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In this paper we develop several extensions to semi-classical modeling of low-field mobility, which are
necessary to treat planar and non-planar channel geometries on equal footing. We advance the state-
of-the-art by generalizing the Prange-Nee model for surface roughness scattering to non-planar geome-
tries, providing a fully numerical treatment of Coulomb scattering, and formulating the Kubo-Greenwood
mobility model in a consistent, dimension-independent manner. These extensions allow meaningful
comparison of planar and non-planar structures alike, and open the door to evaluating emerging device
concepts, such as the FinFET or the junction-less transistor, on physical grounds.
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1. Introduction MOS channels, and single-gate or double-gate UTB channels, and
A myriad of device architectures have been proposed to replace
traditional MOS technologies, including planar architectures, such
as ultra-thin body (UTB) devices, and non-planar ones, such as
bulk-FinFETs [1,2] or SOI-FinFETs. Also, novel device ideas are
emerging such as the junction-less FET [3]. In practice, one must
be able to competitively rate different device designs and select
the most appropriate one for the application at hand. Hence, a
modeling framework able to perform these ratings consistently is
highly desirable.

The low-field mobility is, strictly speaking, only valid for long-
channel devices. However, it is directly related to the carrier mean
free path and provides insight to the ballisticity of the carriers for
short-channel devices. Also, low-field mobility provides good
insight into the transconductance characteristics of a device. It
can be said that low-field mobility is a suitable metric for rating
different device designs.

In this work we present a framework for low-field mobility
modeling in planar and non-planar devices that is consistent and
dimension-independent. As we are interested in the channel mobili-
ties of nano-structured channels, the relevant system dimension-
alities are (i) 1D cross-sections with 2D carrier gases, such as
(ii) 2D cross-sections with 1D carrier gases, such as gate-all-around
(GAA) or tri-gate channels.

The modeling framework is presented in the form of a tool-
chain consisting of three parts, each dealing with a different
physical aspect: (i) self-consistent Schrödinger-Poisson calcula-
tion for obtaining subband energies and wavefunctions,
described in Section 2, (ii) scattering processes and their consis-
tent extension to non-planar channels, laid out in Section 3, and
(iii) low-field transport and mobility calculation, given in
Section 4. In Section 5, we validate the consistency and dimen-
sion-independence, determine the critical dimension at which a
channel develops 1DEG properties, and analyze two recently
fabricated device designs.

All presented models were implemented within the Vienna
Schrödinger-Poisson quantum simulator [4,5], available as part of
GTS Framework [6].

2. Quantum confinement

In field effect transistors, planar or non-planar, carriers are
confined to a conductive channel either by geometry, the elec-
trostatic potential, or both. The effects of confinement are
described by quantum mechanics and involve solving the
Schrödinger equation.

For the sake of conciseness, we approximate the electronic
structure of the channel using parabolic bands. However, the
methods developed in this paper – especially the scattering models
in Section 3 – are formulated in a generic manner, such that they
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Fig. 1. Overall computational procedure; a self-consistent Schrödinger-Poisson
loop (SCL) is run. The subband energies and wavefunctions of the converged
solution are used to calculate scattering rates and mobilities. Single arrows
represent data flow, double arrows control flow.

Table 1
Material parameters for acoustic phonon scattering and their values in silicon.

Quantity Value in Si

DA deformation potential 14.6 eV
qm mass density 2.329 g/cm3

cl sound velocity 9.04 � 103 m/s
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can be used with higher-order band structure models, such as k�p
with little to no modification.

For parabolic bands, the effective mass Schrödinger equation

�h2

2
ð$ �m�1 � $þ VÞw ¼ Ew; ð1Þ

is solved in the channel cross-section, where m is the effective
mass tensor. The tensor contains the anisotropy of the energy
band and is transformed according to crystal orientation. Eq. (1)
is discretized using a finite-volume scheme [5,7]; in the case of
a 2D channel cross section a triangular mesh is used, and the
finite-volume scheme accurately accounts for anisotropy in the
cross-section plane.

The algebraic eigenvalue equation resulting from discretizing
Eq. (1) is solved using the implicitly restarted Arnoldi method
(IRAM) [8]. A large speedup of convergence is achieved using the
shift-and-invert method [9]. Additionally, we devised an algorithm
to compute eigenvalues in blocks, where for each block the IRAM
solver is invoked. This allows to compute all eigenvalues k of a sys-
tem up to a certain threshold kmax [5]. This combination allows to
process large geometries (>10 nm) with hundreds of subbands in a
matter of seconds on a desktop computer.

The found energies and wavefunctions are used to calculate
carrier concentrations and charge density. The latter affects the
electrostatic potential via the Poisson equation. The coupled
Schrödinger-Poisson system is solved self-consistently, as shown
in Fig. 1.

3. Scattering

In this section we will focus on the scattering processes domi-
nant in silicon nano-structures. These processes are non-polar
phonon scattering, surface roughness scattering, and ionized
impurity scattering. The same processes apply also to other ele-
mental semiconductors, such as germanium. For compound semi-
conductors, such as GaAs, polar phonon scattering needs to be
included, especially by polar LO-phonons. Alloy semiconductors,
such as SiGe or InGaAs require alloy scattering to be included
as well.

The starting point for each scattering process is Fermi’s Golden
Rule, which defines the transition rate

Sn;n0 ðk;k0 Þ ¼
2p
�h
jHn;n0 ;k;k0 j

2dðEðkÞ � Eðk0Þ � �hxÞ; ð2Þ

from subband n to n0 and from wavevector k to k0, through the

square matrix element j Hn;n0 ;k;k0 j
2 In the following sections we will

review and extend the models for each of the three considered scat-
tering processes to obtain a consistent set of models to be used for
mobility calculation in Section 4.
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3.1. Phonon scattering

Non-polar phonon scattering is divided into two types of pro-
cesses: (i) scattering by acoustic phonons (acoustic deformation
potential, ADP) and (ii) scattering by optical phonons (optical
deformation potential, ODP, and inter-valley scattering, IVS).
Scattering by acoustic phonons is considered quasi-elastic at room
temperature and its square matrix element for 2DEG systems is
given by [10]

jHn;n0 ;k;k0 j
2 ¼ pkBTD2

A

�hqmv lA

Z
jwn;kðxÞj

2jwn0 ;k0 ðxÞj
2dx; ð3Þ

with the material parameters given in Table 1 and normalization
area A. The integral is called the form-factor and is due to confine-
ment. For 1DEG systems the formula in Eq. (3) is straightforwardly
extended to [11]

jHn;n0 ;k;k0 j
2 ¼ pkBTD2

A

�hqmv lL

Z
jwn;kðx; yÞj

2jwn0 ;k0 ðx; yÞj
2dA; ð4Þ

with a normalization length L and again a form-factor integral. Both
formulae can be written in a dimension-independent form,

jHn;n0 ;k;k0 j
2 ¼ pkBTD2

A

�hqmv lL
d

Z
jwn;kðrÞj

2jwn0 ;k0 ðrÞj
2d3�dr; ð5Þ

where d is the dimension of the carrier gas. Since ADP scattering is
considered quasi-elastic, �hx is assumed to be zero.

Optical phonon scattering is treated analogously, giving the
following dimension-independent expression for the square
matrix element,

jHv ;v 0 ;n;n0 ;k;k0 j
2¼ ð�hDv ;v 0 Þ2

2qmð�hxÞLd
Nþ1

2
�1

2

� �Z
jwv;n;kðrÞj

2jwv 0 ;n0 ;k0 ðrÞj
2d3�dr;

ð6Þ
for a transition from the state ðn;kÞ in valley v to ðn0;k0Þ in valley v 0.
For each branch of interacting phonons (longitudinal or transversal,
acoustic or optical branches) different deformation potentials Dv;v 0

and phonon energies �hx are used.

3.2. Surface roughness scattering

Surface or interface roughness scattering (SRS) occurs at
semiconductor surfaces, hetero-interfaces, and semiconductor–
dielectric interfaces. Carriers scatter off the rough surface or inter-
face which can be seen as a fluctuation of the interface’s vertical
position across the interface plane. SRS is elastic.

For 2D carrier gases the most widely used model for surface and
interface roughness scattering was initially formulated by Prange

and Nee [12]. Here, the square matrix element j Hn;n0 ;k;k0 j
2 from

Eq. (2) is effectively an average over an ensemble of rough

channels, hj Hn;n0 ;k;k0 j
2i. For a system of 2D carriers it reads

hjHn;n0 ;k;k0 j
2i ¼ CðqÞ

A
jFn;n0 ;k;k0 j

2
; ð7Þ

where q ¼ k� k0; CðqÞ is the roughness power spectrum, and Fn;n0 ;k;k0

are form-factors due to confinement. The form-factors account for
the ‘‘closeness’’ of the states to the interface. They are commonly
defined using the derivatives of the wavefunctions at the interface,
ity modeling for advanced MOS devices. Solid State Electron (2015), http://
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Fig. 3. The potential across the interface is modeled as a step function. The interface
roughness causes the position of the abrupt potential step to fluctuate. Subtracting
the potential of an ideal surface results in the perturbing potential which is either a
thin barrier or a thin well depending in the sign of the fluctuation. For roughness
amplitudes much smaller than the electron wavelength the thin barrier/well can be
approximated as DVDðrÞ-weighted d-distribution.
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Fn;n0 ;k;k0 ¼
�h2

2m
dw�n;k

dx
dwn0 ;k0

dx
: ð8Þ

Roughness is a random process and hence can only be charac-
terized by its autocorrelation function cðrÞ ¼ hDðr0ÞDðr0 þ rÞi, where
Dðr0Þ is the actual fluctuation of the interface position. The 2D-
Fourier transform of the roughness autocorrelation function is
the aforementioned roughness power spectrum. The autocorrela-
tion function is frequently modeled either as Gaussian [12]

cðrÞ ¼ D2e�
r2

K2 ; CðqÞ ¼ pD2K2e�
q2K2

4 ð9Þ

or exponential [13]

cðrÞ ¼ D2e�
ffiffi
2
p

r
K ; CðqÞ ¼ pD2K2

1þ q2K2

2

� �3
2
: ð10Þ

The roughness amplitude D and autocorrelation length K are para-
meters of the rough surface or interface. In the frame of reference of
a propagating electron, surface roughness appears as an ensemble
of surface-bound acoustic phonons with a momentum distribution
equal to CðqÞ.

The extension of SRS to 1DEG carriers is more involved than the
extension procedure for phonon scattering. The reason for this is
shown in Fig. 2. In a 2DEG the rough interface is always parallel
with the direction of propagation. Wavefunctions are separated
into a 1D standing wave perpendicular and a plane wave parallel
to the interface. Hence, one only needs to be concerned with the
plane wave part in the derivation of the SRS square matrix element,
and the standing wave enters Eq. (7) only as a form-factor. In a
1DEG system, the wavefunctions are separated into a 2D standing
wave in the channel cross section and a plane wave along the
device axis. Now the roughness has to be taken into account not
only in the plane-wave part but also in the standing wave part.

To evaluate the SRS matrix element Hn;n0 ;k;k0 for a 1DEG system,
we start by taking a look at the perturbing potential in Fig. 3. The
position of an abrupt potential step of height DV fluctuates by the
value of function DðrÞ. The resulting perturbing potential is either a
very thin barrier or well (depending on the sign of DðrÞ) of height
DV and width DðrÞ. We approximate the perturbing potential by
Semiconductor

Oxide

Propagation

Confinement

C

ψn

ψn′

S

Fig. 2. Comparison of surface roughness scattering in a planar 2DEG (top) and a
non-planar 1DEG (bottom) channel; in the 2DEG case the rough planes are parallel
to the direction of free propagation in which the electronic state is described as
plane wave. The initial and final states are selected via the plane-wave component
only, resulting in q ¼ k� k0 . In the 1DEG case roughness appears both along the
axis and in the cross-section, thus both plane-wave and the standing wave
component contribute to the state selection.
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a weighted surface-delta-distribution DVDðrÞdðr 2SÞ, where S

represents the set of points on the ideal surface (Fig. 2). This allows
us to convert the evaluation of the matrix element Hn;n0 ;k;k0 from a
volume integration to a surface integration,

Hn;n0 ;k;k0 ¼ DV
Z
S

W�n;kðrÞWn0 ;k0 ðrÞDðrÞ dA: ð11Þ

This matrix element cannot be evaluated directly since DðrÞ is a ran-
dom function. The ensemble average of the square magnitude of Eq.
(11), however, can be evaluated:

hjHn;n0 ;k;k0 j
2i¼

Z Z
S

dAdA0Wn;kðrÞWn0 ;k0 ðrÞ
�Wn;kðr0Þ�Wn0 ;k0 ðr0ÞDV2hDðrÞDðr0Þi:

ð12Þ

So far we have made no assumptions about the electron states
Wn;k. In a 1DEG system we separate the electron states into a two-
dimensional bound state in the cross-section and a plane wave
along the channel axis,

Wn;kðrÞ ¼ wn;kðrÞ
1ffiffiffi
L
p eikz ¼ wn;kðx; yÞ

1ffiffiffi
L
p eikz: ð13Þ

Using this separation approach, we can rewrite Eq. (12) as

hjHn;n0 ;k;k0 j
2i¼ 1

L2

Z Z
C

Z Z L

0
f n;n0 ;k;k0 ðsÞf

�
n;n0 ;k;k0 ðs0Þeiðk�k0 Þðz�z0 ÞhDðrÞDðr0Þidzdz0dsds0:

ð14Þ

The integration across surface S was separated into integrations
along curve C, i.e. the intersection of S with the cross-section plane,
and a normalization length L along the channel direction; s denotes
the path coordinate along the curve C and z the axial coordinate.
We introduced the form-functions f n;n0 ;k;k0 ðsÞ which are defined as

f n;n0 ;k;k0 ðsÞ ¼ w�n;kwn0 ;k0DV : ð15Þ

The effect of different effective masses in the materials on either
side of S can be included in the form-functions as

f n;n0 ;k;k0 ðsÞ ¼ w�n;kwn0 ;k0 ðV� � VþÞ �
�h2

2
$w�n;k;� �m�1

� � $wn0 ;k0 ;�

þ
�h2

2
$w�n;k;þ �m�1

þ � $wn0 ;k0 ;þ;

ð16Þ

where the subscripts + and - indicate each side of S. In the limit of
high potential barriers (e.g. dielectrics), the wavefunctions wn;k do
not penetrate from one medium into the other but vanish at the inter-
face. In that case the expression in Eq. (16) can be approximated by

f n;n0 ;k;k0 ðrÞ �
�h2

2
$w�n;k �m�1

well � $wn0 ;k0 : ð17Þ

Looking back at Eq. (14), we recall that hDðrÞDðr0Þi ¼: cðrÞ and
represent the autocorrelation as inverse 2D Fourier transform of
the roughness power spectrum,
ity modeling for advanced MOS devices. Solid State Electron (2015), http://
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Fig. 4. Computational procedure to obtain the form-functions f n;n0 ;k;k0 ðsÞ and the
spectral form-functions Fn;n0 ;k;k0 ðq?Þ: For each two cross-section wavefunctions wn;k

and wn0 ;k0 the expression in Eq. (16) is evaluated along the interface curve C on the
mesh used for computing the states. The form-function f n;n0 ;k;k0 ðsÞ is interpolated
onto an equidistant s-grid and padded with zeros if C is open. The spectral form-
function Fn;n0 ;k;k0 ðq?Þ is computed using the fast Fourier transform (FFT) [14].
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En, En′
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C(

√
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⊥)
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q‖ = k′
‖ − k‖

∫
dq⊥

Fig. 5. Calculation of the square matrix element for a transition from subband n to
subband n0 in Eq. (22); for each energy value the difference of axial k-vectors is
evaluated which represents the axial momentum transfer qk . The roughness power
spectrum CðqÞ is offset using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
k þ q2

?

q
and its product with the spectral form-

function Fn;n0 ;k;k0 ðq?Þ integrated.
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cðrÞ ¼ 1
4p2

ZZ
R

CðqÞeiq?ðs�s0 Þeiqkðz�z0 Þdq?dqk; ð18Þ

separating the roughness ‘‘wave vector’’ q into an axial component
qk and a component q? along C. Inserting Eq. (18) into Eq. (14), we
arrive at

hjHn;n0 ;k;k0 j
2i ¼ 1

4p2L2

ZZ
C

dsds0
ZZ

R

dq?dqk

ZZ L

0
dzdz0f n;n0 ;k;k0 ðsÞ

� f �n;n0 ;k;k0 ðs0ÞCðqÞeiq?ðs�s0 Þeiðk�k0þqkÞðz�z0 Þ: ð19Þ

Axial integration of the plane wave term eiðk�k0þqkÞðz�z0 Þ leads to a
2pLdðk� k0 þ qkÞ expression thus simplifying the previous equation
to

hjHn;n0 ;k;k0 j
2i ¼ 1

2pL

ZZ
C

dsds0
Z

R

dq?f n;n0 ;k;k0 ðsÞf
�
n;n0 ;k;k0 ðs0ÞCðqÞeiq?ðs�s0Þ:

ð20Þ

A change of variables s0 � s ¼: s00 gives

hjHn;n0 ;k;k0 j
2i¼ 1

2pL

Z
R

CðqÞdq?

Z
C

Z
C

f n;n0 ;k;k0 ðsÞf
�
n;n0 ;k;k0 ðsþ s00Þds

� �
eiq?s00ds00:

ð21Þ

The term in square brackets represents an autocorrelation of the
form-functions f n;n0 ;k;k0 ðsÞ and the integration surrounding it is a
Fourier transform s # q?. Using the Wiener-Khinchin theorem we
can express the Fourier transform of the autocorrelation of
f n;n0 ;k;k0 ðsÞ as square magnitude of its Fourier transform Fn;n0 ;k;k0 ðq?Þ
obtaining the final expression for the square matrix element,

hjHn;n0 ;k;k0 j
2i ¼ 1

2pL

Z
R

jFn;n0 ;k;k0 ðq?Þj
2CðqÞdq?: ð22Þ

A few assumptions are contained within this last step of our deriva-
tion: (i) For closed curves C (e.g. a gate-all-around channel) the
Fourier transform is in fact a Fourier series expansion. (ii) For open
curves C, such as the tri-gate channel in Fig. 2 the Fourier transform
is effectively windowed by the finite length of the curve C. However,
due to electrostatic confinement the wavefunctions, the form func-
tions decay exponentially towards both ends of C. The windowing
effect is therefore negligible. (iii) The roughness power spectrum
is assumed to be isotropic, CðqÞ ¼ CðqÞ.

A computationally efficient procedure was devised to compute
the spectral form-functions Fn;n0 ;k;k0 ðq?Þ required for the integral in
Eq. (22). The procedure is depicted in Fig. 4. The wavefunctions are
used to compute the form-functions along the interface curve C,
which are resampled onto an equidistant q?-grid and fast-
Fourier-transformed to obtain their spectral counterparts
Fn;n0 ;k;k0 ðq?Þ.

Having found the spectral form-functions Fn;n0 ;k;k0 ðq?Þ the square
matrix element in Eq. (22) is obtained via q?-integration, visual-
ized in Fig. 5. In the case of a parabolic subband structure the
wavefunctions and thus the form-functions are independent of k

and k0. So Fn;n0 ;k;k0 ðq?Þ ¼ Fn;n0 ðq?Þ allows j Hn;n0 ;k;k0 j
2 to be tabulated

for different subband pairs n;n0 and q?-values further reducing
computational cost.

The integral in Eq. (22) represents momentum conservation in
the cross-section plane. We can summarize that in a planar geome-
try with 2DEG, carrier momentum conservation is characterized by
a dðk� k0 þ qÞ term. In a non-planar structure with a 1DEG, we still
have a dðkk � k0k þ qkÞ term for the axial direction. However, the
cross-section momentum conservation is not sharply defined but
is now accounted for by the integral in Eq. (22).
Please cite this article in press as: Stanojević Z et al. Consistent low-field mobil
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3.3. Ionized impurity scattering

Ionized impurity scattering (IIS) is of Coulomb type: The per-
turbing potential is due to the system’s electrostatic response to
a random charge distribution. The matrix element for an electro-
static potential u is

Hn;n0 ;k;k0 ¼ �q0

Z
W�n;kðrÞWn0 ;k0 ðrÞuðrÞdV ; ð23Þ

where the electrostatic potential is determined by the Poisson
equation

$ � e$uþ . ¼ 0: ð24Þ

For a random charge density ., the potential u is also a random
function. Hence, Eq. (23) cannot be evaluated directly.

The relation between charge density and potential can be
viewed as a filter. The potential is the low-pass filtered charge den-
sity, and the filter response is the electrostatic Green’s function as
shown in Fig. 6. Due to the r$ r0-symmetry of the Green’s func-
tion, the filter can be reversed and we can rewrite Eq. (23) as

Hn;n0 ;k;k0 ¼ �q0

ZZ
W�n;kðr0ÞWn0 ;k0 ðr0ÞGðr; r0Þ.ðrÞdVdV 0

¼ �
Z

Un;n0 ;k;k0 ðrÞ.ðrÞdV ;
ð25Þ
ity modeling for advanced MOS devices. Solid State Electron (2015), http://
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G(r, r′) ϕ(r′)�(r)
dV

G(r, r′) ψ∗
n,k(r′)ψn′,k′(r′)Un,n′;k,k′(r)

dV ′

Fig. 6. The electrostatic problem viewed as a filter; the electrostatic Green’s
function can be applied to a charge density to obtain the potential. Conversely, the
filter can be applied in reverse to the product of two wavefunctions to obtain a
sensitivity function that maps the influence of a charge density onto the
interaction’s matrix element.
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where we shall call the function

Un;n0 ;k;k0 ðrÞ ¼ q0

Z
w�n;kðr0Þwn0 ;k0 ðr0ÞGðr; r0ÞdV 0 ð26Þ

the sensitivity function of the interaction between state ðn;kÞ and
ðn0;k0Þ due to a point charge at r. The advantage of this approach
is that Un;n0 ;k;k0 ðrÞ can be easily computed numerically, as we will
show.

Now we can evaluate the square matrix element. As with SRS,
the square matrix element is in fact an ensemble average over
channels with different random point charge distributions. We
can write

hjHn;n0 ;k;k0 j
2i ¼

ZZ
U�n;n0 ;k;k0 ðrÞUn;n0 ;k;k0 ðr0Þh.ðrÞ.ðr0ÞidVdV 0: ð27Þ

If we assume that the point charge distributions in the ensemble are
uncorrelated, h.ðrÞ.ðr0Þi / dðr; r0Þ, the square matrix element sim-
plifies to

hjHn;n0 ;k;k0 j
2i ¼ q2

0

Z
jUn;n0 ;k;k0 ðrÞj

2NimpðrÞdV ; ð28Þ

where Nimp is the impurity concentration in the channel.
Now we will take a look at the sensitivity function from Eq. (26)

and find ways to compute it efficiently. In a system with low-
dimensional carriers we need to separate the cross-section
coordinates where the confinement occurs (r) and the coordinates
of free propagation (q ¼ k� k0). After separation, the Poisson in the
cross-section plane reads

½$? � e$? � eq2	uqðrÞ þ .qðrÞ ¼ 0: ð29Þ

The inverse of the operator in square brackets is the reduced
Green’s function Gqðr; r0Þ. The knowledge of the actual Green’s func-
tion is not required, however. What is required is a way to compute
the integral in Eq. (26) which is equivalent to solving the equation

½$? � e$? � ekk� k0k2	Un;n0 ;k;k0 ðrÞ þ q0w
�
n;kðrÞwn0 ;k0 ðrÞ ¼ 0; ð30Þ

to obtain the sensitivity function. The equation is readily discretized
using finite volumes which also takes care of device geometry,
interface conditions, and boundary conditions. The discretized sys-
tem is solved using direct sparse methods [15]. For parabolic sub-
band structures this has the benefit that the matrix of the
discretized Eq. (30) needs to be factored only once for each
q ¼ kk� k0k and only the much cheaper solve-step is applied for
each wavefunction product w�nwn0 . As in the case of SRS, we can

tabulate j Hn;n0 ;k;k0 j
2 for different subband pairs n;n0 and q-values in

order to reduce computational cost.
Screening in the linear approximation is included by adding an

additional term to the Poisson equation,

½$? � e$? � eq2	uqðrÞ þ .qðrÞ þ
d.q

duq
uq ¼ 0: ð31Þ
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dx.doi.org/10.1016/j.sse.2015.02.008
In general, evaluating the added term is not only computationally
demanding, but it results in a full rather than sparse system when
discretized, adding to the computational effort. Instead, we approx-
imate screening in the static limit by a term resulting in a diagonal
matrix [16], which for parabolic subbands reads

d.q

duq
¼ �q0

dnq

duq
� �q0

X
n

jwnðrÞj
2Nd

C;nF d
2�2

En � EF

kBT

� �
q0

kBT
; ð32Þ

where Nd
C;n is the effective density of states for a d-dimensional car-

rier gas [5], and F i is the complete Fermi–Dirac integral of order i.

4. Mobility calculation

This section is concerned with the procedure of computing the
low-field mobility based on the scattering models given in the last
section. A dimension-independent formulation of the problem will
be elaborated and solutions will be derived that are applicable to
both 2DEG and 1DEG systems without modification.

4.1. Current, conductivity, mobility

Low-field mobility is derived from the current equation,

Jn ¼ �
q0

ð2pÞd
Z

Rd
vnðkÞf a

nðkÞd
dk; ð33Þ

where vnðkÞ denotes the group velocity and f a the asymmetric part
of the distribution function f. For low driving fields, the asymmetric

part is approximated as the linear distribution response f 1 with
respect to the field E. It is convenient to express J as a linear func-
tion of E since it allows one to extract the conductivity from
J ¼ r � E. To facilitate this, a microscopic relaxation time s [17] is
introduced, such that

f 1
nðkÞ ¼ q0vnðkÞ � snðkÞ � E

df 0

dE
; ð34Þ

with f 0 denoting the equilibrium Fermi–Dirac distribution.
Inserting Eq. (34) into Eq. (33), the conductivity can be obtained:

rn ¼ �
q2

0

ð2pÞd
Z

Rd
vnðkÞ 
 vnðkÞsnðkÞ

df 0

dE
ddk: ð35Þ

For parabolic bands, the integration over k is replaced by an inte-
gration over energy to obtain

rn ¼ �q2
0 m�1

n �
2
d

Z 1

0
snðEÞ

@f 0

@E
Egd

nðEÞdE; ð36Þ

using the d-dimensional density of states gd
nðEÞ. Note that the

relaxation time in both Eqs. (34) and (36) is a tensor. This is nec-
essary to correctly account for anisotropic scattering processes,
such as Coulomb scattering or surface-roughness scattering, which
prefer small deflections between initial and final momenta as
illustrated in Fig. 7. Due to symmetry, the tensors m and snðEÞ
have the same principal directions, which implies that they com-
mute. The expression in Eq. (36) can be separated into principal
components,

rn;n ¼ �q2
0

1
mn;n

� 2
d

Z 1

0
sn;nðEÞ

@f 0

@E
Egd

nðEÞdE; ð37Þ

where n denotes each principal direction. Finally, subband mobility
ln and total mobility l are computed as

ln ¼
rn

q0nn
; l ¼ 1

q0n

X
n

rn: ð38Þ
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Fig. 7. Band anisotropy and scattering anisotropy; different positions of the initial
state in k-space result in different probability distributions of final states. Applying
a Herring-Vogt transform eliminates band anisotropy but distorts the q-depen-
dence of the scattering process at the same time. In both cases the relaxation time
can only be described as a tensor.
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Fig. 8. Simulation setup used for validating the consistency between 2DEG and
1DEG simulations; a finite-width double-gate silicon UTB MOS is simulated as 2D
cross-section and the mobility of the 1DEG is extracted; colors indicate the electron
concentration from this simulation. The same device is cut along the dashed line,
the simulation is performed for a 1D cross-section and mobility is obtained for the
2DEG. (For interpretation of the references to colour in this figure legend, the reader
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4.2. Linearized Boltzmann equation

The linear distribution response f 1 is governed by the linearized
Boltzmann transport equation (LBTE), which for elastic scattering
processes reads

X
n0 ;k0

Sn;n0 ðk;k0Þ f 1
nðkÞ � f 1

n0 ðk
0Þ

h i
¼ q0E � vnðkÞ

df 0

dE
: ð39Þ

Inserting Eq. (34), we obtain an equation for the microscopic relax-
ation time,X
n0 ;k0

Sn;n0 ðk;k0Þ vnðkÞ � snðkÞ � E� vn0 ðk0Þ � sn0 ðk0Þ � E
	 


¼ vnðkÞ � E: ð40Þ

Fortunately, for parabolic bands, the different principal components
sn are not coupled by Eq. (40), so we can write

X
n0 ;k0

Sn;n0 ðk;k0Þ sn;nðEÞ
�hkn

mn;n
� sn0 ;nðEÞ

�hk0n
mn0 ;n

" #
¼

�hkn

mn;n
ð41Þ

for each principal direction n. kn denotes the projection of k along
principal direction n. We recall from Eq. (2) that for elastic processes

Sn;n0 ðk;k0Þ ¼ 2p
�h j Hn;n0 ;k;k0 j

2dðEðkÞ � Eðk0ÞÞwhich decouples Eq. (41) for
different energies. Since sn;n itself depends on the energy but not the
direction of k, a system of equations can be formulated for every
energy as

Lnsn;n �Mn;n0sn0 ;n ¼ 1; ð42Þ

where the coefficients are

Ln ¼
X

n0
gd

n0 ðEÞJn;n0 ;n; ð43Þ

Mn ¼ gd
n0 ðEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn;nðE� EnÞ
mn0 ;nðE� En0 Þ

s
J0n;n0 ;n: ð44Þ

The integrals Jn;n0 ;n and J0n;n0 ;n are defined as

Jn;n0 ;n ¼
d

X2
d

Z
Xd�Xd

p
�h
jHn;n0 ;k;k0 j

2 cos2 #ndX0ddXd; ð45Þ

J0n;n0 ;n ¼
d

X2
d

Z
Xd�Xd

p
�h
jHn;n0 ;k;k0 j

2 cos#n cos#0ndX0ddXd; ð46Þ
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with #n denoting the angle between the Herring-Vogt transformed
[18] vector k� and the principal direction n,

cos#n ¼
k� � en

k�
: ð47Þ

Xd denotes the surface of d-dimensional ‘‘unit sphere’’ which mea-
sures 2 for 1DEG and 2p for 2DEG. The integrals in Eqs. (45) and
(46) can be understood as

Z
Xd�Xd

f ð#;#0ÞdX0ddXd¼
f ð0;0Þþ f ð0;pÞþ f ðp;0Þþ f ðp;pÞ : 1DEGR 2p

0

R 2p
0 f ð#;#0Þd#0d# : 2DEG:

(

ð48Þ

Inelastic phonon-scattering is isotropic, and Mn;n0 vanishes in
that case. To account for the energy relaxation, Lnsn;n needs to be
weighted by

ð1� f 0ðE� �hxÞÞgd
nðE� �hxÞ

ð1� f 0ðEÞÞgd
nðEÞ

: ð49Þ

Eq. (42) represents a system of equations the rank of which is
equal to the number of subbands intersecting energy E. It is a small
dense system and can be readily solved using direct methods.
5. Results

In this section we will first validate the consistency of the devel-
oped modeling framework between the 2DEG and 1DEG cases.
Then, a critical length will be established, below which electrons
in silicon exhibit 1DEG properties. Finally, we will employ the
modeling framework to evaluate two recently realized device
designs, the bulk FinFET [1], and the junction-less nanowire FET
[3].
5.1. Validation

As we derived the models for carrier confinement, scattering,
and mobility in a consistent, dimension-independent way for both
2DEG and 1DEG systems, we should expect computed mobilities to
be consistent as well. To test this, we chose the simulation setup
shown in Fig. 8. For a wide channel (60 nm) the mobilities comput-
ed from the 1DEG system and the 2DEG system of the vertical cut
through the stack should coincide. This is indeed the case as shown
in Figs. 9 and 10 for substrate/channel-orientations {100}/h100i
and {110}/h100i.
is referred to the web version of this article.)
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Fig. 13. Left: TEM image of a tri-gate channel cross-section fabricated by Intel [1];
segments of the computational domain are shown in color [6]. Right: Computed
self-consistent electron concentration for a [110]/(001) channel/substrate orienta-
tion. The computational grid is visible as well. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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5.2. Critical width

We can now ask the question what the critical width is, at which
the 1DEG mobilities start to diverge from 2DEG. This was investi-
gated by simulating an ensemble of finite-width UTB channels
ranging from 10 nm to 60 nm in steps of 2 nm.

We first have a look at the inversion density versus gate voltage
for {100}/h100i-oriented channels in Fig. 11. Here the curves of all
but the first two widths match the 2DEG limit. We can conclude
that the critical dimension for electron inversion density in silicon
is Lcrit � 12 nm.

If we now look at the mobility curves in Fig. 12, we observe a
different behavior. Here, the convergence towards the 2DEG limit
with increasing width happens much slower than for the inversion
density which is mostly due to SRS dependence on device width.
Here, the critical dimension is about twice as large, Lcrit � 24 nm.
The critical dimension, however, depends on orientation, tem-
perature, carrier type, and material, and a different value might
be found for channels that are p-type, have different orientations,
or contain other materials.

The conclusion we can draw here is that for channel cross
sections approaching feature sizes of Lcrit the 2DEG picture starts
losing validity and a 2D model for confinement combined with a
1DEG model for transport is needed. This is especially important
when considering tri-gate devices where one might be tempted
to treat each Si/SiO2 interface as an independent 2DEG system.
Please cite this article in press as: Stanojević Z et al. Consistent low-field mobil
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Such an approach would lose validity as soon as characteristic sizes
approach Lcrit. Note that due to electrostatic confinement the actual
characteristic sizes may be even below the ones given by
geometry.
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5.3. Realistic device cross-sections

Having developed and verified our modeling framework we can
now turn our attention to more realistic device cross-sections. One
Please cite this article in press as: Stanojević Z et al. Consistent low-field mobil
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of the investigated devices is the n-type FinFET presented in [1].
The cross-section geometry was generated based on a TEM-image
of the channel as shown in Fig. 13. We investigated the orientation-
dependence of channel conductivity, varying the orientation of
both channel and substrate. The result can be seen in Fig. 14. The
orientation affects the saturation behavior of the conductivity, an
effect which we attribute to SRS [2].

We also investigated the junction-less (JL) FET presented in [3],
which has a P-gate nanowire channel as shown in Fig. 15. The
channel of the JL-FET was benchmarked against an inversion-mode
device with the same geometry. Fig. 16 shows a breakdown of the
various scattering mechanisms’ influence on channel mobility and
Fig. 17 the trans-conductivity curves. While the JL-FET can reach
higher low-field currents than the inversion-mode device, the
inversion-mode device has a steeper switching curve. This feature
is also visible in the measurements from [3].
6. Conclusion

We presented a versatile and efficient computational toolkit for
low-field mobility analysis in nano-scale devices based on physical
models. The models were formulated in a dimension-independent
manner and provide consistent results between the 2DEG and
1DEG regime of carrier transport. The consistency was confirmed
by simulations and the critical length that separates the two
regimes was determined.

The presented work enables differential analysis of devices
which is crucial in the evaluation of novel device designs. This
capability was also demonstrated on two of the most recently real-
ized non-planar devices, the FinFET and the junction-less nanowire
FET.
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