Intersubband spin relaxation reduction and spin lifetime enhancement by strain in SOI structures

J. Ghosh *, D. Osintsev, V. Sverdlov, S. Selberherr
Institute for Microelectronics, TU Wien, GutfussstraÃŸe 27-29/E360, A-1040 Wien, Austria

A R T I C L E I N F O
Article history:
Received 21 February 2015
Received in revised form 28 March 2015
Accepted 10 April 2015
Available online 16 April 2015

Keywords:
Ultra-thin body SOI
Shear strain
Spin–orbit interaction
Inter- and intra-valley scattering
Spin relaxation
Spin lifetime enhancement

A B S T R A C T
Electron spin attracts much attention as an alternative to the electron charge degree of freedom for low-power reprogrammable logic and non-volatile memory applications. Silicon appears to be the perfect material for spin-driven applications. An order of magnitude enhancement of the electron spin lifetime in (001) silicon thin films by shear strain is shown. It is demonstrated that spin-flip scattering processes between the two [001] valleys are responsible for spin relaxation in thin (001) silicon films. The enhancement of the spin lifetime is the result of the suppression of inter-valley scattering caused by the shear strain induced equivalent [001] valley splitting.

1. Introduction
Growing technological challenges and increasing costs are gradually guiding MOSFET scaling to an end [1], which drives the search for alternative technologies as well as computational principles based on electron spin. We investigate spin relaxation in (001) silicon-on-insulator structures. The unprimed electron subband energies and the wave functions are obtained with the two-band $k \cdot p$ Hamiltonian [2] describing the [001] valley dispersion including spin [3]. In bulk silicon, the spin lifetime is determined by the spin-flip scattering between the valleys located on different crystallographic axes [3]. A large spin relaxation in gated silicon structures was observed [4], and a several orders of magnitude boost of spin lifetime in films subjected to [110] uniaxial tensile stress was predicted [5]. First we assume that the spin is injected along the perpendicular OZ-direction. We begin with the variation of the spin lifetime (τ^S) with ϵ_{xy} versus temperature, Fig. 1. A strong increase of τ^S is noticed for all four evaluated temperatures. The figure also confirms that at higher temperature the phonon scattering rate will increase to reduce τ^S compared to that at lower temperature.

2. The model and results
We consider the surface roughness (SR) and the longitudinal (LA) and transversal (TA) acoustic phonons to cause the prominent spin relaxation mechanisms [5,6], as the contribution of optical phonons can be safely ignored for a film thickness of less than 3 nm. First we assume that the spin is injected along the perpendicular OZ-direction. We begin with the variation of the spin lifetime (τ^S) with ϵ_{xy} versus temperature, Fig. 1. A strong increase of τ^S is noticed for all four evaluated temperatures. The figure also confirms that at higher temperature the phonon scattering rate will increase to reduce τ^S compared to that at lower temperature. The increment of τ^S with shear strain is also noticed for a varied electron concentration (Fig. 2). The spin relaxation becomes more efficient for higher carrier concentrations for all three considered mechanisms. Fig. 3 shows the increase in τ^S with increase in ϵ_{xy} at constant T and N_e, indicating the dependence of τ^S on the sample thickness t.

In order to elucidate the spin relaxation mechanism, we consider the spin-flip and momentum relaxation caused by the intra- and inter-unprimed subband scattering. The corresponding components of the spin and momentum relaxation time at room temperature for a sample thickness of $t = 2.1$ nm are shown in Fig. 4. It is revealed that the major contribution to spin relaxation comes from the intersubband processes due to the presence of the spin hot spots characterized by the sharp peaks of the intersubband spin relaxation matrix elements, whereas at higher
stress the intrasubband component also becomes significant. In contrast, intrasubband scattering solely determines the momentum relaxation time. This is in agreement with the selection rule that the elastic processes result in strong intrasubband momentum relaxation.

Fig. 5 delineates the surface roughness induced spin relaxation with its components. The inset shows the Fermi energy and the lowest subband energy level. $N_s = 10^{12}$ cm$^{-2}$, $t = 1.36$ nm.

Fig. 1. Variation of spin lifetime with ε_{xy} with temperature as parameter. $t = 1.36$ nm. $N_s = 10^{12}$ cm$^{-2}$.

Fig. 2. Variation of spin lifetime with ε_{xy} with the electron concentration as parameter. $t = 1.36$ nm. $T = 300$ K.

Fig. 3. Variation of spin lifetime with ε_{xy} with thickness as parameter. $N_s = 10^{12}$ cm$^{-2}$, $T = 300$ K.

Fig. 4. Spin and momentum relaxation time with their components. $N_s = 10^{12}$ cm$^{-2}$, $T = 300$ K. $t = 2.1$ nm.

Fig. 5. Surface roughness spin relaxation time with components. The inset shows the Fermi energy and the lowest subband energy level. $N_s = 10^{12}$ cm$^{-2}$, $t = 1.36$ nm.
Now we investigate, if an alteration of spin injection direction has any further impact on the spin lifetime. Hence we consider an in-plane (say, OX-direction) spin injection and estimate the spin and momentum lifetime. The momentum relaxation time stays unaltered irrespectively of the spin injection direction. Alternatively, the spin relaxation rate (time) decreases (increases) when injected in-plane. Fig. 6 depicts a comparison of the total spin lifetime, when the spin is injected in OZ- or OX-direction, over a wide range of applied stress. We also point out an almost constant ratio (around two) of the obtained values in the inset figure. The physical reasons for the obtained factor two in the ratio of the spin lifetime for in- and perpendicular-plane spin injection orientation has yet to be revealed. We point out that the dependence of spin lifetime on the injection direction has been also reported in bulk silicon [7]. Therefore, we conclude that the spin lifetime can be further increased, when spin is injected in-plane.

3. Conclusion

Because of the recent ground-breaking experimental and theoretical findings silicon is now gaining momentum to be used in electronic applications involving spin. Mechanical stress routinely used to enhance the electron mobility can also be used to boost the spin lifetime in thin silicon films of SOI transistors making them promising candidates for near future spin-driven applications.

Acknowledgment

This work is supported by the European Research Council through the Grant #247056 MOSILSPIN.

References

Fig. 6. Spin lifetime when injected in OX- and OZ-direction. The inset shows the ratio. $N_s = 10^{22}$ cm$^{-2}$, $T = 300$ K.