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Abstract. The signed-particle Monte Carlo method for solving the
Wigner equation has made multi-dimensional solutions numerically fea-
sible. The latter is attributable to the concept of annihilation of indepen-
dent indistinguishable particles, which counteracts the exponential growth
in the number of particles due to generation. After the annihilation step,
the particles regenerated within each cell of the phase-space should repli-
cate the same information as before the annihilation, albeit with a lesser
number of particles. Since the semi-discrete Wigner equation allows only
discrete momentum values, this information can be retained with regen-
eration, however, the position of the regenerated particles in the cell must
be chosen wisely. A simple uniform distribution over the spatial domain
represented by the cell introduces a ‘numerical diffusion’ which artificially
propagates particles simply through the process of regeneration. An opti-
mized regeneration scheme is proposed, which counteracts this effect of
‘numerical diffusion’ in an efficient manner.

1 Introduction

The Wigner formalism expresses quantum mechanics, which normally is formu-
lated with the help of wave functions and operators, in terms of functions and vari-
ables defined in the phase-space. This reformulation in the phase-space facilitates
the reuse of many classical concepts and notions.

The Wigner transform of the density matrix operator yields the Wigner
function, fw (x, p), which is often called a quasi-probability function as it retains
certain properties of classical statistics, but suffers of negative values. The asso-
ciated evolution equation for the Wigner function follows from the von Neumann
equation for the density matrix, which for the illustrative, one-dimensional case is
written as

∂fw

∂t
+

p

m∗
∂fw

∂x
=

∫
dp′Vw (x, p − p′) fw (x, p′, t) . (1)

If a finite coherence length is considered – the implications and interpretation of
which is discussed in [2,5] – the semi-discrete Wigner equation results and the
momentum values are quantized by Δk = π/L and the integral is replaced by a
summation. Henceforth, the index q refers to the quantized momentum, i.e.
p = � (qΔk).
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Equation (1) is reformulated as an adjoint integral equation (Fredholm equa-
tion of the second kind) and is solved stochastically using the particle-sign method
[4]. The latter associates a + or – sign to each particle, which carries the quantum
information of the particle. Furthermore, the term on the right-hand side of (2)
gives rise to a particle generation term in the integral equation; the statistics gov-
erning the particle generation are given by the Wigner potential (i.e. the kernel of
the Fredholm equation), which is defined here as

Vw (x, q) ≡ 1
i�L

∫ L/2

−L/2

ds e−i2qΔk·s {V (x + s) − V (x − s)} . (2)

A generation event entails the creation of two additional particles with comple-
mentary signs and momentum offsets q′ and q′′, with respect to the momentum q
of the generating particle. The two momentum offsets, q′ and q′′, are determined
by sampling the probability distributions V +

w (x, q) and V −
w (x, q), dictated by the

positive and negative values of the Wigner potential in (2), respectively:

V +
w (x, q) ≡ max (0, Vw) ; (3)

V −
w (x, q) ≡ min (0, Vw) . (4)

The generation events occur at a rate given by

γ (x) =
∑

q

V +
w (x, q) , (5)

which typically lies in the order of 1015s−1. This rapid increase in the number of
particles makes the associated numerical burden become computationally debili-
tating, even for simulation times in the order of femtoseconds.

The notion of particle annihilation is used to counteract the exponential
increase in the number of particles, due to particle generation. This concept entails
a division of the phase space into many cells – each representing a volume (ΔxΔk)
of the phase space – within which particles of opposite sign annihilate each other:
Consider a cell (i, q) within the phase-space, which encompasses all particles with a
momentumof� (qΔk) andapositionwithin the spatial domainΩi = [xi, xi + Δx] .
The particles within the cell are considered identical and indistinguishable, i.e. any
positive particle may annihilate any negative particle in the cell and vice versa.
Within the cell (i, q), let there be Pi particles with a positive sign and Qi parti-
cles with a negative sign which are summed up to yield a remainder of particles,
Ri = Pi − Qi; |Ri| particles, each carrying the sign of Ri, are regenerated within
the cell.

The |Ri| particles that survive the annihilation procedure should, ideally, repli-
cate the same distribution in cell (i, q) as represented by the (Pi + Qi) particles
before the annihilation step. Since the momenta are quantized and a single value
is shared amongst all particles within a cell, the distribution in the k-space can
be recovered after annihilation. The positions of the particles, however, are real-
valued, which prompts a closer inspection of the regeneration process to retain this
information.
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2 Particle Regeneration Schemes

The straight-forward approach to regeneration – leaning on the assumption of iden-
tical, indistinguishable particles used for the annihilation – would be to spread the
|Ri|particles uniformly in space, over thedomainΩi. This approach, however, leads
to a ’numerical diffusion’ of particles, which causes the global particle ensemble to
propagate at a different rate than dictated by its k-distribution. The evolution of
a minimum uncertainty wave packet, defined as

fw (x, k) = N − (x−x0)2

σ2 e−(k−k0)
2σ2

, (6)

with xo = −50 nm, k0 = 6
(

π
50

)
nm−1 and σ = 10 nm, is compared in Fig. 1 using

three different approaches: (i) an analytical solution, (ii) a Monte Carlo approach
without any re-generation and (iii) a Monte Carlo approach with a (forced) regen-
eration procedure at each time step. A typical time step, for simulations in which
annihilation is required due to particle generation, of 0.1 fs is chosen. It is evident
that approaches (i) and (ii) correspond exactly, however, the wave packet which
is subjected to the regeneration procedure spreads out faster. This discrepancy is
solely due to the regeneration procedure and is analyzed in the following.

Consider an ensemble of N particles, with positions {pj} j = 1 . . . N, pj εΩi,
within the cell (i, q) at time t0. The mean position of the ensemble at time t0 is

p̄0 =
1
N

N∑
j=1

pj

= xi +
1
N

N∑
j=1

δxj , (7)

where the position is expressed as pj = xi + δxj , δxj ε [0,Δx]. The particles of the
ensemble evolve (drift) for a time period Δt, whereafter the mean position of the
ensemble at time t1 is

p̄1 =
1
N

N∑
j=1

pj + vjΔt

= xi +
1
N

N∑
j=1

δxj + vjΔt, (8)

where vj denotes the velocity of particle j, which is assumed to be small enough
such that the particle remains within the bounds of the cell for one time step. Since
we only have a single discretemomentumvalue associatedwith the cell, the velocity
of all particles within the cell is the same (vm). Therefore,

p̄1 = p̄0 + vmΔt. (9)

Now, suppose that before the particle evolution commences an annihilation step is
performed, whereafter N ′ particles are regenerated within the cell with positions
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Fig. 1.Comparison of a wave packet evolved from (a) 0 fs to (b) 100 fs, using an analytical
solution and a Monte Carlo (MC) approach without and with the regeneration process
(repeated every 0.1fs).
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{
p′

j

}
j = 1 . . . N ′ ≤ N . If the particles are uniformly distributed over the cell, one

imposes

p̄′
0 =

xi + xi+1

2
= xi +

Δx

2
. (10)

Consequently, the mean position of the ensemble at time t1 will be

p̄′
1 = xi +

Δx

2
+ vmΔt, (11)

which, when compared to (9), introduces an artificial propagation/retardation
depending on the spatial distribution of particles before the annihilation
procedure.

The original spatial distribution of the particles within a cell can be perfectly
recovered, if all (infinitely many) of the moments of the distribution before the
annihilation are known (and the Carleman’s condition [1] for uniqueness is satis-
fied). The mean position represents the first moment of the local distribution and
already retains themost important information.Byuniformlydistributing the par-
ticles over a distance Δx around the pre-annihilation mean, the ‘numerical diffu-
sion’ is effectively remedied, albeit with some added ‘noise’, as shown in Fig. 2. This
‘noise’ is attributed to the fact that the uniform distributions of neighbouring cells
overlap.
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Fig. 2. Comparison of wave packets evolved for 100 fs using an optimized regeneration
scheme and the conventional regeneration process; analytical solution shown by the solid
line.

If, in addition to the mean, the second moment of the distribution – the stan-
dard deviation – is also calculated the particles can be regenerated using e.g. a
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Fig. 3. Comparison of wave packets evolved for 100 fs using regeneration schemes based
on a Gaussian distribution and a mean with uniform distribution (as in Fig. 2); the ana-
lytical solution is shown for comparison.

Gaussian distribution. The result, shown in Fig. 3, is very noisy, however, since a
Gaussian distribution poorly models the actual distribution in each cell in this spe-
cific case and concentrates most of the particles in cell in a small region. The qual-
ity of the regenerated distribution may be refined indefinitely, by considering more
moments of the distribution. While the increase in computation time required to
calculate additional moments remains almost negligible (<1 % for the presented
cases), to recover a distribution from (some of) its moments – the so-called Classic
Moment Problem [1,6] – is quite challenging.

A flexible distribution, like the generalized Lambda distribution (GLD) [3],
which can assume a wide variety of shapes is well-suited to describe an arbitrary
distribution quite accurately. The GLD is defined using four parameters which are
based on the first four moments of the distribution and solving up to four non-
linear equations, making the computational effort high, if this process must be
repeated for each cell in the phase space. Therefore, the computational costs should
be weighed against the gained advantages and other techniques, like simply
decreasing Δx.

3 Conclusion

It has been shown that an artificial propagation/retardation of particles arises
when solving the semi-discrete Wigner equation, using the signed-particle method.
This ‘numerical diffusion’ arises, if the particle regeneration process does not con-
sider the spatial distribution of particles, within a phase-space cell, prior to
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annihilation. Calculating the mean value of the particles within a cell – the first
moment of the distribution – before regenerating them has emerged as an efficient
approach to counteract the ‘numerical diffusion’. Fitting the distribution using
more moments is not trivial and incurs considerable computational costs.
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