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Low-dimensional phonon transport effects in ultranarrow disordered graphene nanoribbons
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We investigate the influence of low dimensionality and disorder in phonon transport in ultranarrow armchair
graphene nanoribbons (GNRs) using nonequilibrium Green’s function (NEGF) simulation techniques. We
specifically focus on how different parts of the phonon spectrum are influenced by geometrical confinement
and line edge roughness. Under ballistic conditions, phonons throughout the entire phonon energy spectrum
contribute to thermal transport. With the introduction of line edge roughness, the phonon transmission is reduced,
but in a manner which is significantly nonuniform throughout the spectrum. We identify four distinct behaviors
within the phonon spectrum in the presence of disorder: (i) the low-energy, low-wave vector acoustic branches
have very long mean-free paths and are affected the least by edge disorder, even in the case of ultranarrow
W = 1 nm wide GNRs; (ii) energy regions that consist of a dense population of relatively “flat” phonon modes
(including the optical branches) are also not significantly affected, except in the case of the ultranarrow W = 1 nm
GNRs, in which case the transmission is reduced because of band mismatch along the phonon transport path;
(iii) “quasiacoustic” bands that lie within the intermediate region of the spectrum are strongly affected by
disorder as this part of the spectrum is depleted of propagating phonon modes upon both confinement and
disorder [resulting in sparse E(q) phononic band structure], especially as the channel length increases; and
(iv) the strongest reduction in phonon transmission is observed in energy regions that are composed of a small
density of phonon modes, in which case roughness can introduce transport gaps that greatly increase with channel
length. We show that in GNRs of widths as small as W = 3 nm, under moderate roughness, both the low-energy
acoustic modes and dense regions of optical modes can retain semiballistic transport properties, even for channel
lengths up to L = 1 μm. These modes tend to completely dominate thermal transport. Modes in the sparse regions
of the spectrum, however, tend to fall into the localization regime, even for channel lengths as short as tens of
nanometers, despite their relatively high phonon group velocities.
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I. INTRODUCTION

The thermal properties of graphene nanostructures and
low-dimensional channels in general is an important topic
of nanoscience. Graphene nanoribbons (GNRs) are one-
dimensional (1D) structures that have attracted significant
attention, both for fundamental research as well as for
technological applications [1–14]. Ultranarrow GNRs have
been shown to retain at some degree the remarkable thermal
properties of graphene. However, the presence of edges
can result in geometry dependent properties. The width,
chirality, and the magnitude of edge disorder of the GNR can
strongly determine its electronic [15–18] and heat transport
properties [9,10,19–21].

Several works have shown that the transport proper-
ties of low-dimensional systems are significantly degraded
by the introduction of scattering centers and localized
states [9,10,14,22–25]. In the case of electronic transport,
even a small degree of disorder can drastically reduce the
electronic conductivity (especially in AGNRs rather than
ZGNRs), even driving carriers into the localization regime and
introducing “effective” transmission band gaps [15,26–28].
Although the line edge roughness can have a similar effect
on the thermal properties of GNRs, it has not yet been
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theoretically explored in depth. Carbon related materials such
as graphene, nanotubes, and GNRs can have huge thermal
conductivities in their pristine form, reaching values as high
as of 3080–5150 W/m K at room temperature [2,29]. Even a
small degree of disorder, however, can drastically degrade this
superior thermal conductivity.

Recent theoretical studies attempt to address the thermal
properties of low-dimensional materials by employing a
variety of models and techniques depending on the size of
the channel, and the physical effects under consideration.
Methods to investigate low-dimensional thermal transport
vary from molecular dynamics [25,30–34], the Boltzmann
transport equation (BTE) for phonons using scattering rates
based on the single mode relaxation time approximation (SM-
RTA) [35–41], the nonequilibrium Green’s function (NEGF)
method [14,20,24,42–46], and the Landauer method [47–50],
but also even more simplified semianalytical methods that
employ the Casimir formula to extract boundary scattering
rates by assigning a diffusive or specular nature to the
boundaries [51,52].

One of the reasons why the phonon transport properties of
low-dimensional channels in general, and carbon based sys-
tems in particular, are recently receiving much attention is the
fact that they show certain features that are distinct from bulk
materials. Several experimental and theoretical works suggest
that the thermal conductivity could deviate from Fourier’s
law [3,12,53]. It was observed that it grows monotonically with
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channel length before it saturates at large channel lengths, even
lengths significantly larger than the average mean-free path
(MFP) [8,54], an indication of a crossover from ballistic into
diffusive transport regimes [55,56]. A recent theoretical study
showed that, in the case of pristine 1D channels, the thermal
conductivity could even increase with confinement [57]. Ref-
erences [58–60] demonstrated that the thermal conductivity
in 1D channels grows as a power-law function of the length
and that roughness affects the value of the exponent of this
dependence. In two-dimensional (2D) graphene channels, on
the other hand, the increase in thermal conductivity with
channel length follows a logarithmic trend [8].

The major effect in limiting thermal conductivity in 1D
channels, however, seems to be boundary scattering [9,24,61].
Two orders of magnitude reduction in thermal conductivity
has been reported for several low-dimensional materials due
to roughness compared to the pristine materials, which sig-
nificantly improve their thermoelectric properties [14,61,62].
Specifically, with regard to GNRs, studies concluded that
edge roughness in GNRs can indeed reduce the thermal
conductivity by up to two orders of magnitude, depending
on the assumptions made about the roughness amplitude and
the autocorrelation length.

The phonon spectrum of ultranarrow GNRs and 1D chan-
nels in general, however, consists of various phonon modes
and polarizations, which react differently in the presence
of disorder (i.e., line edge roughness) and exhibit different
mean-free paths (MFPs) and localization lengths (LL). Despite
the tremendous theoretical and experimental investigations of
thermal conductivity in nanostructures, a study on how line
edge disorder in 1D GNR channels affects phonon modes of
different frequencies and wave vectors in the entire phonon
spectrum is still lacking. What is also lacking is a study on
what changes the phonon modes undergo in different parts
of the spectrum under strong confinement, and how these
changes affect thermal transport in the presence of line edge
roughness. The few studies that attempt to address this issue
for other 1D channels reach various and differing conclusions.
A study on thermal transport in 1D Si nanowires, for example,
indicated that line edge roughness scattering affects the ther-
mal conductivity by introducing band mismatch in the optical
region of the spectrum [24]. Different works attribute the
reduction in thermal conductance to phonon localization and
the appearance of nonpropagating modes [63,64]. Specifically
in the case of GNRs, it is indicated that the majority of
eigenmodes are localized and do not contribute to thermal
transport [9], whereas other studies suggest that heat transport
is semiballistic [56].

In this work we theoretically investigate in detail the
effect of line edge roughness and confinement in phonon
transport in ultranarrow armchair GNRs for the phonon
modes of the entire energy spectrum independently. The basic
conclusions of this study can be applied generically to all
1D systems. We employ the NEGF method [65,66] which
can take into account the exact geometry of the roughness
without any underlying assumptions, while we describe the
phonon spectrum atomistically using force constants. We show
that in the presence of line edge roughness, all behaviors,
i.e., band mismatch, localization, ballisiticity, and diffusion,
appear, and all play a role in determining the overall thermal

conductivity and its reduction under disorder. However, each
effect applies to different parts of the spectrum, and each has
different geometric dependence on the specific channel length
and width. The paper is organized as follows: In Sec. II we
describe the models and methods we employ to calculate the
phonon spectrum and phonon transport. In Sec. III we present
the results on the influence of line edge roughness on the
phonon transmission in different parts of the phonon spectrum.
More specifically, we show that the phonon spectrum can be
split into four different parts which react differently to disorder:
(i) the dispersive quasiballistic low wave vector acoustic
modes, (ii) relatively “flat” but dense phonon mode regions,
(iii) “quasiacoustic” (or folded acoustic) dispersive regions,
and (iv) low-density phonon mode regions. Section IV
discusses the effect of edge roughness and GNR width on
the thermal conductance. We show that although phonon
localization is observed for certain frequencies independent
of the GNR width, the overall thermal conductance indicates
localization behavior only in ultranarrow channels of width
W = 1 nm. Channels of widths greater than a few nanometers
are overall diffusive, even at channel lengths of L > 1 μm. In
Sec. V we extract the MFP and localization length for the
GNR channels, and show how different parts of the spectrum
become localized at different channel lengths. Section VI
discusses the effects of disorder and confinement on the
thermal conductivity, and finally Sec. VII summarizes and
concludes the work.

II. METHODS

A. Theory

Under the harmonic approximation, the motion of atoms
can be described by a dynamical matrix as

D = [
D

(ij )
3×3

] =
[

1√
MiMj

{
Dij i �= j

−∑
l �=i Dil i = j

]
(1)

where Mi,j is the atomic mass of the ith, j th carbon atom (in
this case all atoms have the same mass), and the dynamical
matrix component between atoms i and j is given by

Dij =

⎡
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D
ij
xx D

ij
xy D

ij
xz

D
ij
yx D

ij
yy D

ij
yz

D
ij
zx D

ij
zy D

ij
zz

⎤
⎥⎦ (2)

where

Dij
mn = ∂2U

∂ri
m∂r

j
n

, i,j ∈ NA and m,n ∈ [x,y,z] (3)

is the second derivative of the potential energy (U ) after atoms
i and j are slightly displaced along the m axis and the n axis
(∂ri

m and ∂r
j
n ), respectively.

For setting up the dynamical matrix component between
the ith and the j th carbon atoms, which are the N th
nearest neighbors of each other, we use the force constant
method (FCM), involving interactions up to the fourth nearest
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neighbor [67]. The force constant tensor is given by

K
(ij )
0 =

⎡
⎢⎣

φ(N)
r 0 0

0 φ
(N)
t i 0

0 0 φ
(N)
to

⎤
⎥⎦ (4)

where φ(N)
r , φ

(N)
t i , and φ

(N)
to are the radial, the in-plane

transverse, and the out-of-plane transverse components, re-
spectively. The force constant fitting parameters are taken
from Ref. [68] and are shown to accurately reproduce the
phonon dispersion of graphene. The 3 × 3 components of the
dynamical matrix are then computed as

Dij = U−1
m K

(ij )
0 Um (5)

where Um is a unitary rotation matrix defined as

Um =

⎡
⎢⎣

cos θij sin θij 0

− sin θij cos θij 0

0 0 1

⎤
⎥⎦ (6)

Assuming the graphene sheet is located in the x-y plane, θij

represents the angle between the x axes and the bond between
the ith and j th carbon atom.

The phonon dispersion can be computed by solving the
following eigenvalue problem:[

D +
∑

l

Dl exp(i �q.�
−→
R )

]
ψ(�q) = ω2 (�q) ψ(�q) (7)

where Dl is the dynamical matrix representing the interaction
between the unit cell and its neighboring unit cells separated
by �

−→
R , and ψ(�q) is the phonon mode eigenfunction at wave

vector �q.
The FCM is coupled to NEGF for the calculation of

the coherent phonon transmission function in the GNR. The
NEGF method is appropriate for studies of phonon transport
in geometries with disorder because the exact geometry
is included in the construction of the dynamical matrix.
Employing an atomistic approach that considers the discrete
nature of the line edge roughness and accurately models its
impact on phonon modes is essential for the analysis of thermal
properties of narrow GNRs (with W < 20 nm). The method
considers the wave nature of phonons, rather than their particle
description, and all interference and localization effects, which
could be important in low-dimensional channels, are captured.
In addition, it is most appropriate for the purposes of this
study, which investigates the influence of line edge roughness
for phonons of different frequencies of the spectrum, as NEGF
computes the energy resolved phonon transmission function.
The system geometry consists of two semi-infinite contacts
made of pristine GNRs, surrounding the channel in which we
introduce line edge roughness. The Green’s function is given
by

G(E) = [
E2I − D − �1 − �2

]−1
(8)

where D is a device dynamical matrix and E = �ω is the
phonon energy. The contact self-energy matrices �1,2 are
calculated using the Sancho-Rubio iterative scheme. The
transmission probability through the channel can be obtained
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FIG. 1. (Color online) Phonon dispersions for (a) W = 5 nm and
(b) W = 1 nm wide armchair nanoribbons. As the width is decreased,
the number of phonon modes is also reduced. The colormap shows
the contribution of each phonon state to the total ballistic thermal
conductance (red: largest contribution, blue: smallest contribution).

using the relation

Tph(ω) = Trace[	1G	2G
+] (9)

where 	1 and 	2 are the broadening functions of the two
contacts defined as 	1,2 = i[�1,2 − �+

1,2]. The thermal con-
ductance can then be calculated in the framework of the
Landauer formalism as

Kl = 1

2π�

∫ ∞

0
Tph(ω)�ω

(
∂n(ω)

∂T

)
d(�ω) (10)

where n(ω) is the Bose-Einstein distribution and T is the
temperature. In this work we consider room temperature T =
300 K. At room temperature and under ballistic conditions
the function inside the integral spans the entire energy
spectrum [57,69], which allows phonons of all energies to
contribute to the thermal conductance.

B. Dispersion features

Figures 1(a) and 1(b) show typical dispersion relations for
GNR channels of widths W = 5 nm and W = 1 nm, respec-
tively. The W = 1 nm case, as we show below, resembles
purely 1D features, whereas at a width of W = 5 nm the
dispersion diverts towards 2D (although the dispersions in
both cases are 1D). These two sizes are computationally man-
ageable, and comparison between their transport properties
allows comparison between 1D and less confined, “towards
2D,” phonon transport. The colormap in Fig. 1 shows the
contribution of each phonon state to the ballistic thermal
conductance at room temperature. To analyze the observed
features of the GNR phonon dispersions, let us first consider
the graphene phonon dispersion. In graphene there are six
phonon modes, three acoustic and three optical modes [68].
The highest frequency acoustic mode is the longitudinal
acoustic (LA) mode, the next one is the in-plane transverse
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acoustic mode (TA), and lowest frequency mode is the out-of
plane acoustic mode (ZA). The latter is recently shown to
make the largest contribution to the thermal conductivity of
graphene [4,5,70–72]. The highest frequency optical mode
is the longitudinal optical (LO), followed by the in-plane
transverse optical (TO), and the lowest is the out-of-plane
optical (ZO) [42,72]. The LA mode of the GNRs shown
in Fig. 1 is the corresponding LA mode of graphene with
group velocity νs = 19.8 km/s. The LA and TA modes are
linear at low frequencies, and extend up to E ∼ 0.16 eV and
E ∼ 0.14 eV, respectively. The ZA mode is quadratic for low
frequencies and extends up to E ∼ 0.07 eV. At the higher part
of their energy region, the acoustic modes become relatively
“flat.” The ZO modes extend from E ∼ 0.7 to 0.11 eV, whereas
the LO and TO modes are located at higher energies, from
E ∼ 0.16 to 0.2 eV. The relatively flat mode regions around
energies E ∼ 0.07 − 0.11 eV consist of ZO modes, in addition
to the dispersive LA and TA modes [42]. The less dispersive
modes located from E ∼ 0.11 to 0.16 eV are the flat parts of
the LA and TA modes.

III. EFFECTS OF CONFINEMENT AND LINE EDGE
ROUGHNESS SCATTERING

A. Confinement effects on band structure

Three main observations on the phonon band structure can
be made as the width is reduced, i.e., between Figs. 1(a)
and 1(b).

(i) The optical and quasiacoustic modes (which are nothing
else but folded acoustic branches of the host material [73])
show strong confinement dependence [74]. The number of
modes depends on the number of atoms within the unit cell.
As the width is reduced from W = 5 nm [Fig. 1(a)] to W =
1 nm [Fig. 1(b)], the number of modes in these regions is also
reduced.

(ii) The number of acoustic modes remains intact, and they
carry a much larger portion of the heat [as indicated by their
red coloring in Figs. 1(a) and 1(b)].

(iii) Small band gaps appear in some regions in the band
structure, especially in regions around the interface between
the flat optical modes and the more dispersive quasiacoustic
modes (primarily around �ω ∼ 0.16 eV, and secondly around
�ω ∼ 0.11 eV and �ω ∼ 0.07 eV). In addition, large regions
in the phononic (�ω,q) space, especially in the quasiacoustic
band regions, become “empty” of modes (sparse), where for
rather extensive energy and momentum intervals no phonon
states exist.

B. Effect of roughness on phonon transmission

We then investigate phonon transport in these low-
dimensional GNRs in the presence of disorder. At such small
ribbon widths with rough edges, the edge-phonon scattering is
the dominant scattering mechanism [25]. For this we simulate
rough GNR channels of width W = 5 nm (relatively wide)
down to W = 1 nm (purely 1D), and examine the phonon
transmission across the phonon energy spectrum as the length
of the GNR increases (i.e., as the effective disorder increases).
We construct the line edge roughness (LER) geometry by
adding/subtracting carbon atoms from the edges of the pristine
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FIG. 2. (Color online) The transmission function versus energy
for rough edge GNRs of width (a) W = 5 nm and (b) W = 1 nm.
Nanoribbon lengths of L = 5 nm (blue lines), L = 40 nm (red
lines), L = 100 nm (green lines), and L = 500 nm (black lines)
are considered. The ballistic transmissions (pristine, nonroughened
ribbons) are depicted in black-dashed lines.

GNR according to the exponential autocorrelation function:

R(x) = �W 2 exp

(
− |x|

�L

)
(11)

where �W is the root mean square of the roughness amplitude
and �L is the roughness correlation length [26]. The Fourier
transform of the autocorrelation is the power spectrum of
the roughness. The real space representation of the LER is
achieved by adding a random phase to the power spectrum fol-
lowed by an inverse Fourier transform [26,75]. We use �W =
0.1 nm and �L = 2 nm. We keep this roughness description
constant in all cases. Therefore, the “effective” disorder in the
channels we simulate increases as: (i) the channel length is
increased or (ii) the channel width is reduced. In the results
that follow, for every channel GNR of different length/width,
we average over 50 realizations of different channels.

Figure 2 shows the transmission function of the phonon
spectrum as a function of energy for the GNR with width W =
5 nm [Fig. 2(a)], and for the ultranarrow GNR of width W =
1 nm [Fig. 2(b)]. The figure shows transmissions of channels
with rough edges and various lengths. The dashed-black lines
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indicate the ballistic transmission of the GNRs with perfect
edges. The transmission of GNRs with length L = 5 nm (blue
line), L = 40 nm (red line), L = 100 nm (green line), and L =
500 nm (black-solid line) are plotted.

The transmission is significant in the entire energy spec-
trum and thus the whole spectrum contributes to thermal
conductance for both the wide and narrow GNRs [26]. Of
particular note is the sharp transmission peak in the high
energy optical modes in the case of the wide GNR in Fig. 2(a),
which originates from their large number, rather than their
group velocity, which is low. Line edge roughness reduces
the transmission function significantly, and in particular
around energies E = 0.06–0.07 eV, E = 0.11–0.14 eV, and
E = 0.16–0.17 eV. This group of energy regions, for which
the transmission is strongly reduced, are regions of low-
density (but also dispersive) modes. In particular, the latter
energy region is the one around the boundary between flat
and dispersive modes, exactly above the energy at which
the LA mode ends, and is a region with particularly low-
mode density. A surviving contribution to the transmission is
evident around energies E = 0–0.05 eV (acoustic phonons),
E = 0.08–0.11 eV (a mixture of LA, TA, and ZO modes),
and E = 0.17–0.2 eV (optical phonons), even for the longer
length GNRs. It is evident from this that the low-group
velocity optical modes contribute significantly to transmis-

sion due to their large density, even with the presence of
roughness.

The corresponding transmission functions for the narrower
GNR with width W = 1 nm shown in Fig. 2(b), undergo much
stronger reductions with line edge roughness compared to the
wider GNRs of the same length. Since we keep the roughness
amplitude the same in all cases, reducing the width essentially
increases the effective disorder. The reduction is much stronger
in the entire energy spectrum, in particular around the
low-density mode energy regions (E = 0.06–0.07 eV, E =
0.11–0.14 eV, and E = 0.16–0.17 eV as mentioned above),
where the transmission is diminished. What dominates thermal
conductance in the ultranarrow GNR case, especially when
the length of the channel is increased above L > 40 nm, are
the low-energy, low wave vector acoustic modes [black-solid
line in Fig. 2(b)]. This is clearly indicated in the inset of
Fig. 2(b), which shows in logarithmic scale the transmission
of the ballistic GNR channel and the transmission of the rough
edge GNR channel with L = 1 μm and W = 1 nm. Clearly
only the transmission in the low-energy region survives.

C. Effects of roughness on different phonon modes

To illustrate the distinctly different behavior of the various
phonon modes in the presence of line edge roughness,
Fig. 3 shows the transmission at certain phonon frequencies
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FIG. 3. (Color online) (a)–(c) The phonon transmission of rough nanoribbons of widths (a) W = 5 nm, (b) W = 3 nm, and (c) W = 1 nm
for specific energies versus channel length. Energies E = 0.01 eV (blue lines) correspond to the acoustic branches. E = 0.19 eV and E =
0.09 eV (red-solid and red-dashed lines, respectively) correspond to regions of the spectrum where the bands are numerous, but mostly flat.
E = 0.16 eV (green line) corresponds to a region of the spectrum at the interface between dispersive and flat bands, in which narrow band gaps
are formed as the width is reduced. E = 0.13 eV (black line) corresponds to a spectrum region where dispersive bands exist, but as the width
is reduced they are reduced in number and in addition narrow band gaps form. (d) and (e) The phonon transmission times the channel length
T × L for the same situations as in (a)–(c).
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as a function of the channel length L. Figures 3(a)–3(c)
show results for the W = 5 nm, W = 3 nm, and W = 1 nm
GNRs, respectively. We concentrate on four different phonon
categories, and pick a specific phonon energy within the
energy region of these categories. These are (i) acoustic
phonons (E = 0.01 eV, blue lines), (ii) optical, flat dispersion
phonons (E = 0.19 eV, red-solid lines, and E = 0.09 eV,
red-dashed lines), (iii) quasiacoustic, dispersive phonon modes
(E = 0.13 eV, black lines), and (iv) regions of very low-mode
densities, in which confinement can even result in narrow band
gaps (E = 0.16 eV, green lines). For all energy cases, and
for all GNR widths, the transmission drops with increasing
channel length and reducing width. The drop, however, differs
significantly for each different phonon energy case. The drop
in the transmission of the acoustic modes (blue lines) is
relatively weak, and can be understood from the fact that they
are composed of LA modes with long wave vectors [10,11].
These modes are very weakly affected by defects, and this is
the case for both wider and ultranarrow GNRs. For example,
Scuracchio et al. have also indicated that these modes are
only weakly affected by atomic vacancies [76], and Huang
et al. reached very similar conclusions in the presence of
dislocation defects in GNRs [77]. The optical modes (red-solid
and red-dashed lines), have a much stronger dependence on
the GNR width. For the wider channel [Fig. 3(a)], their
transmission is even larger compared to the acoustic modes
independent of channel length. As the width is reduced, their
transmission drops with increasing length, especially in the
case of the ultranarrow W = 1 nm channel. In the case of
the quasiacoustic modes (black lines), a large drop in the
transmission is observed as the channel length increases. Even
stronger is the drop in the transmission of the very low-density
mode regions (green lines). In the following sections we
provide explanations regarding this behavior.

D. Ballistic, diffusive, localized modes

In recent experiments in graphene and carbon nanotubes it
was shown that thermal transport could deviate from Fourier’s
law and exhibit semiballistic behavior [6,8]. Since each
phonon mode responds differently to disorder, it is essential to
investigate the regions of operation of the different modes, and
identify the ones that contribute to the semiballistic behavior.
Figures 3(d)–3(f) show the product of the transmission times
the length of the channel (T × L) versus channel length L for
the same channels and phonon modes as in Figs. 3(a)–3(c), re-
spectively. In the case of ballistic transport, the T × L product
increases linearly. In the case of diffusive transport, it remains
constant. In the case of subdiffusive transport, the product
reduces with length [78–80], and for localized transport, the
product drops exponentially. From Figs. 3(d) and 3(e) it can
be observed that for the wider GNR channels, the acoustic
modes (blue lines) are semiballistic, even for channel of widths
W = 3 nm and lengths up to L = 1 μm. For the ultranarrow
W = 1 nm GNRs [Fig. 3(f)], the acoustic modes reach the
diffusive regime at around lengths of L ∼ 200 nm, and get
into the localized regime for lengths larger than L ∼ 700 nm.
Interestingly, a similar trend is observed for the optical modes
(red lines) as well. For GNR widths W = 5 nm [Fig. 3(d)] and
W = 3 nm [Fig. 3(e)], they indicate a semiballistic behavior

even up to channel lengths of hundreds of nanometers. In
the W = 1 nm case, though, the optical modes reach the
localization regime at lengths well below L ∼ 100 nm. The
behavior of the quasiacoustic modes (black lines), on the other
hand, is very different. These modes enter the diffusive regime
at much shorter channel lengths compared to the acoustic and
the optical modes. They even enter the localization regime
after L ∼ 300 nm for the W = 5 nm GNRs, after L ∼ 100 nm
for the W = 3 nm GNRs, and just after L ∼ 10 nm for the
W = 1 nm GNRs. This is quite intriguing since these are
dispersive modes with much higher group velocities than
the optical modes. The strongest reduction in transmission,
however, is observed for the energy regions of low-mode
density (green lines). For these modes, the transmission is
completely diminished after channel lengths of L ∼ 100 nm
in the case of the wider channels, and after L ∼ 10 nm in the
case of the ultranarrow channel.

To clarify the diffusion-localization crossover, and demon-
strate that the modes at energies E ∼ 0.13 eV and E ∼
0.16 eV are actually into the localization regime, we plot
the transmission fluctuations and histograms extracted from a
large number of simulated samples. The phonon-transmission
fluctuation is defined by a standard deviation:

�T =
√

〈T 2〉 − 〈T 〉2 (12)

which differs in the diffusive and localization regimes. In
the case of diffusive transport the transmission histograms
are described by a Gaussian distribution function [15] and
the standard deviation is independent of the phonon en-
ergy [81]. In other words, the conductance fluctuation in
the diffusive regime is universal, and the universal value is
�T = 0.365 [15,81]. In the ballistic and localization regimes,
on the other hand, the so-called universal phonon-transmission
fluctuation is not realized, and the standard deviations deviate
from �T = 0.365. Specifically in the localization regime, the
transmission histograms are described by a log-normal distri-
bution function [81]. In the ballistic regime, the histograms
as we show below are very narrow, centered just below the
pristine channel ballistic transmission value.

Figure 4(a) shows the transmission standard deviation for
GNRs with a width of W = 3 nm and lengths of L = 100 nm
and L = 250 nm. The value of universal phonon transmission
fluctuation (�T = 0.365) is indicated by the horizontal dotted
line [81]. To construct this figure, data from 8000 simulations
for channels L = 100 nm and 1100 simulations for channels
with L = 250 nm were used. In the case of low-energy
acoustic phonons, the mean-free path is relatively large and
their transport is ballistic [see the curve for E = 0.01 eV in
Fig. 3(e)], which results in small transmission fluctuations. As
the energy increases to values around 0.01 to 0.05 eV, transport
becomes diffusive (the fluctuations are around the universal
diffusive value shown by the dotted line). For energies around
E ∼ 0.07 eV and around E ∼ 0.13 eV, transport enters the
weak localization regime, and the fluctuations drop. The lowest
amount of fluctuations is observed around energies of E ∼
0.16 eV, due to the fact that transport enters the strong localized
regime (note that strong localization and ballistic regimes
have both low fluctuations for different reasons). Finally, very
close to diffusive transport is realized for the large energy
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(a) (b)

(c) (d)

FIG. 4. (Color online) (a) The fluctuation of phonon transmission
as a function of energy for GNRs with a width of W = 3 nm
and lengths of L = 100 nm (blue) and L = 250 nm (red). (b) The
histogram of phonon transmission at E = 0.002 eV (black dots),
E = 0.02 eV and E = 0.04 eV for GNRs of lengths L = 250 nm.
(c) The histogram of phonon transmission at E = 0.16 eV for GNR
lengths L = 100 nm. The distribution shown in logarithmic scale
follows a Gaussian distribution, which is equivalently a log-normal
distribution function. (d) The histogram of phonon transmission at
E = 0.19 eV for GNRs with lengths L = 100 nm. The histogram
follows a Gaussian distribution function, a characteristic of diffusive
transport regime. The blue lines in (b), (c), and (d) are Gaussian
fitted lines using the average and standard deviation of the simulation
results.

optical phonons around E ∼ 0.19 eV, where the deviation of
the transmission fluctuations approaches the universal value
again.

Figures 4(b)–4(d) show the histograms of the transmission
for various energies in the phonon spectrum. Figure 4(b)
shows the histograms at channel lengths L = 250 nm for
energy E = 0.002 eV, which illustrates ballistic behavior,
and energies E = 0.02 eV and E = 0.04 eV, which illustrate
diffusive behavior. The simulation data are indicated with dots,
whereas the blue lines are Gaussian distributions plotted using
the average and standard deviation of the simulation results.
The standard deviation in the two cases is �T = 0.332 and
�T = 0.339, values very close to the universal fluctuation
value �T = 0.365. Note the sharp distribution in the case of
ballistic transport, indicating that disorder does not affect the
transport of the very low-energy acoustic modes. The phonon
mode at E = 0.16 eV, on the other hand, is fully localized
as indicated above. Figure 4(c) shows the transmission
histograms at E = 0.16 eV in logarithmic scale for channel
lengths L = 100 nm. The distribution function is clearly
log-normal, indicating that the transport at that energy is
completely localized. Finally, Fig. 4(d) shows the histogram of
transmission at E = 0.19 eV for L = 100 nm channels, which
follows a Gaussian distribution with a standard deviation of

0.31, again indicating a diffusive regime. We note that a
very similar behavior is observed for phonons around energy
E = 0.09 eV as well.

As discussed above in Fig. 3(e), at GNR channel lengths
L = 100 nm, for phonons at energies E = 0.07, 0.09, 0.13,
and 0.19 eV, the transport is nearly diffusive or weakly
localized, therefore the fluctuation is close to the universal
value, as also indicated by the blue line in Fig. 4(a). As
the length increases to L = 250 nm, more phonon modes
gradually enter in the localization regime (especially the modes
around E = 0.07 eV and E = 0.13 eV) and the fluctuations
deviate from the universal one. The conductance fluctuation
histograms (not shown) for these two energies begin to resem-
ble log-normal distributions at channel lengths of L ∼ 100 nm.
This is an indication that at this channel length these modes are
at the beginning of the localization regime, as also shown in
Fig. 3(e). For channel lengths L = 250 nm and L = 500 nm,
the distributions are very close to log-normal. For channels
with L = 250 nm the standard deviations are �T = 0.199
and �T = 0.285 for the energies E = 0.07 and E = 0.13,
respectively. As the channel length increases to L = 500 nm,
the respective standard deviations decrease to �T = 0.056
and �T = 0.177, and indication of stronger localization. The
lower deviation for the phonon at E = 0.07 eV is an indication
of stronger localization at this energy compared to the phonons
at E = 0.13 eV.

It should be noted that the localization appears only in
the phase-coherent transport regime [82]. In the presence of
phase-breaking phenomena, however, the localized states are
removed and transport returns to the diffusive regime [83,84].
For phonons, dephasing can be primarily due to phonon-
phonon, and secondly due to electron-phonon interactions, nei-
ther of which do we consider in this study. Localization will ap-
pear only if the phonon coherence length becomes longer than
the localization length. Several works in the literature report
the phonon-phonon scattering mean-free path in graphene at
room temperature to be in the range from a few to several hun-
dred nanometers [29,54,56,85]. We discuss the implications of
this in detail for the structures we consider in Sec. V below.

E. Transmission features in width modulated GNRs

In Figs. 5 and 6 we provide explanations for the behavior of
the transmission in the different phonon energy regions with
channel length and width. We base our analysis on two effects
that explain the behavior of the modes: (i) the change in the
phonon band structure at specific energies under the influence
of roughness, and (ii) the corresponding change under the
influence of geometrical confinement. We demonstrate that
increasing effective roughness has a similar effect as increasing
confinement. For example, regions in the phonon spectrum
that become sparse of modes due to confinement tend to more
easily form effective band gaps in the presence of roughness
as well, driving the transmission into localization. Figure 5
discusses the effect of roughness on specific energy regions
of the band structure, whereas Fig. 6 discusses the effect of
roughness specifically on the sparse mode regions.

In Fig. 5 we consider the W = 1 nm GNR and the
following situation: We simulate the phonon modes and
transmission for the ultranarrow GNR of width W = 1.1 nm,
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FIG. 5. (Color online) The phonon dispersion and transmission function of the W = 1 nm GNR under three different situations as shown
in (f). (i) A slightly wider channel of W = 1.11 nm (red), (ii) a slightly narrower channel of W = 0.74 nm (green), and (iii) a GNR whose
width is periodically modulated (blue) are considered. The latter mimics a rough ribbon. Different sets of energies are shown: (a) E =
0 eV to E = 0.01 eV (acoustic modes). (b) E = 0.09 eV to E = 0.1 eV (optical modes). (c) E = 0.18 eV to E = 0.19 eV (optical modes).
(d) E = 0.16 eV to E = 0.17 eV (regions between quasiacoustic and optical modes). (e) E = 0.12 eV to E = 0.13 eV (quasiacoustic modes).
(f) Schematic of the atomistic geometries of the three nanoribbon cases.

a GNR of width W = 0.74 nm, and a GNR whose width is
periodically modulated along its length (rather than randomly
as in the case of rough channels), as shown in Fig. 5(f) (lower
blue subfigure). In this case we can isolate the influence
of roughness on the band structure. The left panels of the
subfigures of Fig. 5 show the phonon band structure of
the three channels in the vicinity of the energies of interest.
The band structure for the wide channel is shown in red, for
the narrow channel in green, and for the width modulated
channel in blue. The corresponding right panels show the
transmission of the three channels. Figures 5(a)–5(e) show,
respectively, results for energies around E = 0.001 eV (low-
frequency acoustic modes), E = 0.09 eV and E = 0.19 eV
(optical modes), E = 0.16 eV (low-density region modes), and
E = 0.13 eV (quasiacoustic modes).

Acoustic modes: In the case of the low-frequency acoustic
modes in Fig. 5(a), the transmission of the modulated channel
is dominated by the transmission of the narrow region. In a
small energy range a band mismatch is observed around the
edge of the Brillouin zone, and the transmission is further
reduced. In general, however, the reduction in transmission
is relatively weak, which explains the fact that these modes
behave semiballistically, especially as the energy and wave
vector approach zero.

Optical modes: In the case of optical, flat dispersion modes
around energies E ∼ 0.09 eV and E ∼ 0.19 eV, it is evident
from Figs. 5(b) and 5(c) that the reduction in the transmission
due to width modulation (or roughness) originates from a
band mismatch between the narrow and wider GNRs. The

transmission of the width-modulated GNR is actually lower
compared to the transmissions of both the wide and the narrow
GNRs. For this W = 1 nm GNR, the density of optical modes
is rather low, and the mismatch that is created under width
modulation along the length of the channel can be significant,
which degrades the transmission.

Low-density mode regions: Figure 5(d) shows the width-
modulated results for the low-density mode energy regions at
energies around E ∼ 0.16 eV. As in the case of optical modes,
a strong mismatch can be observed between the bands of the
width-modulated GNR and the bands of both the wide and
narrow GNRs. The mismatch, however, is much larger, at a
degree where energy band gaps are formed in the transmission
function [Fig. 5(d), right panel]. Note that small band gaps are
also formed even in the uniform channels under strong con-
finement around this energy, which further increases the band
mismatch in the presence of line edge roughness. The com-
bination of band gap formation and band mismatch justifies
the drastic transmission drop for this particular energy region
as the channel length increases (see for example Fig. 3, green
lines).

Quasiacoustic modes: Moving along to the case of
the quasiacoustic modes of energy E ∼ 0.13 eV shown in
Fig. 5(e), it is evident that the bands of the width-modulated
GNR can look quite different compared to the bands of the
wide or narrow GNRs. Some mode mismatch can be observed,
which reduces the transmission even down to zero in certain
parts of the spectrum. This, however, only partially explains
why the drop with channel length shown in Fig. 3 (black lines)
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FIG. 6. (Color online) The transmission function versus energy
in logarithmic scale for rough edge GNRs of width (a) W = 1 nm
and (b) W = 5 nm. The ballistic transmission (pristine GNRs, non-
roughened ribbons) is depicted by the black lines. The transmission
of nanoribbons with length L = 40 nm is shown by the red lines.
In (b) the transmission of the GNR with length L = 500 nm is also
shown in green.

is so strong, i.e., it is much stronger compared to the drop in
the optical modes at energy E ∼ 0.09 eV or E ∼ 0.19 eV.

The reason why the quasiacoustic modes behave so drasti-
cally different compared to the optical modes can be explained
by looking at their behavior under confinement. Figure 1 shows
that under confinement, the number of modes in these energy
regions (E ∼ 0.07 and E ∼ 0.13) is reduced significantly,
making these regions to look almost empty of modes. In
the presence of line edge roughness in a real geometry, the
sparsity of the modes makes these particular energy regions
more susceptible to the formation of effective band gaps by
increasing the band mismatch. Such an event is not the case
for the optical modes for the geometries we examine. The
effective transmission band gap formation is demonstrated
in the transmission functions shown in logarithmic scale in
Fig. 6. Figure 6(a) shows the logarithmic transmission of the
W = 1 nm GNR under ballistic (pristine channel) conditions
(black line) and under line edge roughness when the channel
length is L = 40 nm (red line). It is evident that for energies
around E ∼ 0.07 eV and E ∼ 0.13 eV large effective band
gaps form as indicated by the arrows, which become wider
as the channel length increases even further (not shown).
Figure 6(b) shows the same transmissions for the W = 5 nm
GNR, but in this case we also plot the transmission for the GNR
with L = 500 nm as well (green line). For short channels, the
transmission is not significantly disturbed, but for the longer
channels, band gaps similar to the ones of the W = 1 nm

GNR of Fig. 6(a) form around E ∼ 0.07 eV and E ∼ 0.13 eV,
as also indicated by the arrows. Notice the even larger band
gap formation at energies E ∼ 0.16 eV. This clearly indicates
that the energy regions, which become sparse of modes under
confinement, are very susceptible to roughness in less confined
geometries as well, which suggests that the influence of
confinement has similar features in the transmission as the
effect of roughness.

The behavior described above should hold for any sparse
mode energy regions. Note, for example, that gaps do not form
in the regions of the flat optical modes, and the transmission
does not degrade as much. Under strong confinement, however,
the flat optical mode regions become sparser, and in extreme
cases begin to look like the low-density regions as well. Under
these conditions, they could also be subject to the effect we
describe above. In this context, the thermal conductivity is
a function of the width-dependent phonon spectra [25], for
which line edge roughness could either further increase the
band mismatch, or form effective transport band gaps.

We mention here that as in the case of electronic transport,
the chirality (or “aromaticity” [86]) of GNRs, i.e., armchair
(AGNRs), or zigzag (ZGNRs) can provide anisotropy in
phonon transport behavior (although smaller compared to
electronic transport anisotropy). In Ref. [87], for example,
using the phonon Boltzmann transport equation, it was shown
that the amount of anisotropy between AGNR and ZGNR
ribbons can be significant, and increases as the ribbon width
decreases and as the roughness amplitude increases. In the
Appendix we show how the bands and the transmission of the
ZGNR change under confinement and roughness, and compare
this behavior to the corresponding AGNRs, indicating very
similar qualitative behavior. An important message we convey
in this work, however, is the fact that just by looking at how
the phonon band structure behaves under confinement, and
at its low-dimensional dispersion features, one can provide
an indication of how the modes will behave under edge
roughness. We do not focus specifically on the details of
the GNR dispersion itself, but we rather provide general
low-dimensional phonon transport features. Qualitatively, the
behavior we describe should hold for other low-dimensional
materials, but could also be relevant to graphene ribbon
phonon dispersions extracted through DFT calculations (using
LDA, GGA, or GW which can produce slightly different
dispersions with respect to each other), and might also produce
slightly different dispersions compared to the ones obtained
using the force constant method we employ here. Indeed,
several works have investigated the phonon dispersions and
phonon localization in graphene nanoribbons using DFT
calculations [88–91], with mainly similar observations. In our
previous works we have shown that the force-constant method
(as a semiempirical method with fitting parameters) can
correctly regenerate the band structure of graphene, obtained
from first-principle calculations [67]. Furthermore, we have
also shown that by employing this approach for a relative
roughness between ∼0.5% and ∼5% of the ribbon’s width,
a very good agreement with the experimental data for GNRs
with widths up to ∼15 nm can be achieved [26]. Thus we
trust that the dispersions we employ are accurate enough
compared to more sophisticated DFT calculations. In any
case, to properly account for transport properties, we treat
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FIG. 7. (Color online) (a) The thermal conductance versus chan-
nel length of rough GNRs with widths W = 5 nm (red crosses),
W = 4 nm (black triangles), W = 3 nm (green squares), W = 2 nm
(red triangles), and W = 1 nm (blue circles) are shown. (b) The same
channels as in (a), but the thermal conductance times the channel
length Kl × L is shown. Inset of (b): Zoom-in for the W = 1 nm
case.

roughness atomistically, which is essential to study transport
in narrow ribbons. We consider channels with lengths of
about 1 µm that result in more than 10 000 atoms, which
would make the use of DFT (combined with Green’s function
transport calculations) almost computationally impossible,
whereas the force-constant method provides a feasible way
to study transport in relatively long, rough channels.

IV. THERMAL CONDUCTANCE

A. Thermal conductance

We next consider the thermal conductance of the GNRs
at T = 300 K in the presence of line edge roughness. We
consider channels of different widths and lengths as shown
in Fig. 7(a). The thermal conductance drops as the channel
lengths increases, and the reduction rate, if compared to
Figs. 3(a)–3(c), follows the reduction in the transmission of
the dominant modes. For the wider GNRs, the reduction rate
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FIG. 8. (Color online) The cumulative thermal conductance ver-
sus energy for GNR channels of different widths. (a) W = 5 nm,
(b) W = 3 nm, and (c) W = 1 nm. For every case, the dashed line
indicates the ballistic case. Channel lengths of L = 5 nm (blue),
L = 40 nm (red), L = 100 nm (green), and L = 500 nm (black) are
shown.

is smaller, as the transmission of the dominant acoustic and
optical bands is affected only slightly. As the width is reduced
down to the ultranarrow W = 1 nm, the thermal conductance
drops faster with channel length (blue-dotted line).

Interestingly, by plotting the product of thermal conduc-
tance times channel length K × L in Fig. 7(b), we show
that only the wider channel with W = 5 nm operates in the
quasiballistic regime (K × L continues to increase even up
to channel lengths of L = 750 nm). The channels with widths
W = 4,3, and 2 nm operate in the diffusive regime for channel
lengths beyond L = 500 nm (K × L saturates to a constant
value). The ultranarrow W = 1 nm channel, on the other hand,
for channel lengths L > 300 nm enters the localization regime
[K × L decreases, see inset of Fig. 7(b)]. In either channel
case, modes exist that are ballistic, diffusive, or localized
as discussed above. The overall behavior at larger channel
lengths, however, is dominated by the behavior of the acoustic
modes (the wider GNRs have a strong contribution from the
optical modes as well).

B. Cumulative thermal conductance

The dominance of the acoustic modes is clearly illustrated
in Figs. 8(a)–8(c), which shows the cumulative thermal
conductance at room temperature as a function of energy for
the GNRs of widths W = 5 nm, W = 3 nm, and W = 1 nm,
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respectively. Results for GNRs of lengths L = 5 nm (blue
lines), 40 nm (red lines), 100 nm (green lines), and 500 nm
(black lines) are shown. By the dashed-dot lines we show the
cumulative ballistic thermal conductance. In the ballistic case,
independent of the GNR width, the entire spectrum contributes
to thermal conductance, with the low-energy acoustic modes
contributing ∼50%, and the high energy optical modes ∼10%,
whereas the rest ∼40% is contributed from phonons in the
intermediate energy region. For the roughened wider GNR
with W = 5 nm [Fig. 8(a)], this behavior is also independent
of channel length, and retained until at least L = 500 nm.
As the width of the GNR is reduced, i.e., in the W = 3 nm
GNR case shown in Fig. 8(b), the situation is similar, except
that at larger channel lengths, the contribution of the low-
energy phonons increases. The higher energy modes get into
subdiffusion and/or localization regimes and contribute less.
This results in ∼80% of the heat to be carried by phonons
with energies below E = 0.02 eV. For even narrower GNRs,
as the ultranarrow W = 1 nm GNR shown in Fig. 8(c), the
distribution shifts towards the low-energy acoustic modes at
much shorter channel lengths, even as short as L = 5 nm (blue
line). In the limit of very long and very narrow channels,
i.e., approaching purely 1D, all heat is carried by the very
low-energy acoustic modes, whereas all higher energy modes
are driven into the localization regime [6,57].

V. MEAN-FREE PATH AND LOCALIZATION LENGTH

To identify the dependence of the transmission function on
the channel length for the different operating regimes, we need
to relate it to the mean-free path (MFP) for scattering λ and the
localization length ζ . A calculation of the phonon MFP gives
an estimate of the distance over which the phonons travel
without scattering, and can provide an understanding of the
thermal transport process. The line edge roughness scattering
limited transmission function TLRS(ω) is related to the ballistic
transmission TB(ω), λ(ω), and the channel length L by the
relation [48]

TLRS(ω) = λ(ω)

L + λ(ω)
TB(ω). (13)

From this, the line edge roughness MFP can be extracted
as

λ(ω) = TLRS(ω)L

TB(ω) − TLRS(ω)
. (14)

When writing down Eq. (13) above, we assume that the
channel can be seen as two thermal resistances in series,
the channel, and the contacts where the phonons thermalize.
Thus, the MFP increases with channel length L, until the
channel enters the diffusive regime. Strictly speaking, only
then does the diffusive MFP converge and can be extracted.
While this condition can be reached for short channel lengths
for most phonon energies, the acoustic phonons, which carry
most of the heat, have very long MFPs, beyond the channel
lengths we could simulate. [To provide an indication of the
computational cost, we note that a nanoribbon with width of
5 nm and a channel of 1μ m consists of nearly 400 000 atoms.
To describe the motion of each atom a 3 × 3 matrix is needed,

see Eq. (1). The resulting Hamiltonian and Green’s functions
at each energy point are matrices with a size of 1 200 000 ×
1 200 000. Thus, increasing the length largely increases the
computational cost.] Therefore, to increase the accuracy in
extracting the MFP, we use the transmission values at two
different channel lengths as [24]

λ(ω) = TLRS,L2 (ω)L2 − TLRS,L1 (ω)L1

TLRS,L1(ω) − TLRS,L2 (ω)
, (15)

which accounts partially for the fact that the transmission of
phonons with long MFPs has not yet converged fully for the
simulated channel length L.

In the diffusive regime, the transmission decreases as 1/L.
In the localization regime, on the other hand, for channel
lengths greater than the localization length (ζ ), the trans-
mission drops exponentially with a characteristic localization
length ζ , as [92]

Tph(ω) ∝ exp

[
− L

ζ (ω)

]
(16)

Using a similar reasoning as in the extraction of the diffusive
MFP for scattering, we extract the localization length by

ζ (ω) = L2 − L1

ln
( TLRS,L1 (ω)

TLRS,L2(ω)

) (17)

where it holds L1,2 � ζ (ω).
Figure 9(a) shows the average diffusive phonon MFP for

scattering on the rough boundaries λ(ω) as a function of
frequency for the channels of two different widths W = 5 nm
(red-solid line) and W = 1 nm (blue-solid line). The MFP is
extracted as specified by Eqs. (13)–(15). Since each frequency
region, however, enters the diffusive regime at different
channel lengths, the MFP for every energy is extracted at
the channel length at which the product of the transmission
times length [T × L as in Figs. 3(d)–3(f)] becomes constant,
or levels out. Therefore, Fig. 9 considers a different channel
length at all energies for both channel widths, and both L1 and
L2 taken at each instance when T × L levels out. For the wider
W = 5 nm channel, the average diffusive MFP (red-solid line)
varies from a few tens of nanometers up to even a few hundred
nanometers in agreement with Ref. [56] as well. It only drops
to a few nanometers around energies E ∼ 0.16 eV due to the
large mismatch between the modes in this sparse mode energy
region and the formation of a transport gap. For the ultranarrow
W = 1 nm channel (blue-solid line), very large MFPs of the
order of several hundreds of nanometers are observed for the
low-frequency phonons close to the zone center originating
from the LA modes. This is consistent with the MFP in other
carbon nanostructures such as carbon nanotubes and graphene
sheets, which is reported to be ∼500 nm [29,93–95], even in
the presence of defects [33]. For slightly larger energies, i.e.,
E > 0.03 eV, the MFP drops sharply to very low values, of at
most a few nanometers.

An average MFP value for the entire energy range can be
extracted as

〈〈λ〉〉 =
∫

λ(ω)Tph(ω)Wph(ω)dω∫
Tph(ω)Wph(ω)dω

(18)
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FIG. 9. (Color online) (a) The average diffusive transport mean-
free path (solid line) versus energy of rough GNRs of widths W =
5 nm (red) and W = 1 nm(blue). The MFP as a function of energy is
extracted at the channel length at which the T × L product is constant;
therefore, the channel length differs for each energy. The dashed-blue
line shows the localization length for the W = 1 nm. (b) The ratio
of the localization length ζ (ω) over the MFP λ(ω) for the W = 1 nm
rough ribbon of length L = 1000 nm (blue line) and the transmission
probability of the pristine W = 1 nm GNR (black-dashed line).

where the phonon window function Wph(ω) is given by

Wph(ω) = 3

π2

(
ω

kBT

)2 (
− ∂n

∂ω

)
(19)

Our calculations show that the average line edge roughness
limited diffusive MFP in the case of the narrow GNRs is
〈λ〉 ∼ 30 nm, whereas for the wider GNR of W = 5 nm, it
largely increases to 〈λ〉 ∼ 600 nm, also in agreement with
other theoretical works [29,93–95]. It should be noted that the
inclusion of phonon-phonon interaction, which is neglected
in this work, can result in smaller MFPs, especially for the
high energy optical modes. An accurate modeling of phonon-
phonon interaction due to anharmonicities is beyond the scope
of this work and will be the subject of our future studies.

In Fig. 9(a) we also show the localization length ζ (ω) for
the narrow W = 1 nm GNR (blue-dashed line). To extract the
localization length we use Eq. (17), with L1 = 500 nm and

L2 = 1000 nm. The localization length features are very simi-
lar to the MFP features. Long localization lengths are observed
at very low frequencies, reaching hundreds of nanometers.
The localization lengths drop to a few nanometers for higher
energies. Sharp dips are observed at energies around E ∼
0.16 eV, which again correlates with the localized features
in the T × L lines of Fig. 3(f). In general, ζ (ω) and λ(ω)
are connected by the Thouless relation ζ (ω)/λ(ω) = Nm [96],
where Nm is the number of propagating modes in the pristine
channel, in our case the same as the value of the ballistic
transmission [92]. The ratio ζ (ω)/λ(ω) is shown in Fig. 9(b)
for the W = 1 nm GNR (blue-solid line), and as expected, it
mostly follows the transmission trend (black-dashed line).

We mention that dephasing mechanisms, such as phonon-
phonon scattering, could prevent localization, which requires
coherence. However, as the localization length is in most of
the spectrum smaller than the phonon-phonon scattering MFPs
(see Ref. [56]), we expect that localization will be observed
in this ultranarrow channel as described by the drop in T × L

shown in Fig. 3(f). Note that we do not attempt to compute
the localization lengths for the wider W = 5 nm GNR. This is
because from Fig. 3(d) it is obvious that modes from several
parts of the spectrum are not localized at the channel lengths
we were able to simulate. However, the large MFPs in this
channel suggest even larger localization lengths, in the orders
of a few hundred nanometers. These lengths are similar to
the dephasing lengths, or phonon-phonon scattering MFPs as
presented in Ref. [56], and therefore, localization could be
prevented. On the other hand, introduction of stronger line
edge roughness amplitude on these wider GNRs would result
in smaller roughness scattering MFPs and smaller localization
lengths than the ones shown in Fig. 9(a) (red line). Smaller
localization lengths could allow localization to appear, most
probably at the same energies as they appear for the W = 1 nm
GNR (E ∼ 0.073 V, E ∼ 0.13 eV, and E ∼ 0.16 eV).

The important message to be conveyed from the calcula-
tions of λ(ω) and ζ (ω) is that phonon transport in ultranarrow
1D channels consists of multiscale features, where phonons of
MFPs from hundreds of nanometers down to a few nanometers
are involved. Transport features can vary from ballistic to
diffusive and to the localization regimes, depending on the
phonon energy, level of disorder, channel length, and channel
width. To properly understand phonon transport in 1D channels
all of these features need to be taken into proper consideration.

VI. THERMAL CONDUCTIVITY

Finally, it is important to extend the analysis in including
features of thermal conductivity in ultranarrow GNRs. The
thermal conductivity of the GNR channels is a length depen-
dent quantity and calculated using the thermal conductance as
κl = LKl/A, where A is the cross sectional area of the GNR
with its height assumed to be 0.335 nm. Figure 10 shows
the thermal conductivity versus channel length for GNRs
with width W = 5 nm (red-diamond line) down to W = 1 nm
(blue-circle line). The increase in thermal conductivity with
channel length for short channels, and saturation for the longer
ones, indicates the transition between ballistic and diffusive
transport, which was also observed at various instances [56].
For the wider GNR channels, the saturation begins for length
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FIG. 10. (Color online) The thermal conductivity versus channel
length for GNRs with widths W = 5 nm (red crosses), W = 4 nm
(black triangles), W = 3 nm (green squares), W = 2 nm (red trian-
gles), and W = 1 nm (blue circles).

scales of several hundred nanometers. At this channel length,
however, the narrower GNR with W = 1 nm is already driven
into the localization regime (blue line). Ballistic transport
dictates that the thermal conductivity increases linearly with
channel length, while saturation comes due to scattering. The
strength of the line edge roughness is indicated by the deviation
from unity of the slope of the thermal conductivity lines for
short channel lengths [97,98]. A power law behavior Lα is
expected for 1D channels [97,98]. From our calculations, for
the wider channels W = 4 and 5 nm the slope is α = 0.7.
As the width decreases, the slope decreases as well, with
the W = 3 nm having α = 0.65, and the narrowest channel
W = 1 nm having α = 0.5.

VII. CONCLUSIONS

In this work we have investigated the thermal transport
properties of low-dimensional, ultranarrow graphene nanorib-
bon (GNR) channels under the influence of line edge roughness
disorder. We employed the nonequilibrium Green’s function
(NEGF) method for phonon transport and the force constant
method for the description of the phonon modes. We show that
the effect of line edge roughness affects different parts of the
spectrum in different ways: (i) Under strong effective disorder,
the thermal conductivity is dominated by the low-frequency
acoustic modes, which have MFPs of several hundred
nanometers and suffer from localization only under extreme
confinement in purely 1D channels. At ultranarrow channel
widths they tend to completely dominate thermal transport.
(ii) Regions of the spectrum with a dense population of modes
such as the optical modes, can contribute significantly to ther-
mal transport, even if their group velocity is low. (iii) Regions
of the spectrum with low-mode density end up becoming
effective transport gaps as the length of the channel increases,
or the width decreases, and contribute little to thermal
transport, even if they are relatively dispersive. (iv) Regions
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FIG. 11. (Color online) Phonon dispersions for (a) W = 5 nm
and (b) W = 1 nm wide zigzag nanoribbons (ZGNRs). As the width
is decreased, the number of phonon modes is also reduced. The
colormap shows the contribution of each phonon state to the total
ballistic thermal conductance (red: largest contribution, blue: smallest
contribution). [This is the corresponding ZGNR case as Fig. 1 in the
paper is for armchair ribbons (AGNRs).]

of the spectrum with very low-mode densities, populated with
relatively flat modes suffer from band mismatch in the presence
of both confinement or roughness, which creates even stronger
transport gaps and completely eliminate their ability to carry
heat. In general, confinement reduces the population of the
modes in the entire energy spectrum (except the low-frequency
acoustic regions), and under the influence of disorder they fall
into category (iv), i.e., confinement and roughness reduces
phonon transmission by introducing effective transport gaps
and band mismatch. This drives transport at those energies
into the localization regime. Finally, we show that although
the transmission of several energy regions is severely degraded
in the presence of line edge roughness, for channels with
lengths up to L = 1 μm that we have simulated, only the
overall thermal conductivity of the ultranarrow W = 1 nm
GNRs is driven into the localization regime.
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APPENDIX

In the entire paper we use armchair GNRs (AGNRs). Here
we plot the corresponding phonon dispersion (Fig. 11), and
transmission probability (Fig. 12), for zigzag edge GNRs
(ZGNRs). These are the corresponding Figs. 1 and 6(a) for
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FIG. 12. (Color online) The transmission function versus energy
in logarithmic scale for rough edge zigzag GNRs of width W =
1 nm. The ballistic transmission (pristine GNRs, nonroughened
ribbons) is depicted by the black line. Nanoribbons with length
L = 40 nm is shown by the red line. [This is the corresponding ZGNR
case as Fig. 6(a) in the paper is for armchair ribbons (AGNRs).]

AGNRs in the main text. In both figures, the results for ZGNRs
are very similar to those for AGNRs. Strong reductions in
the transmission function around E = 0.07 eV, E = 0.11 eV,
and E = 0.16 eV are observed (Fig. 12). In the case of
ZGNRs, however, the transmission around E = 0.07 eV and
E = 0.11 eV is reduced much less compared to AGNRs
[see Fig. 6(a)]. This is attributed to the slight differences
in the phonon dispersion relations of AGNR versus ZGNR,
observed if one compares Fig. 11 with Fig. 1. As the GNR
width is reduced from W = 5 nm to W = 1 nm, the “empty
regions” in the dispersion of the ZGNR (or the “effective
band gap” formation regions) are not as distinctive as in
the case of the AGNRs analyzed in the paper. ZGNRs have
slightly more dispersive bands, something also validated by
first-principle calculations [20], which (i) make the ballistic
thermal conductance of a ZGNR higher than that of its AGNR
counterpart (ZGNR transmission is in general higher than the
AGNR transmission), and (ii) does not allow the formation
of effective band gaps upon confinement and roughness as
easily.
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