation [8,25], being based on a Godunov upwind
difference scheme. In the following we focus on our exten-
sions which are essential to make the FIM a viable candi-
date for redistancing the signed distance fields of LS-based
process simulations. As already indicated, LS-based simula-
tions yield a description of the evolving surface.

Fig. 1 A discrete grid stores signed distance values relative to a surface
(blue line). For the forward and backward direction all source values
with positive (red nodes) and negative or zero signed (green nodes) dis-
tances, respectively, are used as initial condition. A so-called active list is
generated consisting of nodes (black nodes) adjacent to nodes for which
the distances are already known, i.e., in the beginning the neighbors of
the initial source node set. For the nodes in the active list the signed dis-
tances are computed within an iteration. The iterative scheme gradually
processes all unprocessed nodes (circles), however, the algorithm must
not advance into the opposite region, to ensure that the interior and the
exterior region is successfully identified (Color figure online)

Algorithm 1 Forward/Backward initialization
1: General: X : set of grid nodes, L: active list,
2: S: set of source nodes, F : set of source distances,
3: U : set of distances, #: comment, nb: neighbor
4: for all x ∈ X do
5: U (x) = ∞
6: end for
7: for all x ∈ S do
8: if x > 0.0 then {#Backward x ≤ 0.0}
9: U (x) = F(x)

10: for all adjacent xnb of x do
11: if xnb /∈ S then {#Direction}
12: add xnb to L
13: end if
14: end for
15: end if
16: end for
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Algorithm 2 Stabilized and direction-aware FIM
1: while L �= ∅ do
2: L New = ∅
3: for all x ∈ L in parallel do
4: p = U (x)

5: q = solveEikonal(x)

6: if |p − q| < ε then
7: UNew(x) = q
8: for all adjacent xnb of x do
9: if xnb /∈ L then
10: if xnb /∈ S then {#Direction}
11: p = U (xnb)

12: q = solveEikonal(xnb)

13: if p − q > ε then {#Stabilization}
14: UNew(xnb) = q
15: add xnb to L New
16: end if
17: end if
18: end if
19: end for
20: else
21: if q < UNew(x) then
22: add x to L New
23: end if
24: UNew(x) = q
25: end if
26: end for
27: U = UNew
28: L = L New
29: end while

More concretely, this description is in fact represented by a
signed distance field of two node sets surrounding the actual
surface.

In our LS-based context, we need to redistance the inte-
rior (Φ(x) ≤ 0) and exterior (Φ(x) > 0) of the problem

domain. Therefore, we need to perform two passes to com-
pute the entire signed distance field, one in forward direction
(i.e. exterior) and one in backward direction (i.e. interior).
To this end, the original FIM algorithm must be extended to
avoid advancing into the wrong direction. This is done by
evaluating whether a new node to be inserted into the active
list (holding the narrow band) is part of the source node set
(Fig. 1).

Algorithm 1 depicts the initialization of both passes, con-
sidering the forward/backward scenario as well as direction
handling. Algorithm 2 introduces our adapted redistancing
algorithm, which is based on the approach introduced in [24].
Aside from ensuring the correct advancement of the active
list (Line 10) we adapted the original condition p > q for the
neighbor nodes to a numerically more stable version, being
p −q > ε (Line 13). We experienced convergence problems
of the iterative scheme when using the original condition,
which we attribute to numerical insufficiencies of the dis-
cretization scheme.

4 Results

To investigate the applicability of the FIM to the area of
process simulation, we use four different structures for which
we compute the signed distance fields (Figs. 2, 3, 4, 5
show the structures and the isosurfaces of the signed dis-
tance fields). For the presented results we used ε = 10−10.
In Table 1 we compare our approach of the FIM with an
industry-hardened FMM implementation on a 64-bit Linux
workstation, powered by an Intel i5-3570 (four cores, 3.4

Table 1 Comparison of serial execution performance as well as evaluation of the l1 (‖u‖1), l2 (‖u‖2), and l∞ (‖u‖∞) error norms based on four
real-world structures, each evaluated in two different grid size resolutions

For all but one test case our FIM implementation outperforms the reference FMM code. However, the error norms indicate a noticeable difference
between the computed results
* Indicates a manual adjustment with a factor of 1.5 to model the overhead of the nested grid data structure used by the reference FMM implementation,
which we approximate with 50 %
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Fig. 2 2D Trench structure/signed distance field

Fig. 3 3D Trench structure/signed distance field

Fig. 4 Multiple Lines structure/signed distance field

Fig. 5 Filled Trench structure/signed distance field
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Fig. 6 2D Trench parallel scaling/efficiency
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Fig. 7 3D Trench parallel scaling/efficiency
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Fig. 8 Multiple Lines parallel scaling/efficiency
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Fig. 9 Filled Trench parallel scaling/efficiency
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GHz). The reference implementation is implemented on top
of a nested grid data structure—offering flexibility albeit
introducing run-time overhead—where the base mesh level
is used. The reference implementation is tightly interwoven
within an industry process simulator, thus we cannot directly
compare the results. However, we estimate the run-time over-
head of the nested grid data structure to be at most 50 %, there-
fore we manually adjust the execution-times of our stand-
alone FIM application with a factor of 1.5 to allow for a rea-
sonable comparison. For all but one test case our FIM imple-
mentation outperforms the reference FMM implementation,
even for large problem sizes (speedup of 2.6 for the Filled
Trench structure with 70 M grid nodes). However, the error
norms indicate noticeably differences in the computed results
even for ε < 10−10 (‖u‖∞ = 6.6 for the Multiple Lines
structure with 4.8M grid nodes). We attribute this to the uti-
lized difference operator, which is proposed in the original
work of the FSM [25] and the FIM [8], respectively.

In Figs. 6, 7, 8, 9 we present the parallel scalability of our
OpenMP-parallelized FIM implementation on a 64-bit Linux
cluster node, powered by an AMD Opteron 6348 (12 cores,
2.8 GHz). Increasing the problem size improves parallel scal-
ability for larger numbers of threads, being particular impor-
tant for the ever-increasing drive towards simulating high-
resolution problems. For twelve threads we get 40 % effi-
ciency for most of the problems.
For the important thread range between four and eight threads
(most of today’s single-user workstations offer four- to eight-
cores), the efficiency is between 50 and 80 %, which is fairly
reasonable considering the fact that we investigate three-
dimensional real-world structures.

However, it is interesting to note that the parallel scala-
bility is not only influenced by the problem size, but also
by the complexity of the given problem. The intricate high-
resolution Filled Trench structure offers 70 M nodes and a
parallel efficiency of 40 % for twelve threads as compared to
the high-resolution mesh of the 3D Trench structure which
offers 38.4M nodes and a parallel efficiency of 50 %. Com-
paring the input structures reveals that the Filled Trench
structure offers two surface areas, requiring the FIM more
iterations to converge, which also impedes parallel efficiency
due to an increased number of operations on shared-memory.

5 Conclusion

We compared an OpenMP-parallelized implementation of
the FIM with an industry-hardened implementation of the
FMM in the context of TCAD process simulation. Our exten-
sions relative to the already available approaches have been
outlined and our general algorithm has been discussed. Four
process simulation problem structures, each offering two
different grid resolutions, have been used to evaluate the

performance and the quality of our implementation. Our
FIM implementation offers excellent serial execution per-
formance, however, the computed signed distance fields dif-
fer noticeably from the reference results (‖u‖∞ = 6.6 for
the Multiple Lines structure with 4.8 M grid nodes). Par-
allel execution behavior is good for four to eight threads,
and reasonable for twelve threads and large problem sizes
(i.e. ≥5 M grid nodes). Overall, we conclude that despite the
identified accuracy shortcomings, our FIM implementation
is an excellent approach for increasing the performance of
LS-based process simulations in the area of TCAD by lever-
aging the parallel execution potential of today’s multi-core
workstations.

Future work will aim for increasing the accuracy of our
FIM implementation by investigating higher-order difference
schemes. Different parallelization approaches will be ana-
lyzed to further improve parallel efficiency. The applicabil-
ity of using the FSM as well as an accelerator-based imple-
mentation of the FIM for the field of process TCAD will be
investigated.
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