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Abstract We present the free open source plugin exe-

cution framework ViennaX for modularizing and paralle-

lizing scientific simulations. In general, functionality is

abstracted by the notion of a task, which is implemented as

a plugin. The plugin system facilitates the utilization of

both, already available functionality as well as new

implementations. Each task can define arbitrary data

dependencies which are used by ViennaX to build a task

graph. The framework supports the execution of this

dependence graph based on the message passing interface

in either a serial or a parallel fashion. The applied modular

approach allows for defining highly flexible simulations, as

plugins can be easily exchanged. The framework’s general

design as well as implementation details are discussed.

Applications based on the Mandelbrot set and the solution

of a partial differential equation are investigated, and per-

formance results are shown.

Keywords Task graph � Parallel execution � Plugin

system software reuse � Framework

1 Introduction

The field of scientific computing is based on modeling

various physical phenomena. A promising approach to

improve the quality of this modeling is to combine highly

specialized simulation tools [23] and is commonly prac-

ticed in fields like computational fluid dynamics (CFD)

[37]. In short, important tasks are to couple simulations

which model relevant phenomena on a different physical

level, thus performing multiphysics computations.

Although several multiphysics tools are publicly available,

the implementations are typically based on assumptions

with respect to the field of application. For example, a

specific discretization method is used, such as the finite

element methods (FEMs) utilized by the Elmer1 frame-

work. Aside from combining different simulators to per-

form multiphysics simulations, decoupling a simulation

into smaller parts is of high interest. The ability to reuse

these parts for different simulation setups significantly

increases reusability and, thus reduces long-term imple-

mentation efforts.

The available frameworks applied in the field of dis-

tributed high-performance scientific computing usually

focus on the data parallel approach based on the message

passing interface (MPI). Typically, a mesh datastructure

representing the simulation domain is distributed, thus the

solution is locally evaluated on the individual subdomains.

This approach is referred to as domain decomposition [28],

and is reflected by a data parallel approach. As such, the

tasks to be executed by the framework are typically pro-

cessed in a sequence, whereas each plugin itself utilizes the

MPI to distribute the work among the compute units, for

example, to utilize an MPI-based linear solver.

ViennaX2 does not restrict itself to such an execution

behavior, in fact its focus is on providing an extendible set of

different schedulers to not only support data parallel approa-

ches, but also serial and task parallel implementations. In this
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context, serial execution refers to the execution of the tasks on

a shared-memory machine, enabling to execute the tasks

sequentially, however, the plugins can indeed have parallel-

ized implementations based on, for example, OpenMP or

CUDA. Such an approach becomes more and more important,

due to the broad availability of multi-core CPUs by simulta-

neously stagnating clock frequencies [10, 16, 20]. On the

contrary, task parallel approaches can be used to parallelize

data flow applications, for instance, wave front [15] or digital

logic simulations [29].

ViennaX facilitates the setup of flexible scientific

simulations by providing an execution framework for

plugins. The decoupling of simulations into separate

components is facilitated by the framework’s plugin

system. Functionality is implemented in plugins, sup-

porting data dependencies. Most importantly, the plugin

system enables a high degree of flexibility, as exchanging

individual components of a simulation is reduced to

switching plugins by altering the framework’s configu-

ration data. Consequently, no changes in the simulation’s

implementation must be performed, thus avoiding

recompilation and knowledge of the code base. Further-

more, decoupling simulation components into plugins

also increases the reusability significantly. For example, a

file reader plugin for a specific file format can be utilized

in different simulations. Ultimately, the effort of changing

parts of the simulation is greatly reduced, strongly

favoring long-term flexibility and reusability.

In this work we depict the applicability of ViennaX

(Version 1.2.0) for scientific computing. We extend pre-

viously published material [35, 36] by a rigorous discus-

sion of the library details, framework design, user-

interface, and execution performance. The framework is

written in the C?? programming language and is available

under the MIT free open source license. ViennaX is

available for Linux and Mac OS X platforms. Different

scheduler kernels are available relying on a task graph [30]

approach, modeling the data dependencies between the

individual tasks. The implementation heavily relies on

already available functionality, such as the Boost libraries3,

and on advanced programming techniques, like generic

programming [17], to realize a maintainable and extendible

implementation by simultaneously upholding a small code

base.

This work is organized as follows: Sect. 2 puts the work

into context. Section 3 provides an overview of the

framework. Section 4 shows an exemplary plugin imple-

mentation. Section 5 discusses implementation details.

Section 6 introduces application results whereas Sect. 7

lists shortcomings and possible future extensions.

2 Related work

Various research has already been conducted to investigate

either a generalized approach to connect and generalize

scientific simulations and/or to apply graph-based approa-

ches in computations. This section provides a selection of

related research. At the end of this section, a table of

comparison is provided (Table 1).

The intel threading building blocks (Intel TBB) library4

is written in C??, licensed under the GNU General Public

License (GPL) and utilizes a shared-memory approach to

enable parallelism. One of the core features is the so-called

flow graph, which allows for task parallel implementations.

A flow graph can be used to send messages, representing

arbitrary data, between components. Our approach utilizes

a task-based parallelism approach similar to the TBB

library. However, we employ a distributed approach based

on the MPI, which enables the scaling of our framework

beyond a single node of, for instance, a commodity cluster,

thus providing considerable flexibility with respect to the

computing environment.

The common component architecture (CCA)5 is a

standard and applies so-called component-based software

development to encapsulate units of functionality into

components [4, 8]. Data communication between compo-

nents is implemented via so-called ports. An interface

definition language (IDL) is used to describe the interfaces

of components by simultaneously being independent of the

underlying programming language. The actual connection

mechanism of the individual components via the interfaces

requires end-user interaction. The CCA standard has been

applied in several projects [8], such as the high-perfor-

mance computing framework CCAFFEINE [3] and the

distributed computing frameworks XCAT [19], Legion

[26], and SCIRun2 [38]. Our approach is similar to the

CCA with respect to the component system. However, we

solely focus on the C?? language, therefore avoiding

additional overhead. This simplification is reasonable, as

C?? can be coupled with other regularly used languages

in scientific computing, like Python, Fortran, and C. The

strength of our framework is the straightforward applica-

bility due to the fact that the entry level for users is low.

For example, defining ports, and utilizing the plugin with

the framework, does not require an IDL. Utilizing available

implementations is reduced to coupling the datastructures

with a plugin’s sockets, representing the plugin interface.

Although the approach proposed by the CCA is of high

importance to introduce reusability for scientific compu-

tations, in our opinion the additional effort is primarily

justified for large-scale projects. On the other hand, we

3 http://www.boost.org/.

4 http://threadingbuildingblocks.org/.
5 http://www.cca-forum.org/.

652 Engineering with Computers (2014) 30:651–668

123

http://www.boost.org/
http://threadingbuildingblocks.org/
http://www.cca-forum.org/


believe that ViennaX is especially of interest for applica-

tions on a daily basis aiming for small to medium-scale

scenarios.

Cactus6 is a multi-purpose framework, which has its

roots in the field of relativistic astronomy [18]. The

framework is available under the GNU lesser general

public license (LGPL) and focuses on data parallel

approaches. The design follows a modular approach and

supports different target architectures as well as collabo-

rative code development. The central part of the framework

(called ‘‘flesh’’) connects the individual typically user-

supplied application modules (called ‘‘thorns’’), typically

containing the implementations of the actual simulation.

Communication between thorns is realized via the frame-

work’s API. Connections between thorns are provided by

the user in configuration files, which are processed during

compile-time. Cactus provides its own make system,

enabling automatic compilation for different hardware

architectures and configuration options. Data dependencies

of components have to be defined in specification files,

using the Cactus Configuration Language (CCL). The Vi-

ennaX component communication layer is realized by a so-

called socket system which does not require an introduc-

tion of an additional configuration language to setup data

dependencies. Aside from data parallelization ViennaX

also supports applications with a focus on task parallel and

serial execution.

The earth system modeling framework (ESMF)7 pro-

vides the setup of flexible, reusable, and large-scale sim-

ulations in climate, weather, and data assimilation domains

[21]. The source code is publicly available under the

University of Illinois-NCSA License. The software design

is based on a component approach, enabling to separate

functionality into reusable components offering a unified

interface. The parallelization layer is abstracted by a virtual

machine approach and focuses on data parallel and basic

task parallel approaches. Although the latter is supported in

principal, no automatic control mechanisms with respect to

data dependencies are provided. The component interface

is based on three functions, responsible for initialization,

execution, and finalization of the respective component.

The data exchange between components is based on

ESMF-specific datatypes. ViennaX has improved support

for task parallel execution approaches, as the execution of

the individual plugins is automatically handled with respect

to the data dependencies. Furthermore, ViennaX supports

arbitrary datatypes for the data communication between the

plugins. With respect to the parallelization layer, ViennaX

directly exposes the parallelization backend to the user. We

believe that such a straightforward approach is both suffi-

cient and important. Sufficiency relates to the fact that MPI

is the de facto standard for distributed computing. Fur-

thermore, the approach is important in the sense that

abstracting the parallel layer of an MPI library results in

reimplementation and additional maintenance overhead to

keep the interfaces updated.

The COOLFluiD project8 enables multiphysics simula-

tions based on a component framework [32] and is pri-

marily designed for data parallel applications in the field of

CFD. The source code is available under the LGPL. The

core is a flexible plugin system, coupled with a data

communication layer based on so-called data sockets. Each

plugin can set up data sockets which are in turn used to

generate a dependence hierarchy driving the overall exe-

cution. We adopted the plugin system of COOLFluiD,

which enables us to conveniently wrap already available

functionality. Additionally, the communication layer uti-

lized by the so-called socket system has been simplified to

fit our needs. As COOLFluiD focuses on a data parallel

Table 1 An overview of the features of related projects is given

Intel TBB CCA Cactus ESMF COOLFluiD Uintah DAGuE ViennaX

Graph • • • • • •
MPI • • • • • • •
Threads • • • • • • • •
Micro • • •
Macro • • • • • • •
Generic • • • •
Task parallelism • • • • •
Data parallelism • • • • • •

Graph denotes whether the package utilizes a task graph to model data dependencies. MPI and Threads refer to application of the respective

parallelization layer for the execution of the individual components. Micro and Macro denote whether the projects’ components focus on

containing small or large parts of an algorithm, respectively. Generic refers to the general applicability in arbitrary fields of scientific computing.

Task and data parallelism denotes the focus of the individual approach for the respective parallelization approach

6 http://cactuscode.org/.
7 http://www.earthsystemmodeling.org/. 8 http://coolfluidsrv.vki.ac.be/trac/coolfluid/.
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approach, the library also provides its own distributed data

structures, like the mesh data structure. Therefore,

COOLFluiD performs an automatic partitioning and dis-

tribution of the mesh data structure via MPI primarily for

domain decomposition methods. Although ViennaX does

not provide its own distributed datastructures, already

available implementations can be utilized such as the

PETSc9 or the p4est10 library. However, aside from sup-

porting data parallelism ViennaX supports serial and task

parallelism.

The Uintah project11 is a large-scale multi-physics

computation framework [9, 13] available under the MIT

license. Uintah solves reacting fluid-structure problems on

a structured adaptive mesh refinement mesh. Uintah sup-

ports task and data parallel applications. The primary area

of application is computational mechanics and fluid

dynamics. The framework is based on a directed acyclic

graph (DAG) representation of parallel computation and

communication to express data dependencies between

multiple components. Each node in the graph corresponds

to components which in turn represents a set of tasks. The

data dependencies between components are modeled by

edges in the DAG. Our approach utilizes a similar task

graph approach for modeling the data dependencies.

However, we do not enforce an underlying mesh data

structure, as we aim for a more general area of application.

Nevertheless, Uintah’s implementation of a hybrid task

graph scheduler is of high interest for future extensions of

our scheduler implementation, as it is capable of scaling up

to 100,000s of cores.

The directed acyclic graph unified environment

(DAGuE)12 enables scientific computing on large-scale

distributed, heterogeneous environments [11]. The source

code is available under a BSD-similar license. The basis of

DAGuE is a DAG-based scheduling engine, where the

nodes are sequential computation tasks and the edges refer

to data movements between the tasks. Computational tasks

are encapsulated into sequential kernels. A DAGuE-spe-

cific language is used to describe the data flow between the

kernels. Instead of focusing on executing relatively small

parts of an algorithm within one node of the DAG, our

approach also aims at utilizing full-scale simulation tools

within a task. Additionally, ViennaX supports conventional

distributed data parallel execution and does not require a

specific language to describe the input and output

dependencies.

Aside from the discussed projects, other frameworks in

this area are available, such as Palm13 [12], Overture [7],

AMP [31], FastFlow14 [2], Cilk Plus15, FEniCS16 [27], and

OpenFOAM17 [22].

3 The framework

In its essence, ViennaX is a plugin execution framework.

Available simulation tools or components can be wrapped

by the plugins and are, therefore, reused. A ViennaX

application is constructed by executing a set of plugins.

The input configuration file based on the extensive markup

language (XML) contains information indicating the plu-

gins to be utilized during the course of the execution.

Additionally, parameters can be provided by this configu-

ration file, which are forwarded to the respective plugins by

ViennaX.

Fig. 1 Schematic utilization of ViennaX. C?? source files modeling

the ViennaX plugin concept are compiled into DSOs. The DSOs as

well as the configuration file are loaded into ViennaX. The plugins are

loaded during run-time and based on the dependencies a task graph is

generated. The plugins are executed according to the dependencies

until the graph has been processed

9 http://www.mcs.anl.gov/petsc/.
10 http://www.p4est.org/.
11 http://www.uintah.utah.edu/.

12 http://icl.cs.utk.edu/dague/.
13 http://www.overtureframework.org/.
14 http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:about.
15 http://software.intel.com/en-us/intel-cilk-plus.
16 http://fenicsproject.org/.
17 http://www.openfoam.org/.
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Plugins can have data dependencies, which are inter-

nally represented by a task graph and handled by the

so-called socket system. ViennaX provides different

standalone applications, utilizing the different available

scheduler kernels. Each of the kernels focuses on different

execution approaches, being serial, task parallelism, and

data parallelism, respectively. These applications can be

used to execute the graphs generated from the input XML

file.

Figure 1 schematically depicts the general execution

flow of the framework. ViennaX plugins are implemented

and compiled as dynamic shared objects (DSOs), which are

forwarded to the framework’s application. In addition to

the plugins, the input configuration file is passed to the

application. The ViennaX schedulers automatically gener-

ate and execute the task graph according to the data

dependencies. The intended target platforms are worksta-

tions or clusters, which are supported by different distrib-

uted scheduler kernels based on the MPI. More specifically,

the Boost MPI Library18 is utilized.

ViennaX does not wrap the parallel execution layer of the

target platform like MPICH19. As such, ViennaX is executed

as a typical application utilizing the respective paralleliza-

tion library. For instance, to execute an MPI capable Vien-

naX scheduler application, the following expression is used.

As already stated, the MPI layer is not abstracted,

therefore the scheduler application is executed according to

the utilized MPI library. In this case the mpiexec com-

mand is used, which spawns the execution of four instan-

ces. vxscheduler relates to the application, whereas

configuration.xml refers to the XML input file holding, for

instance, the required information to build the task graph.

The final parameter plugins refers to the directory path,

containing the ViennaX-valid plugins to be utilized during

the execution.

Although ready-to-use applications are provided, Vien-

naX provides an application programming interface (API).

Therefore, ViennaX can be utilized in external applications

in a straightforward manner.

Figure 2 depicts the fundamental design of ViennaX. An

API exposes different scheduler kernels as well as the

plugin system and the configuration facility to the user. The

design of the framework allows for different task execution

modes implemented by the respective scheduler kernels to

support, for instance, different parallel task graph execu-

tion strategies.

Table 2 depicts the currently provided scheduler ker-

nels, being the serial mode (SM), distributed-task-parallel-

mode (DTPM), and distributed-data-parallel-mode

(DDPM) scheduler. The SM-based kernel processes one

plugin at the time, where the individual plugins run either

serial and/or parallel shared-memory-parallelized imple-

mentations restricted to a single process, such as OpenMP.

The DTPM kernel models the task parallel concept in an

MPI context, where plugins are executed in parallel by

different MPI processes, if the respective dependencies are

satisfied. Consequently, applications with parallel paths in

the graph can benefit from such a scheduling approach, for

instance, wave front simulations [15].

Finally, the DDPM kernel allows for a data parallel

approach, where, although each plugin is processed con-

secutively, the plugin’s implementation follows an MPI-

based parallelization approach. Such an approach allows,

for instance, to utilize an MPI-based linear solver compo-

nent within a plugin, such as PETSc. Figure 3 schemati-

cally compares the principles of the different execution

modes.

The currently implemented parallel scheduler focuses on

the distributed MPI. To better support the ongoing devel-

opment of continually increasing core numbers per com-

puting target, scheduler kernels utilizing shared-memory

parallelization approaches are planned for future exten-

sions. These future extensions are supported by the intro-

duced naming scheme for the scheduler kernels as well as

by the modular kernel approach provided by ViennaX.

Core

API

DTPM

SM

DDPM

Plugin System

Configuration
Facility

Fig. 2 Design of ViennaX. An API provides access to the supported

different scheduler kernels, being serial mode (SM), distributed-task-

parallel-mode (DTPM), and distributed-data-parallel-mode (DDPM).

Additionally, the plugin system, and the configuration facility can be

accessed by the user. The core part provides fundamental function-

ality utilized throughout the framework, such as a task graph

implementation

Table 2 Overview of graph and plugin execution modes supported

by the ViennaX scheduler kernels

Graph execution Plugin execution

SM Serial Serial/shared-memory

DTPM Distributed Serial/shared-memory

DDPM Serial Distributed

18 http://www.boost.org/libs/mpi/.
19 http://www.mpich.org/.
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4 Exemplary plugin implementation

For the sake of clarity, an exemplary plugin implementation

is provided, which not only depicts the utilization of Vien-

naX with respect to using the already available implemen-

tations in ViennaX plugins but is also a reference for the

subsequent investigation of the implementation details.

The plugin wraps an iterative linear solver implementation

of the header-only ViennaCL20 library, thus providing a high-

performance reusable linear solver component to ViennaX.

Utilizing ViennaCL in this example additionally underlines

the straightforward applicability of our framework with

respect to utilizing already available implementations.

In the following, the full implementation of a simplistic

ViennaCL-powered iterative solver plugin is given.

External header files are included required for utilizing

ViennaCL in the plugin (Line 2). The plugin’s name (Line

6), class definition (Lines 8, 9, 28), and required macros are

implemented (Lines 10, 28). The data dependencies are set

up in the initialization part (Lines 13–15). Two input

sockets (A, b) and one output socket (x) are provided,

relating to the linear system Ax = b. ViennaCL is utilized

in the execution part (Lines 18–28). The data associated

with the sockets are accessed (Lines 20–22) and the system

is solved (Line 24). The result vector x is automatically

available to other plugins via the outgoing data connection.

5 Implementation details

This section provides implementation details to the core

components of ViennaX.

Section 5.1 introduces the plugin system, Sect. 5.2

outlines the configuration mechanism based on the XML,

and Sect. 5.3 discusses the scheduler kernel implementa-

tions.

5.1 Plugins

In general, a plugin approach introduces a high level of

reusability by wrapping already available functionality into

components with a specific, unified interface. The plugins

can contain core parts of simulations, such as a linear

solver implementation, but also full-fledged simulators in

their own right. This approach is highly flexible; for

example, simulation tools may be combined to form mul-

tiphysics simulation flows, but they may also be decom-

posed into smaller components, enabling specific

exchanges of functionality by switching the respective

plugins.

Figure 4 depicts the setup and exchange of a plugin. If

the process of interchanging plugins is compared to the one

of conventional simulation tools, it becomes clear that the

conventional approach requires actual coding, and as such

in-depth knowledge of the implementation at hand. For

obvious reasons, this fact impedes the implementation of

changing functionality. With our plugin-based approach,

the exchange can be realized conveniently by only

adjusting the input configuration data accordingly.

In the following, implementation details on the core

parts of our plugin system are provided, being the plugin

registration mechanism, interface, and socket system.

5.1.1 Factory

One of the core capabilities of a plugin framework is to

discover, load, and execute the plugins. In general, we

apply the so called self-registering approach, enabling the

Data ParallelTask ParallelSerial

Fig. 3 Different task graph execution models, where each vertex of

the graph represents a plugin. Gray and white shaded plugins denote

different compute-units, e.g., MPI processes. In serial mode, one

compute-unit executes all the tasks but only one task at a time. In task

parallel mode, different compute-units are responsible for subsets of

the task graph. In data parallel mode, each task is executed by every

available compute-unit, where each compute-unit processes only a

subset of the data

20 http://viennacl.sourceforge.net/.
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plugins to register themselves in a global plugin database

upon loading the DSOs into the ViennaX application by the

portable operating system interface (POSIX) dlopen

command. The implementation is based on the so-called

template factory design pattern [24, 32], which can be seen

as an extension of the abstract factory design pattern with

C?? templates.

Figure 5 depicts a simplified class diagram of our reg-

istration mechanism. The Base and Concrete template

parameters refer to a base and a derived class of a class

hierarchy, respectively. This hierarchy in turn relates to the

ViennaX-provided base and user-provided derived plugin

class, holding the actual functionality. Due to the increased

genericity introduced by the template factory design pat-

tern, class hierarchies of arbitrary type can be stored.

However, the derived class has to satisfy a so-called reg-

istrable concept. This concept requires the derived class to

provide a static function named ID returning an identifi-

cation (ID) string and to offer a member type named Base

holding the type of the base class. The need for the reg-

istrable concept is discussed in the following.

Each plugin source file holds aside from the imple-

mentation of the derived plugin (ViennaCLLinSol) a static

object of the type Provider\ViennaCLLinSol[. The

Provider class is part of the ViennaX factory mechanism

and provides automatic registration within the factory’s

database. This automatism is based on the fact that static

objects are generated during the start-up phase of the

application, thus the registration related code provided by

the Provider class is automatically executed before the

main ViennaX application is executed.

The constructor of Provider\ViennaCLLinSol[ uti-

lizes the registrable concept induced interface to access the

base class type and the ID string. This information is for-

warded to the ProviderBase\Base[ constructor, which

in turn registers itself in the instance of the singleton pat-

tern-based factory class. Using the factory’s get method, a

specific plugin’s Provider class can be retrieved and cre-

ated with the respective create method.

5.1.2 Interface

This section discusses the plugin interface, which has to be

modeled by a ViennaX plugin. Additionally, the general class

hierarchy and the access for the ViennaX scheduler kernels is

introduced. The class diagram shown in Fig. 6 gives an

essential overview of the relations between the ViennaX base

plugin class and a user-provided plugin implementation.

A straightforward dynamic polymorphism approach via

virtual functions is used to specialize the functionality for

each plugin. The implementation of the static function and

Fig. 5 Class diagram of the implemented template factory design

pattern. The constructor of the ProviderBase class registers instances

of itself into the singleton Factory class

Fig. 6 Class diagram of the plugin interface. The user-side plugin

ViennaCLLinSol models the registrable concept and derives from the

ViennaX provided base plugin class PluginBase

Empty Plugin

ViennaCL::
Linear Solver

A b

x

Solve Ax=b

ViennaCL::
Linear Solver

Available
external Tool

Utilize external Tool 
in Plugin

Use Linear Solver
Plugin

Interchangeable
PETSc::
Linear Solver

x

A b

Fig. 4 A plugin can be used to wrap available functionality, like

linear solver implementations. Due to the abstraction mechanism

provided by the socket input/output dependencies, plugins can be

exchanged by other plugins. In this case, a linear solver implemen-

tation provided by ViennaCL as depicted in Sect. 4 is interchanged

with an implementations of PETSc
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the constructor are handled by macros to increase the level

of convenience. For instance, by providing a macro holding

the plugin name in the plugin’s source file, a convenience

macro can be utilized, automatically generating the

required code. The following code snippet depicts the

required code by the user’s plugin implementation.

We deliberately do not automatically generate the C??

structure definition by macros (Lines 2, 5), to raise the

awareness that the plugin structure is in fact a common

C?? class, and can thus be used by the plugin developers

to, for instance, store objects in its state.

ViennaX offers a three-stage interface model, enabling

an initialization, execution, and finalize step realized by the

init(), execute(), finalize() functions, respectively. Such an

approach allows for multiple executions of a plugin within

a simulation introduced by, for instance, loops. Utilizing a

three-step interface is a common approach in scientific

frameworks, such as the ESMF, and known to handle most

application scenarios. However, more sophisticated needs

cannot be covered by such an approach, for instance,

additional communication between the individual compo-

nents. Therefore, improving the interface for more intricate

cases is a part of future extensions.

Aside from the three virtual interface functions, the

scheduler kernels use the load method to initialize the

plugin with the plugin specific configuration data and with

a unique plugin ID integer. The constructors are used by

the factory mechanism to instantiate the plugins as well as

providing the plugins with a Communicator object. If

ViennaX is compiled with MPI support, the communicator

refers to a Boost MPI communicator, otherwise it maps to

an integer value, enabling to compile ViennaX on non-MPI

targets without any changes.

5.1.3 Sockets

Essential to a scientific plugin framework is the ability to

exchange data of arbitrary type and dimension between the

different plugins utilized in a simulation. For instance, a

scalar field representing the result of a simulation con-

ducted in a plugin might be used as an initial guess for

another simulation performed by a subsequent plugin. The

sockets have to be first defined in the initialization phase of

the plugin, and can then be utilized in the execution part.

We use a similar approach for the data communication

layer as introduced by the COOLFluiD framework. This

section introduces first user-level code, and then further

delves into aspects of the respective implementation.

The socket system supports input and output data ports,

called sink and source sockets, respectively. In general,

the data associated to the sockets can either be already

available, thus no copying is required, or it can be gen-

erated automatically during the course of the socket cre-

ation. The following user-level code snippet creates a

source socket, generating the associated data object

automatically.

The data of the socket can be accessed by the following.

If a data object is already available, the socket can be

linked to it.

Note that similar implementations for socket creation

and access are available for sink sockets.

Figure 7 gives an overview of the socket implementa-

tion via a class diagram. In general, the socket hierarchy

utilizes a socket ID class and a database class to store the

data associated with the sockets (Fig. 8). Sockets can be

compared to enable matching validation tests. The

remainder of this section discusses the database imple-

mentation and the socket class hierarchy.

The DataBase class provides a centralized, generic

storage facility for the data associated with the sockets.

This storage additionally provides access and lookup

mechanisms for retrieving and deleting the data objects of a

given socket. The storage internally uses an associative

container, mapping a string ID value to a void-pointer, thus

being able to hold pointers of arbitrary type. The ID string

is generated from the name of the socket and the type

string, thus as long as the names are unique, the data can be

clearly identified even if the types are the same.

The following code snippet depicts the essential internal

parts of the database storage, being adding and retrieving

data.

By generating the key string from the socket name and

the type string, a unique lookup can be set up (Line 1). The
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data pointer (data) can be accessed again by using the

appropriate key information and cast operation (Lines 2, 3).

The applied socket data storage approach decouples the

actual storage related tasks from the actual socket imple-

mentations, thus improving maintainability and extend-

ability as, for instance, possible future extensions to the

socket storage layer can be conducted without interfering

with the socket implementations.

To enable storing source and sink sockets, and holding

data of arbitrary types in a homogeneously typed data

structure, a virtual inheritance approach is applied. As

such, source and sink sockets are generalized by the

BaseDataSocketSource/Sink classes, respectively. The

derived, type-aware socket class specializations Data-

SocketSource/Sink , provide access to the associated data

object via the get_data function. In general, a source

socket holds the actual data pointer (m_data), whereas the

sink socket merely points to the corresponding source

socket (m_source). A sink socket has, thus, to be linked to

a source socket via the plug_to method, which is explained

in the following.

Before working with the socket data, the source sockets

have to be allocated and the sink sockets have to be linked

to their respective source counterparts. This step is auto-

matically handled by ViennaX by using the allocate and

plug_to methods. The allocate function requires a pointer

to an already available socket database object, which is

then used for the allocation implementation, as depicted in

the following.

In Line 1 the data pointer (m_data) is added to the

socket database (db), whereas in Line 2 the externally

provided database pointer is stored locally for future

references.

The socket linking step, required for accessing the data

of sink sockets, is implemented by the plug_to method,

which prior to updating the internal source socket pointer

verifies socket compatibility.

Therefore, a suitable external source socket has to be

provided by the calling instance utilizing the Data-

SocketID information.

Aside from the exchange of data between the plugins,

our data communication layer inherently supports an

approach to handle physical units in a straightforward

Fig. 7 Class diagram of the

socket system

Fig. 8 Class diagram of the

socket database and ID class
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manner. Units are a major concern in scientific computing,

as mixing the units between functions, obviously results in

a major corruption of the computational result [34]. As

such it is of utmost interest to introduce automatic layers of

protection to ensure that required data is given in the

expected units.

ViennaX tackles this challenge by coupling the unit

information to the string-based ID of the sockets. As the

automatic socket plugging mechanism of ViennaX requires

the sink and source socket to have not only the same type

but also the same ID string, a sink and a source socket with

different ID will not be connected. The string-based

approach allows for coupling arbitrary properties to the

sockets, making it a highly versatile system to impose

correctness on the plugin data connections. It can also be

used to implement an automatic conversion mechanism,

enabling a self-acting adjustment of data according to the

required physical units. Such a conversion is not yet pro-

vided, but scheduled for future work.

5.2 Configuration

ViennaX is based on run-time configuration to allow user-

input to actively drive the execution of the task graph and

relies on the XML to build a flexible configuration envi-

ronment. Using an XML-based approach for the configu-

ration of the framework is also important with respect to a

future graphical user interface (GUI) extension. A GUI will

have to generate well-formed XML data, which is then

used to drive the framework execution in ViennaX.

A basic configuration file with the sole purpose of

executing a single plugin named ViennaCLLinSol is

depicted in the following.

The general plugins region contains the set of all plu-

gins, which should be utilized during the execution (Lines

1–6). Each plugin is defined within its own region (Lines

2–5), which enables to pass parameters to the plugin

instance (Fig. 9). The name of the plugin has to be men-

tioned within the key region (Line 3), and needs to match

the name as provided by the static ID method provided by

the respective plugin (Sect. 5.1.2).

The presented configuration must be supplemented with

additional plugins connected to the two input sockets

(system matrix A and the right hand-side x) of the Vien-

naCLLinSol plugin. Otherwise, the configuration is

incomplete and ViennaX will shutdown with a corre-

sponding error message.

Internally, the pugixml21 library is used, which aside

from providing an XML datastructure also supports the

XPath query language. This query language enables to

conveniently access the parameters forwarded from the

input configuration data. For instance, based on the previ-

ous XML configuration snippet, a string containing the

value of the parameter tol is obtained by the following

user-level code.

This tolerance parameter (tol) can be forwarded to

ViennaCL’s linear solver implementation, to set the

required accuracy for the iterative convergence process.

The corresponding implementation of this query is

essentially based on utilizing the following pugixml-based

algorithm.

The xml object is the data structure holding the entire

XML configuration data. xpath_query_str contains the

XPath query expression, based on the previous user-level

example, the string would contain ‘‘plugin/step/’’.

ViennaX additionally provides numerical conversion

routines and mathematical string-expression evaluations

based on the Lua22 library. These features enable to

directly utilize the string-based query results in numerical

expressions. For instance, the following user-level snippet

depicts the evaluation feature.

5.3 Scheduler kernels

This section discusses the different scheduler kernels pro-

vided by ViennaX. The general design as well as imple-

mentation background is provided.

5.3.1 Serial mode

The SM kernel is used for serial task graph execution on a

shared-memory machine. Although the task graph is pro-

cessed in a serial manner, the individual plugins can indeed

21 http://pugixml.org/.
22 http://www.lua.org/.
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utilize shared-memory parallelization approaches, such as

OpenMP. The task graph implementation is based on the

Boost Graph Library23, which not only provides the data

structure but also graph algorithms, such as topological sort

[33].

The serial scheduler is based on the list scheduling

technique [25]. Informally, this technique uses a prioritized

sequence of tasks, which is then processed consecutively.

Figure 10 depicts the major steps of execution flow.

The plugins are loaded according to the input configu-

ration file (Sect. 5.2) by the factory mechanism (Sect.

5.1.1). Each plugin is configured based on the parameters

listed in the input file. Based on these parameters the input

and output dependencies are defined. For instance, the

following code snippet depicts the implementation of the

plugin configuration as well as the allocation of the plugin

sockets.

A smart pointer is used to create the database object

(Sect. 5.1.3), ensuring proper memory handling (Line 1).

The set of plugins is traversed and preinitialized with the

configuration data and the unique plugin integer, as dis-

cussed in Sect. 5.1.2 (Lines 3–6). During the plugin ini-

tialization step, the sockets are created in the individual

plugins (Line 7). If source sockets have been created, the

associated data has to be instantiated by allocating the data

in the socket database (Line 8–11).

A task graph meshing algorithm connects the various

plugins based on their dependencies. The meshing proce-

dure is based on plugging the sink sockets of the plugins to

valid source sockets of other plugins (Sect. 5.1.3). Validity

is ensured by comparing the socket IDs. The generated task

graph is used for building the prioritized sequence, gen-

erated by the Boost Graph’s topological sort graph algo-

rithm, as depicted in the following.

The graph object is a directed graph datastructure, which

is used to hold the entire task graph. The prioritized sequence

of tasks is processed consecutively by traversing the result

container plist and executing the individual plugins via the

plugin’s execute interface method (Sect. 5.1.2).

Note that the linear solver plugin introduced in Sect. 4

can be utilized with this scheduler.

5.3.2 Distributed task parallel mode

The DTPM scheduler kernel enables applications focusing

on a task parallel approach. In general, the scheduler fol-

lows a static scheduling approach, based on load balancing

indicated by optional plugin weights. Similar workload

distribution approaches are available, focusing on dynamic

scheduling implementations based on, for instance, work-

stealing [1, 14]. The execution of the individual plugins is

distributed among the available MPI processes. Therefore,

Generate Plugins

Generate Socket Database

Setup Sockets

Build Task Graph

Prioritize Tasks

Process Graph

Fig. 10 Flow diagram of the SM scheduler kernel

std::string step = query("plugin/tol/");ViennaCLLinSol

<plugins>
  <plugin>
    <key>ViennaCLLinSol</key>
    <tol>1.0E-10</tol>
  </plugin>
  <plugin>
    <key>PETScLinSol</key>
    <iter>200</iter>
  </plugin>
  ...
</plugins>

std::string step = query("plugin/iter/");PETScLinSol

Fig. 9 Each plugin possesses

its own configuration region

within the input configuration

file. This data can be accessed

from within the plugin by

querying the configuration

object

23 http://www.boost.org/libs/graph/.
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considerable speedup of the task execution can be

achieved, if the task graph offers parallel paths. Figure 11a

depicts the flow diagram of the scheduler.

The DTPM scheduler has two peculiarities: First, the

global task graph is partitioned and ultimately the indi-

vidual subgraphs are processed by different MPI processes.

Second, as the plugins sharing a data connection might be

executed on different MPI processes, an extension to the

socket data communication layer incorporating the dis-

tributed memory environment is required.

The distribution of the workload is based on the METIS24

graph partitioning library.

A weighting approach is implemented enabling the user

to assign a weight to the plugin implementation indicating

the computational load of the respective plugin. This load

is used by METIS, aiming to equalize the computational

effort over the generated partitions. The following code

snippet depicts the user-level expression which sets the

computational load of a plugin. This statement has to be

placed inside the plugin’s initialization method (Sect.

5.1.2).

Internally, ViennaX converts the graph datastructure to

a compressed sparse row format, which is required by the

METIS API. In the following, the utilization of the METIS

partitioner is shown. For the sake of simplicity, only the

most important parameters are depicted.

The total number of graph vertices is provided (Line 1).

The graph is passed to METIS in the CSR format (Lines 2,

3). The vertex weights and the number of desired parti-

tions, which equals the number of available MPI processes,

are forwarded (Lines 5, 6). Upon completion, the result

container maps each vertex to a specific partition (Line 7).

The second peculiarity of the DTPM scheduler, being

the incorporation of a distributed memory environment into

the socket data communication layer, is based primarily on

the non-blocking point-to-point communication capabili-

ties of the MPI layer. The graph partitioning step yields,

aside from the MPI process assignments of the plugins, a

lookup table for the socket communication. Each MPI

process holds its own socket database, and utilizes the

communication lookup table to determine the correspond-

ing transmission sources and sinks. For instance, after a

plugin has been executed on an MPI process, its source

sockets requiring outbound inter-process communication

are traversed and the transmission is initiated.

In general, we utilize the non-blocking point-to-point

methods to increase execution performance. This is crucial,

as, for instance, in the optimal case, an MPI process should

not wait for an outgoing transmission to be finished before

it executes another plugin. Such an approach is typically

referred to as overlapping communication with computa-

tion. However, using a pure MPI approach and therefore

(a) (b)

Fig. 11 a Flow diagram of the DTPM scheduler kernel. The root

MPI process is responsible for preparing and distributing the

workload evenly between the compute units. All available compute

units process their distinct parts of the graph. b Flow diagram of the

DDPM scheduler kernel. Similar to the DTPM scheduler, the root

MPI process prepares the entire task graph. However, the entire

workload is distributed to all MPI processes, as each process executes

the entire task set represented in the task graph
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Fig. 12 Exemplary execution behavior of the DDPM scheduler based

on two plugins and four MPI processes. The bars in the right part of

the figure indicate computational load. Each MPI process executes the

individual plugin. Additionally, each plugin has access to an MPI

communicator object, enabling not only classical data parallel

execution modes but also plugin inter-process communication.

Inter-plugin communication is realized by the socket mechanism

(SCK)

24 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.
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non-blocking communication methods, such an overlap is

rarely achieved. In fact, specialized hardware and software

is required to achieve a reasonable overlap, for instance,

Cray’s XE6 with Gemini interconnects is capable of

delivering such an overlap [20]. A possible future exten-

sion would be a hybrid approach, utilizing MPI and

Threads to implement a true asynchronous approach, thus

introducing a much more improved overlap of communi-

cation and computation.

The linear solver plugin introduced in Sect. 4 can be

utilized with this scheduler, as each plugin is executed by

one process. Therefore, one MPI process does access the

available computational resources via the parallel acceler-

ator layer.

5.3.3 Distributed data parallel mode

The DDPM scheduler kernel enables simulations based on

the data parallel approach. Figure 11b depicts the flow

diagram of the scheduler implementation. Contrary to the

DTPM scheduler, the graph is not partitioned as all plugins

are processed by all MPI processes in the same sequence.

The root process prepares the task graph and generates a

prioritized list of plugins. This list is distributed to all MPI

processes each processing the graph in its entirety. As with

the DTPM scheduler, each MPI process holds its own

socket database responsible to store the data associated

with the sockets on the local process.

A peculiarity of the DDPM scheduler kernel is the fact

that each plugin has access to an MPI communicator object

via the comm method, providing access to the entirety of

the MPI environment. The following code snippet depicts

an exemplary utilization in a plugin’s implementation to

evaluate the rank of the current MPI process.

A Boost MPI communicator object offers implicit con-

version to a raw MPI communicator, ensuring interopera-

bility with non-Boost MPI implementations.

Figure 12 shows the execution behavior of the sched-

uler. Each plugin is processed by all MPI processes and has

access to an MPI communicator. Inter-plugin communi-

cation is provided by the socket data layer, whereas inter-

process communication is supported by the MPI library. A

similar parallel communication model has already been

applied by the CCA [8].

The current approach of providing the plugins with an

MPI communicator offers access to all MPI processes

which enables single instruction multiple data implemen-

tations (SIMD), but prohibits multiple instruction multiple

data (MIMD) execution. Extensions could implement a

grouping of MPI processes into new split MPI communi-

cator objects, thus supporting MIMD application scenarios.

It should be noted that the utilization of the linear solver

plugin introduced in Sect. 4 is not reasonable here, as in

this case each process would perform the computation, thus

massively overburdening the compute unit beyond rea-

soning. For the scheduler at hand, an MPI-powered linear

solver implementation is the proper choice, as is provided

by, for instance, the PETSc library.

6 Applications

This section presents application results with a focus on

distributed parallel execution scenarios. Therefore, results

for the DTPM and the DDPM scheduler are depicted. The

target system for the benchmarks is HECToR25, a Cray

XE6 supercomputer with a Gemini interconnect.

6.1 Distributed task parallel mode

This section investigates the scalability of the DTPM

scheduler (Sect. 5.3.2) by a Mandelbrot benchmark as

implemented by the FastFlow framework. Implementation

details of the benchmark are provided as well as perfor-

mance results.

6.1.1 The benchmark

The DTPM scheduler is used to compute the Mandelbrot

set for parts of the application domain by using different

instances of a Mandelbrot plugin. The partial results are

gathered at the end of the simulation, which provides

insight into the communication overhead (Fig. 13). The

implementation of the Mandelbrot plugin performs a par-

titioning of the simulation domain. Thus, each instance is

responsible for a subdomain, which is identified by the

plugin index. In its essence, this approach follows a data

parallel approach, which also shows that the DTPM can be
Fig. 13 The graph for the Mandelbrot benchmark. 1,000 and 4,000

instances of the Mandelbrot plugin (MB) have been used. The partial

results are gathered, which forces MPI communication 25 http://www.hector.ac.uk/.
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used for such kind of tasks, despite of its inherent focus on

task parallelism.

Two different simulation domains have been investi-

gated, being a grid of 1,000 9 1,000 and 4,000 9 4,000 to

demonstrate the influence of varying computational load on

the scaling behavior. Each plugin processes one line of the

grid, consequently 1,000 instances for the smaller and

4,000 instances for the larger case have been used.

The following depicts the configuration file for the

smaller benchmark.

The clones entry triggers an automatic duplication of

the plugin in ViennaX, thus in this case 1,000 instances of

the Mandelbrot plugin are generated. The parameters dim

and niters are forwarded to the plugins and relate to the

number of grid points in one dimension and the number of

iterations used in the Mandelbrot algorithm, respectively.

The configuration of the larger benchmark is similar,

however, the number of clones and dimensions is increased

to 4,000, respectively.

During the Mandelbrot plugin’s initialization phase, the

output socket has to be generated as well as the computational

level of the plugin has to be set to balance the computational

load over the computational resources. A peculiarity of

computing the Mandelbrot set is the fact that the computa-

tional load in the center is larger than on the boundary.

Therefore, an exemplary weighting scheme has been applied

to increase the load balancing over the MPI processes. The

plugin instances in the center are assigned a higher compu-

tational weight (Sect. 5.3.2) as depicted in the following.

In Line 1 the current plugin ID is extracted, which has

been provided by the scheduler during the preparation phase

(Sect. 5.1.2). As each plugin is responsible for a single line of

the simulation grid, its ID is tested whether it is responsible

for the center part. If so, the computational level is set to a

high value, which is forwarded to the graph partitioner.

As each plugin computes a subset of the simulation result,

the output port has to be localized with respect to the plugin

instance to generate a unique socket. As already stated, the

socket setup has to be placed in the initialization step.

This socket generation method automatically generates

sockets of the type Vector and the name vector including

an attached string representing the plugin ID, retrieved

from the pid method. This approach ensures the generation

of a unique source socket for each Mandelbrot plugin

instance.

The execution part accesses the data associated with the

source socket and uses the datastructure to store the com-

putational result. The plugin ID is used as an offset indi-

cating the responsible matrix line which should be

processed.
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Fig. 14 The strong scaling behavior of the Mandelbrot benchmark.

Increasing the computational load on the plugins shifts the scaling

saturation towards higher core numbers. The smaller problem scales

well for up to 256 cores, however, for higher core numbers the

communication overhead outpaces the computational load on the

plugins. Both benchmarks depict a non-optimal speedup for small

core numbers, which is due to communication overhead and

insufficient load balancing
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On the receiving side, the Gather plugin’s initialization

method generates the required sink sockets using a con-

venience function.

The above method automatically generates one sink

socket for 0…n - 1 predecessor plugins, where n repre-

sents the current plugin ID. Therefore, all previous output

ports generated by the Mandelbrot plugins can be plugged

to the respective sink sockets of the Gather plugin.

The execution phase is dominated by a gather method,

similar to the MPI counterpart.

The partial results of the 0…n - 1 predecessor plugins

are stored consecutively in a vector container, thus form-

ing the result matrix where each entry corresponds to a

point on the two-dimensional simulation grid.

6.1.2 Results

Figure 14 depicts the strong scaling results, i.e., a fixed

problem size is investigated for different core numbers.

Reasonable scaling is achieved, although communica-

tion overhead and load balancing problems are identifi-

able already for small core numbers. However, increasing

the computational load on each plugin and the number of

plugins to be processed by the MPI processes, further

shifts the scaling saturation towards higher core numbers.

For the smaller problem an efficiency of 38 % and for the

larger problem an efficiency of 60 % for 512 cores is

achieved. Improving the load balancing via the plugin

weighting approach as well as introducing a hybrid

scheduler to improve communication and computation

overhead will further improve the scaling behavior.

6.2 Distributed data parallel mode

The DDPM scheduler (Sect. 5.3.3) is investigated by

comparing the execution performance to a reference

implementation provided by the deal.II26 library [6]. This

benchmark not only shows that an available implementa-

tion using external high-performance libraries can be

transferred to the ViennaX framework in a straightforward

manner but also that the execution penalty of using the

framework is negligible.

6.2.1 The benchmark

A large-scale 2D Laplace test case of the deal.II library

offering 67 million degrees of freedom is considered,

which utilizes components representing important aspects

of large-scale high performance computing applications

[5]. For instance, the datastructure holding the mesh and

the linear system is fully distributed by using datastructures

provided by the PETSc library and the p4est library. The

equations are discretized using biquadratic finite ele-

ments and solved using the conjugate gradient method
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Fig. 16 The execution performance of the Laplace benchmark is

compared to the reference implementation provided by the deal.II

library. ViennaX is approximately 1 s slower than the reference

implementation throughout the core spectrum

Fig. 15 The graph of the deal.II benchmark, which is executed by all

MPI processes (P0-Pn). The system matrix (A) and the right-hand

side (b) as well as meta information (meta) is forwarded to the solver

plugin via the socket communication layer

26 http://www.dealii.org/.
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preconditioned by an algebraic multigrid method provided

by the Hypre27 package and accessed via PETSc.

The reference implementation is split into two func-

tional parts, being the assembly by the deal.II library and

the solution of the linear system via the PETSc library.

Therefore, two plugins have been implemented which also

underlines the reusability feature (Fig. 15). For instance,

the linear solver plugin can be replaced with a different

solver without changing the implementations.

The following depicts the configuration file for the

benchmark.

For the sake of simplicity, no parameters are provided to

the plugins. In production code, however, additional

parameters would be made accessible via sinks.

The assembly plugin’s initialization phase prepares the

distributed datastructures as well as provides the source

sockets. However, as the PETSc and deal.II libraries

require a call to their own initialization methods which are

required for the MPI mode, a pre-initialization step is

required. Therefore, ViennaX supports passing a functor to

the plugin’s constructor via an additional convenience

macro, which is executed before the plugin-instance’s

creation. This step is vital as these initialization methods

have to be called before the library specific MPI data-

structures are instantiated. The following code snippet is

placed inside the plugin’s body to trigger an correct ini-

tialization order. Although ViennaX already initialized the

MPI environment, the call to PetscInitialize is required.

The datastructures required for the computation are

generated and kept in the plugin’s state. Therefore, the

source sockets are linked to the already available objects,

instead of created from scratch during the socket crea-

tion. The execute method of the assembler plugin for-

wards the simulation datastructures to the implementation

provided by the deal.II example, which performs the

actual distributed assembly. This fact underlines the

straightforward utilization of already available imple-

mentations by the ViennaX plugins. The following code

snippet gives a basic overview of the assembly plugin’s

implementation.

The plugin state holds various data objects (Lines 2–5).

The sim objects hold references of the other objects, thus

the internals of the simulation class can access the data-

structures. The source sockets link to already available data

objects (Lines 6, 7). The simulation grid is generated

(Lines 14, 15) and the linear system (matrix, rhs) is

assembled (Lines 16).

The solver plugin generates the corresponding sink

sockets in the initialization method and utilizes the PETSc

solver environment in the execution method. As each MPI

process holds its own instance of the socket database, the

pointers of the distributed datastructures are forwarded

from the assembler to the solver plugin. The PETSc in-

ternals are, therefore, able to work transparently with the

distributed datastructures without the need for additional

copying operations. The following depicts the crucial parts

of the solver plugin’s implementation.

6.2.2 Results

Figure 16 compares the execution performance of the Vi-

ennaX implementation with the deal.II reference27 http://acts.nersc.gov/hypre/.
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implementation. A system of 67 million degrees of free-

dom is investigated, which due to it’s memory require-

ments does not fit on one compute node. Generally,

excellent performance is achieved, however, an overall

constant performance hit of about 1 s for all core numbers

is identified. This performance hit is due to the run-time

overhead introduced by the plugin framework, such as the

time required to load the plugins, generate the task graph,

and perform virtual function calls. The relative difference

for 1,024 cores is around 8 %, however, it is reduced to 1.5

% for 64 cores, underlying the fact that the framework’s

overhead becomes more and more negligible for larger run-

times. In our opinion this overhead is acceptable, as the

simulations we are aiming for have run-times way beyond

50 s, as is the case for 64 cores.

Although the relative difference is significant for short

run-times, a delay of 1 s hardly matters in real world, day-

to-day applications. On the other hand, accepting this

performance hit introduces a significant increase in flexi-

bility to the simulation setup due to the increased reus-

ability of ViennaX’s component approach.

7 Possible future extensions

Aside from the features that ViennaX currently provides,

the following limitations and future extensions have been

identified. The communication and computation overlap of

the DTPM scheduler is improvable by extending the cur-

rent pure-MPI implementation by a hybrid MPI/Threads

approach. The DDPM scheduler currently only supports

SIMD parallelism models. To also support MIMD

approaches, the scheduler needs to be extended by essen-

tially creating new communicator objects, being responsi-

ble for subgroups of MPI processes. An automatic

conversion mechanism for the socket communication layer

could be implemented, enabling coupling of data sockets

offering different but convertible physical units. The cur-

rent implementation of ViennaX solely focuses on the

distributed parallelization. Although this implementation

can be used on shared-memory multi-core targets, it does

likely not optimally utilize the system resources with

respect to memory allocation. Therefore, future extensions

should incorporate shared-memory parallelization models

for the scheduler kernels.

8 Conclusion

We presented the free open source, parallel plugin execu-

tion framework ViennaX. Details about the library as well

as core features have been discussed. Application examples

have been introduced and performance results have been

shown. Our framework enables the introduction of a high

level of flexibility for scientific simulations using a plugin

approach. Parallel execution allows for the execution of

large work packages on distributed computing nodes, thus

tremendously improving overall performance.
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