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A procedure is proposed to calculate the energy of a misfit dislocation at the inter-
face of a film with a finite thickness and a substrate with semi-infinite thickness
when modelled anisotropically and with different elastic properties. The results
are compared with the treatments derived by Steeds, Willis, Jain and Bullough,
and Freund. The new formula is used to calculate the equilibrium critical thickness
for Alx Ga1−x N/GaN, Inx Ga1−x N/GaN and Si1−x Gex /Si heterostructures. A
comparison with experimental data from the literature shows good agreement.
In contrast to other models, application of the new formula for dislocation energy
yields smaller critical thickness for the onset of the misfit dislocations.

Keywords: dislocations; critical thickness; heterostructure

1. Introduction
A serious issue for the reliability and performance of heterostructure devices is the deterio-
rating impact of dislocations, mostly originating from epitaxy, when a thin layer is grown on
a substrate with significantly different lattice parameters. Below a certain layer thickness,
called the critical thickness (CT), the layer is grown pseudomorphically on a substrate,
i.e. the layer is grown with the same lattice parameter as the substrate. Consequently,
the layer is strained, leading to large strain energy. When CT is reached, a relaxation
of the strain occurs via plastic flow. The most common mechanism of plastic relaxation
is the introduction of misfit dislocations (MDs) along the interface between the film and the
substrate.

Several models have been proposed to calculate CT. In 1974, Matthews and Blakeslee
[1] compared the force exerted by strain on the extension of the MD line with the tension
in the dislocation line acting against its elongation. Their model assumes that both the
film and the substrate have the same isotropic elastic properties, the film has a finite
thickness (however, neglecting the free surface effects) and the substrate is semi-infinite.
Starting from the same hypotheses, Freund [2,3] compared the energy necessary to cre-
ate a MD with the energy inside the fully strained thin film. He arrived at the same
CT formula as Matthews and Blakeslee. However, the two models differ conceptually:

∗Corresponding author. Email: coppeta@iue.tuwien.ac.at
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Philosophical Magazine 187

Matthews and Blakeslee assumed a pre-existing dislocation in the substrate which creates
an MD segment along the heteroepitaxial interface due to the action of the misfit stress;
Freund assumed a freshly generated dislocation at the film surface which glides into the
interface between the film and the substrate. The impact of the free surface of the film
and the difference between the elastic constants of the film and the substrate on the CT was
discussed by Willis, Jain and Bullough [4], yet they still worked in the framework of isotropic
elasticity.

The anisotropy of the heterostructure can be considered in the CT calculation using the
methodology developed by Steeds [5] for the energy of an infinitely long straight dislocation
inside an anisotropic medium. This has been done in the works by Holec et al. [6–8],
however, the free surfaces and differences in elastic response of the film and the substrate
were ignored.

In this paper, we close the gap by evaluating the impact of different effects – elastic
anisotropy, difference between the elastic constants of the film and the substrate, the free
surface of the film – on CT values. After reviewing the methodology, we apply it to
several material systems, namely, Alx Ga1−x N/GaN, Inx Ga1−x N/GaN, and Si1−x Gex /Si,
and compare with available experimental data from literature. We also calculate the pre-
logarithmic factors related to the dislocation core structure using analytical continuum
models. These compare favourably with values obtained through atomistic simulations
available in the literature.

2. The critical thickness criterion
The system shown in Figure 1 is composed of a thin film with a finite thickness in the region
0 < z < h, and a semi-infinite substrate filling the half-space z < 0. The critical thickness
criterion compares the dislocation energy per unit length, E , with the work, W , done by
the misfit stress, σ m

i j , during the bringing of the unit length of a dislocation from the film
surface into the film–substrate interface. As a consequence, the CT criterion is given by

W = E . (1)

2.1. Work done by the misfit strain
Since the film is much thinner than the semi-infinite substrate, the strain in the substrate
is assumed to be zero, while the complete lattice mismatch is accommodated in the film
(i.e. we neglect any mismatch strain relaxation by substrate bending). According to the
geometry shown in Figure 1, the top surface z = h of the film is traction free and therefore
σm

xz(x, h) = σ m
zz (x, h) = σ m

yz(x, h) = 0. Assuming that all directions within the xy-plane
(the hexagonal plane) are equivalent, a planar stress state is obtained and thus the mismatch
strain components are εm

xx = εm
yy = εm , where εm is the misfit strain, defined as

εm = a∗ − a
a

, (2)

considering that the thin film’s in-plane lattice constant a adjusts to the rigid substrate’s
lattice constant a∗.
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188 R.A. Coppeta et al.

Hooke’s law for isotropic structures reads
⎛

⎜⎜⎜⎜⎜⎜⎝

σxx
σyy
σzz
σyz
σxz
σxy

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0

0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

εxx
εyy
εzz

2εyz
2εxz
2εxy

⎞

⎟⎟⎟⎟⎟⎟⎠
, (3)

where C44 = (C11 − C12) /2. In the case of cubic and hexagonal symmetries, the shape of
the stiffness matrix Ci j changes to

⎛

⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0

0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞

⎟⎟⎟⎟⎟⎟⎠
, and

⎛

⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0

0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4)

respectively, where C66 = (C11 − C12)/2 for the hexagonal symmetry (the right matrix
above).

Considering, for example, the hexagonal symmetry, Hooke’s law gives

0 = σ m
zz = C13ε

m
xx + C13ε

m
yy + C33ε

m
zz (5)

which results in

εm
zz = −2

C13

C33
εm . (6)

Finally, Hooke’s law yields for the mismatch stress

σm = σ m
xx = σ m

yy = (C11 + C12)C33 − 2C2
13

C33
εm . (7)

In the chosen Cartesian coordinate system, the Burgers vector b, the tensor of the misfit
stress σm and the outer normal to the cut surface # = S2 + S4 (see Figure 2) denoted by n
take the forms

b =

⎛

⎝
−b sin θ sin φ

b cos θ

b sin θ cos φ

⎞

⎠, σm =

⎛

⎝
σm 0 0
0 σm 0
0 0 0

⎞

⎠, n =

⎛

⎝
− cos φ

0
sin φ

⎞

⎠, (8)

where θ is the angle between the dislocation line and the Burgers vector, and φ the angle
between the slip plane and the normal to the film–substrate interface (see Figure 1). The
work per unit length of the dislocation, W , done by the misfit stress is calculated according
to [3]

W=
∫ h/cos φ

0

∑

i, j

biσ
m
i j n j dz=

∫ h/cos φ

0

∑

i

(biσi x nx + biσi znz) dz=bσmh sin θ sin φ.

(9)
In a straightforward manner, analogous expressions for the other symmetries of the

stiffness tensor (isotropic or cubic) can also be obtained.
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Philosophical Magazine 189

Figure 1. The straight infinitely long dislocation at the film–substrate interface. The film thickness
is h, the slip plane is tilted by an angle φ from the normal to the interface.

2.2. Dislocation energy
The linear elasticity theory provides the framework to derive the dislocation energy. This
theory breaks down in the dislocation core region, therefore, an inner cut-off parameter rc
is conveniently introduced to separate the dislocation core (plastic region) from the elastic
region. rc is usually taken to be b/2, where b is the length of the Burgers vector [3].

The subsequent treatment is developed for the simplified geometry shown in Figure 2.
The energy per unit length of the dislocation E (for simplicity often called just the dislocation
energy) may be divided into two parts:

E = Ecore + Ed, (10)

where Ecore and Ed account for energy inside and outside the dislocation core region,
respectively. For large film thickness h (see Figure 2), the core energy constitutes only
a minor contribution to the total dislocation energy and is thus neglected in the following
calculation. Let σ d be the stress tensor associated with the strain field ϵd caused by the
straight dislocation. Then the strain energy of the dislocation is given by

Ed = 1
2

∫

V

∑

i j

σ d
i jϵ

d
i j dV = 1

2

∑

i j

∫

V

1
2

(
∂ui

∂x j
+ ∂u j

∂xi

)
σ d

i j dV (11)

using the symmetry of the stress tensor σ d
i j = σ d

ji

1
2

∑

i j

∫

V

∂ui

∂x j
σ d

i j dV = 1
2

∑

i j

∫

V

∂

∂x j

(
uiσ

d
i j

)
dV − 1

2

∑

i j

∫

V
ui

∂σ d
i j

∂x j
dV . (12)

Recalling the equilibrium conditions for elastic media,

∑

j

∂σ d
i j

∂x j
= 0, (13)
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190 R.A. Coppeta et al.

Figure 2. The dislocation is formed by an offset (defined by the Burgers vector b) of one side S4 of
the plane δ with respect to the other side S2. The surface S3 encloses the dislocation core region. h
denotes the film thickness.

we obtain

Ed = 1
2

∑

i j

∫

V

∂

∂x j

(
uiσ

d
i j

)
dV . (14)

Using the Gauss–Ostrogradsky theorem to transform the volume integral into a surface
integral over the surface S enclosing the volume V :

1
2

∑

i j

∫

V

∂

∂x j

(
uiσ

d
i j

)
dV = 1

2

∑

i j

∫

S
uiσ

d
i j n j dS (15)

The surface S can be divided into five parts (see Figure 2) and the last equation can be
rewritten as

1
2

5∑

k=1

⎛

⎝
∑

i j

∫

Sk

uiσ
d
i j n j dSk

⎞

⎠. (16)

Along the free surface (S1 and S5) of the film, σzz = σxz = σyz = 0 and n = (0, 0, 1),
so ∫

S1

uiσ
d
i j n j dS1 =

∫

S5

uiσ
d
i j n j dS5 = 0. (17)

Since S6 is supposed to be infinitely far from the dislocation, the displacements vanish
and the contribution of the surface is zero.

The surface S3 is a cylindrical surface whose axis is aligned along the y-axis. Since the
dislocation is infinite along the y direction, n = (nx , 0, nz):

1
2

∑

i j

∫

S3

uiσ
d
i j n j dS3 = 1

2

∑

i

∫

S3

(
uiσ

d
ix nx + uiσ

d
iznz

)
dS3 (18)
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Figure 3. The core surface S3 in a cylindrical coordinate system.

To simplify the integration, it is convenient to transform the Cartesian coordinates into
the cylindrical coordinates (see Figure 3) as

x = rc cos ϕ,

y = t , (19)

z = rc sin ϕ.

Consequently,
dS3 = dldy = rcdϕdy. (20)

Considering that n = (cosϕ, 0, sinϕ), Equation (18) per unit length along y becomes

1
2

∫ 2π

0

∑

i

ui

(
σ d

ix cos ϕ + σ d
iz sin ϕ

)
rc dϕ, i = x, y, z. (21)

Expanding the last equation yields

1
2 rc

∫ 2π

0

⎛

⎜⎜⎜⎝
ux

(
σ d

xx cos ϕ + σ d
xz sin ϕ

)

︸ ︷︷ ︸
edge

+ uy

(
σ d

yx cos ϕ + σ d
yz sin ϕ

)

︸ ︷︷ ︸
screw

+ uz

(
σ d

zx cos ϕ + σ d
zz sin ϕ

)

︸ ︷︷ ︸
edge

⎞

⎟⎟⎟⎠
dϕ. (22)

The substitution of the displacements and the stress components expressed in cylindrical
coordinates allows for the evaluation of the impact of the core surface on the dislocation
energy.

When the impact of the core integral along S3 is negligible, only the integrals along
surfaces S2 and S4 have to be considered. The evaluation of these two integrals for a straight
dislocation inside an infinite isotropic medium yields the classic formula for the dislocation
energy [3,9,10]:
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192 R.A. Coppeta et al.

Ed = µb2 (1 − νcos2θ
)

4π (1 − ν)
ln
(

R
rc

)
, (23)

where µ and ν are the shear modulus and the Poisson ratio, respectively, θ is the angle
between the Burgers vector b and the dislocation line, and R is the outer cut-off radius.
Here, we take it to be equal to the film thickness.

If the straight dislocation is considered inside an infinite anisotropic medium, the
evaluation of the integrals along the surfaces S2 and S4 yields the formula derived by
Steeds [5]:

Ed = 1
4π

∑

i j

Ki j bi b j ln
(

R
rc

)
, (24)

where Ki j is called energy factor and it is a function of the crystal structure and the elastic
properties.

If the evaluation of the integrals along the surfaces S2 and S4 is performed for a straight
dislocation at the interface between a finite isotropic film and an semi-infinite isotropic
substrate with different elastic constants, the formula developed by Willis et al. [4] is
obtained.

In this paper, the evaluation (see Appendix 1) of the integrals along the surfaces S2 and
S4 is performed for the most general case, e.g. for a straight dislocation at the interface
between a finite anisotropic film and a semi-infinite anisotropic substrate with different
elastic constants:

Ed = 1
2

∫ h

rc

∑

i j

biσi j n j dz. (25)

In conclusion, four approaches (summarized in Table 1) for calculating the disloca-
tion energy were defined above, which will be used to evaluate the impact of different
approximations.

2.3. The CT models
According to Equation (1), equating the work done by the misfit strain with each of the
four formulas for dislocation energy yields four different models with which to calculate
the equilibrium CT. These models are reported with the respective hypotheses in Table 1
and their results are discussed in the subsequent paragraphs. In particular, the CT model
developed by Freund [2], which neglects the differences between film and substrate, con-
siders only isotropic elasticity, and in its simplified (often used) formula, also neglects the
effect of the free surface, is indicated by F. The F model corrected for the elastic anisotropy
using the Steeds formula for the dislocation energy [5] is denoted by S. The fully isotropic
model, but with the free surface and different elastic constants in the film and the substrate,
employs the Willis, Jain and Bullough formula [4], and is indicated by WJB. Finally, a
model addressing all effects as described in Appendix 1 is named S+WJB.

3. Impact of the anisotropy on the CT criterion
Steeds in his book [5] developed a procedure to calculate the energy of one infinite straight
dislocation in the bulk of an infinite material considered anisotropic with a certain crystal-
lographic symmetry. The result for the hexagonal symmetry is briefly described in [6].
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Table 1. An overview of different assumptions for evaluating misfit dislocation energy, and
equilibrium CT.

Freund Steeds Willis et al. Steeds + Willis et al.
(F) [2,3] (S) [5] (WJB) [4] (S+WJB) Appendix 1

Anisotropy no yes no yes
Different elastic properties
of the film and the substrate no no yes yes
Free surface of the film no no yes yes

Here, we adopt this treatment in order to calculate the energy (with and without the con-
tribution of the dislocation core) for a dislocation whose slip system is 1/3⟨1 1 2̄ 3⟩{1 1 2̄ 2}
or 1/3⟨1 1 2̄ 3⟩{1 1̄ 0 1} in Al0.2Ga0.8N and in In0.2Ga0.8N. The same treatment with the
appropriate elastic constants is used to calculate the energy for the so-called 60◦ dislo-
cation slip system ⟨1 1 0⟩{1 1 1} in Si0.8Ge0.2. The used material constants are listed in
Appendix 2.

In the following, we discuss the difference between the dislocation energy Ed and
the work W done by the misfit stress field for each alloy. When the resulting value is
positive, fully coherent accommodation of the misfit strain is energetically preferred, while
for negative values, the introduction of misfit dislocations becomes favoured. The highest
film thickness yielding the difference of 0 indicates the equilibrium CT.

The resulting values for the three different alloys as a function of the film thickness are
plotted in Figures 4–6. Each figure has two sets of curves, one for the F (isotropic elasticity)
and one for the S (anisotropic elasticity) procedures. For all systems investigated here, the
anisotropy lowers CT. Additionally, it turns out that the inclusion of the integral along the
core surface S3 (values labelled “with Ecs” in the figures) has, in all cases, only a negligible
impact (or at least on order of magnitude smaller effect than the correct crystal symmetry)
on the predicted CT (see Table 2).

Al0.2 Ga0.8 N film on GaN substrate

d
10

9
J

m

10 20 30 40

20

15

10

5

5

10

15

without ECS

with ECS

Anisotropy S

Isotropy F

Crystal Symmetry

Film thickness nm

Figure 4. Ed − W as function of the film thickness. Ed is calculated assuming isotropic (F) and
anisotropic (S) elasticity, with or without the evaluation of the integral along the core surface Ecs. W
is calculated according to Equation (9). The CTs are indicated by a circle.
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In0.2 Ga0.8 N film on GaN substrate

d
10

9
J

m

2 4 6 8 10

15

10

5

5

without ECS

with ECS
Anisotropy S

Isotropy F

Crystal Symmetry

Film thickness nm

Figure 5. Ed − W as function of the film thickness. Ed is calculated assuming isotropic (F) and
anisotropic (S) elasticity, with or without the evaluation of the integral along the core surface Ecs. W
is calculated according to Equation (9). The CTs are indicated by a circle.

Si0.8 Ge0.2 film on Si substrate

d
10

9
J

m

5 10 15 20 25

4

3

2

1

1

2

without ECS

with ECSAnisotropy S

Isotropy F

Crystal Symmetry

Film thickness nm

Figure 6. Ed − W as function of the film thickness. Ed is calculated assuming isotropic (F) and
anisotropic (S) elasticity, with or without the evaluation of the integral along the core surface Ecs. W
is calculated according to Equation (9). The CTs are indicated by a circle.

Table 2. CT values (in nm) of the studied systems.

F F+Ecs S S+Ecs WJB S+WJB

Al0.2Ga0.8N film on GaN substrate 30 30 16 12 93 17
In0.2Ga0.8N film on GaN substrate 8 8 3 0 26 5
Si0.2Ge0.8 film on Si substrate 18 18 8 6 74 16

4. The critical thickness according to WJB
Willis et al. [4] derived a procedure to evaluate the integrals along the S2 and S4 surfaces in
order to calculate the energy Ed of a misfit dislocation at the interface between a film with a
finite thickness and a semi-infinite substrate. The film and the substrate are both supposed
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d
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9
J

m

20 40 60 80 100
0

20

40
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80

100

GaN GaN

Al0.8 Ga0.2 GaN

In0.8 Ga0.2 GaN

With Surface Effects WJB

No Surface Effects F

Film Free Surface

Film thickness nm

Figure 7. Ed is function of the film thickness for Alx Ga1−x N/GaN and Inx Ga1−x N/GaN systems.
The ⟨112̄3⟩{1 1̄ 0 1} slip system is considered. The two sets of curves are calculated through the WJB
and F procedures, respectively.
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Figure 8. Ed is function of the film thickness for Si1−x Gex /Si. The ⟨1 1 0⟩{1 1 1} slip system of a 60◦
dislocation is considered. The two sets of curves are calculated through the WJB and F procedures,
respectively.

to be isotropic but with different elastic properties. Figure 7 shows two sets of curves
representing Ed as a function of the film thickness for three different systems: Al0.2Ga0.8N
film on GaN substrate, In0.2Ga0.8N on GaN and a GaN film grown on GaN substrate. One
set of the Ed curves is calculated adopting the WJB model, while the second uses the F
treatment. Therefore, the difference stems from including (WJB) or neglecting (F) the free
surface effects and the difference in the elastic constants of the film and the substrate. In
both cases, the isotropic elasticity framework is used. The curves within each set are very
close to each other, meaning that the impact of different elastic properties of the film and
the substrate is negligible. Therefore, it can be concluded that the difference between the
two sets originates predominantly from the impact of free surface. This factor significantly
increases the Ed term and, as a consequence, also the CT value. Figure 8 shows a similar
analysis for two different systems: a Si0.2Ge0.8 film on a Si substrate and a Si film grown on
a Si substrate. As in the case of the III-nitrides, the variation caused by the different elastic
properties of the film and the substrate is negligible. On the other hand, the difference
between the WJB and F formalism, which is now related predominantly to the inclusion of
the free surface, is significant. Therefore, also for silicon, the free surface increases Ed and,
as a consequence, the CT value.
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Al0.2 Ga0.8 N film on GaN substrate
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Figure 9. (colour online) Ed − W is function of the film thickness. Ed is calculated according to F,
S, WJB and S+WJB approaches. W is calculated according to Equation (9). The CTs are indicated
by a circle.

In0.2 Ga0.8 N film on GaN substrate
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Figure 10. (colour online) Ed − W is a function of the film thickness. Ed is calculated according to
F, S, WJB and S+WJB approaches. W is calculated according to Equation (9). The CTs are indicated
by a circle.

5. Overall comparison of various effects on predicted critical thickness
In order to consider the anisotropy, the difference between the elastic properties of the
film and the substrate and the impact of the free surface, we combine the S and the WJB
approaches. Based on the conclusions of Section 3, in the following, we neglected the
contribution of the integral along the core surface S3. The detailed mathematical derivation
of this treatment (indicated with S+WJB) is given in Appendix 1. The model S+WJB is used
to compute Ed as a function of the film thickness for three different alloys: a Al0.2Ga0.8N
film on a GaN substrate, In0.2Ga0.8N on GaN and a Si0.8Ge0.2 film on a Si substrate. The
results are shown and compared with corresponding F, S and WJB results in Figures 9–11.
The CT values of the systems are listed in Table 2. Considering all the three systems, the
WJB model increases CT by ≈300% with respect to the F model. The CT value of the
theoretically most complete scheme, S+WJB, is always between the S and the F values.
In particular, the S+WJB CT is lower by ≈50% relative to the F CT for Al0.2Ga0.8N and
In0.2Ga0.8N, while it is the same in the case of Si0.8Ge0.2.
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Si0.8 Ge0.2 film on Si substrate
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Figure 11. (colour online) Ed − W is a function of the film thickness. Ed is calculated according to
F, S, WJB and S+WJB approaches. W is calculated according to Equation (9). The CTs are indicated
by a circle.

6. Comparison of pre-logarithmic terms based on a continuum and atomistic
approach

Ed is a logarithmic function of the film thickness

Ed ≈ c log h. (26)

The continuum approach allows for the extraction of the pre-logarithmic coefficient c for
each alloy considered in this work. The validity of continuum elasticity results for treating
the dislocation energy outside the core region has been demonstrated by an atomic-scale
computer simulation [10]. These simulations allow for the calculation of the strain energy
Ed within a cylinder of radius R with the dislocation along its axis. Ed varies logarithmically
with R for R ≥ rc, where rc is the core radius. For R < rc, the logarithmic behaviour is lost
due to the singularity along the dislocation line. In Table 3, the pre-logarithmic coefficients
predicted using the F (dislocation in infinitely large uniform isotropic medium) and S
(dislocation in infinitely large uniform anisotropic medium) are summarized, and compared
with values obtained from atomistic simulations [11–14]. In general, good agreement is
found between the S model and the atomistic simulations whenever the data are available in
the literature.This result is understandable as the atomistic simulations consider a dislocation
in an infinite anisotropic structure, which is the same assumption of the S model.

To express the total energy of a dislocation (Equation (10)), the dislocation core energy
needs to be added to the continuum formula for the bulk energy. Based on the above compar-
ison, the continuum approach, including the elastic anisotropy, seems to be compatible with
the atomistic evaluation of the dislocation core energy and radius. Since this information is
available only for certain compositions, we calculated the dislocation core energy for each
composition of the alloys through linear interpolation (Vegard-like behaviour) of the values
summarized in Table 4. For example, in the case of Si1−x Gex , one gets

Ecore

∣∣∣
Si1−x Gex

= xEcore

∣∣∣
Ge

+ (1 − x)Ecore

∣∣∣
Si

. (27)
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198 R.A. Coppeta et al.

Table 3. Pre-logarithmic terms for different alloys according to the F (isotropic) and S (anisotropic)
models evaluated in this paper. Data from atomistic simulations are included whenever available.

material Si Si0.5Ge0.5 In0.2Ga0.8N Al0.2Ga0.8N GaN

unit of measure ×10−9 J/m ×10−9 J/m ×10−9 J/m ×10−9 J/m ×10−9 J/m
dislocation 60◦ dislocation 60◦ dislocation ⟨1 1 2̄ 3⟩{11̄01} ⟨112̄3⟩{11̄01} (a+c)-type
F 1.7 1.7 5.55 5.44 5.51
S 0.56 0.52 3.53 3.95 3.94
atomistic simulation 0.64 [11] 3.44 [13]

Table 4. Parameters of the dislocation cores from atomistic simulations. 0.43 eV/Å is equal to
0.64 nJ/m.

material dislocation Ecore Prelogarithmic term Reference
[eV/Å] [eV/Å]

Si 60◦ 0.43 [12]
Si0.5Ge0.5 60◦ 0.59 0.43 [11]
GaN (a+c)-type 3.12 2.15 [13]
GaN a-type 1.61 0.81 [14]
AlN a-type 1.71 0.90 [14]
InN a-type 1.66 0.41 [14]

The core energy Ecore for Ge was calculated by linearly extrapolating the core
energies of Si and Si0.5Ge0.5. Analogous expressions were also used for Alx Ga1−x N and
Inx Ga1−x N.

7. Comparison between theoretical and experimental CT
After illustrating the differences among various treatments of dislocation energy, and their
impact on the equilibrium CT, we use the F and S+WJB models, including the dislocation
core energies estimated in the last paragraph, to calculate the equilibrium CT as a function
of composition, x , for the three different alloys. The two models, F and S+WJB, are chosen
as they are based on opposite hypotheses (see Table 1).

We considered the 1/3⟨1 1 2̄ 3⟩{1 1̄ 0 1} and 1/3⟨1 1 2̄ 3⟩{1 1 2̄ 2} slip systems for
Alx Ga1−x N/GaN and Inx Ga1−x N/GaN, and the 60◦ misfit dislocation with the ⟨1 1 0⟩{1 1 1}
slip system for Si1−x Gex /Si. The calculated CT results obtained from the F and S + WJB
models are compared with experimental observations and data available in literature
(Figures 12–14).

The difference between the F and S+WJB results is small, with the S+WJB model
yielding lower values when compared to F. In all cases, the experimental data are close
to the theoretical curves, suggesting that the experimental CT values were obtained from
epitaxial depositions close to the thermodynamical equilibrium.
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Figure 12. (colour online) The equilibrium CT as a function of the AlN mole fraction x calculated
through F and S+WJB models including the core energy. The theoretical curves are compared with
experimental data, 1-[15], 2-[16], 3-[17], 4-[18], 5-[19].
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Figure 13. (colour online) The equilibrium CT as a function of the InN mole fraction x calculated
through F and S+WJB models including the core energy. The theoretical curves are compared with
experimental data, 1-[20], 2-[21], 3-[22], 4-[23], 5-[24], 6-[25], 7-[6].
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Figure 14. (colour online) The equilibrium CT as a function of the Ge fraction x calculated through F
(dashed line) and S+WJB (solid line) models including the core energy. The 60◦ misfit dislocation with
the ⟨1 1 0⟩{1 1 1} slip system is considered. The theoretical curves are compared with experimental
data from [26].
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Regarding the Alx Ga1−x N/GaN and Inx Ga1−x N/GaN systems, the S+WJB model pro-
vides a more severe condition for the onset of the MD at the interface than the F model. It is
important to realize that the here reported CT is the so-called equilibrium CT. This means
that it corresponds to the configuration where it, for the first time, becomes energetically
favourable to relieve the misfit strain by introducing MDs. However, any mechanism for the
creation of the MDs, which may require certain extra activation energy, is not considered
in the model. Similarly, parameters influencing kinetics of the epitaxial deposition, such as
temperature and deposition rate, are also not considered by the equilibrium CT models.
Finally, the current experiment techniques are unable to detect the exact onset of the
appearance of MDs. It, therefore, follows that no MDs are expected below the predicted
CT values, however, the detection of MDs may be (sometimes significantly) higher than
the equilibrium CT.

A closer inspection of Figures 12–14 reveals that the here refined S+WJB model fulfils
this criterion (unlike the F model).

8. Conclusions
We have revisited the different continuum-based approaches for calculating the energy of a
straight infinitely long dislocation in an elastic medium. Motivated by the misfit dislocations
in a heteroepitaxial interface, we have evaluated separately the influence of (i) free surface,
(ii) different elastic constants in the film and substrate and (iii) elastic anisotropy. Our results
suggest that starting from a homogeneous infinite isotropic medium, the inclusion of a free
surface increases the dislocation energy, and the difference in elastic constants of the film
and substrate does not play any significant role (because it is typically an order of magnitude
smaller than the impact of, e.g. the free surface), while the inclusion of elastic anisotropy
decreases the dislocation energy.

In order to include the dislocation core energy in the evaluation of the equilibrium
critical thickness, we compared the pre-logarithmic terms of the analytical models with
the corresponding values obtained by atomistic simulations. We found a good agreement
between the continuum predictions based on anisotropic elasticity.

Finally, equilibrium CT was calculated for three important heteroepitaxial material
systems, namely Alx Ga1−x N/GaN, Inx Ga1−x N/GaN and Si1−x Gex /Si. We have proposed
a model including elastic anisotropy of the film and the substrate, the difference of their
elastic constants and the impact of the film free surface. Recalling that this is a model for
equilibrium CT, i.e. it provides a condition when it first becomes energetically favourable
to start the relaxation of the mismatch strain via plastic flow, our refined model yields an
excellent agreement with the available experimental data in the sense that no MDs are
detected below the here predicted threshold.

Funding
This work was jointly funded by the Austrian Research Promotion Agency (FFG, Project No. 831163)
and the Carinthian Economic Promotion Fund (KWF, contract KWF-15212274134186).

References

[1] J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27 (1974) p.118.
[2] L.B. Freund, J. Appl. Mech. 54 (1987) p.554.

D
ow

nl
oa

de
d 

by
 [T

U
 T

ec
hn

isc
he

 U
ni

ve
rs

ita
et

 W
ie

n]
, [

Ra
ffa

el
e 

Co
pp

et
a]

 a
t 0

5:
47

 2
7 

Ja
nu

ar
y 

20
15

 



Philosophical Magazine 201

[3] L.B. Freund and S. Suresh, Thin Film Materials, Cambridge University Press, Cambridge, 2003.
[4] J.R. Willis, S. Jain and R. Bullough, Philos. Mag. A. A 62 (1990) p.115.
[5] J.W. Steeds, Introduction to Anisotropic Elasticity Theory of Dislocations, Clarendon Press,

Oxford, 1973.
[6] D. Holec, Y. Zhang, D.V.S. Rao, M. Kappers, C.J. McAleese and C.J. Humphreys, J. Appl. Phys.

104 (2008) p.123514.
[7] D. Holec and C.J. Humphreys, Mater. Sci. Forum 567–568 (2008) p.209.
[8] D. Holec, P.M.F.J. Costa, M.J. Kappers and C.J. Humphreys, J. Cryst. Growth 303 (2007) p.314.
[9] J.P. Hirth and J. Lothe, Theory of Dislocations, Krieger Publishing Company, Malabar, FL, 1982.

[10] D. Hull and D.J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, 2011.
[11] I.N. Remediakis, D.J. Jesson and P.C. Kelires, Phys. Rev. Lett. 97 (2006) p.255502.
[12] L. Gen, M. Qing-yuan, Y. Li-jun and L. Cheng-xiang, J. Atom. Molec. Phys. (2006) p.71.
[13] I. Belabbas, A. Bere, J. Chen, S. Petit, M.A. Belkhir, P. Ruterana and G. Nouet, Phys. Rev. B:

Condens. Matter 75 (2007) p.115201.
[14] J. Kioseoglou, P. Komninou and T. Karakostas, Phys. Status Solidi A 206 (2009) p.1931.
[15] S.R. Lee, D.D. Koleske, K.C. Cross, J.A. Floro, K.E. Waldrip, A.T. Wise and S. Mahajan, J.

Appl. Phys. 85 (2004) p.6164.
[16] P. Vennéguès, Z. Bougrioua, J.M. Bethoux, M. Azize and O. Tottereau, J. Appl. Phys. 97 (2005)

p.024912.
[17] J.-M. Bethoux and P. Venngus, J. Appl. Phys. 97 (2005) p.123504.
[18] M. Gherasimova, G. Cui, Z. Ren, J. Su, X.-L. Wang, J. Han, K. Higashimine and N. Otsuka, J.

Appl. Phys. 95 (2004) p.2921.
[19] J.A. Floro, D.M. Follstaedt, P. Provencio, S.J. Hearne and S.R. Lee, Appl. Phys. Lett. 94 (2003)

p.1565.
[20] R. Liu, J. Mei, S. Srinivasan, F.A. Ponce, H. Omiya, Y. Narukawa and T. Mukai, Appl. Phys.

Lett. 89 (2006) p.201911.
[21] S. Srinivasan, L. Geng, R. Liu, F.A. Ponce, Y. Narukawa, S. Tanaka, Appl. Phys. Lett. 83 (2003)

p.5187.
[22] W. Lü, D.B. Li, C.R. Li and Z. Zhang, J. Appl. Phys. 96 (2004) p.5267.
[23] B. Jahnen, M. Albrecht, W. Dorsch, S. Christiansen, H.P. Strunk, D. Hanser and R.F. Davis,

MRS Internet J. Nitride Semicond. Res. 3 (1998) p.39.
[24] C.A. Parker, J.C. Roberts, S.M. Bedair, M.J. Reed, S.X. Liu and N.A. El-Masry, Appl. Phys.

Lett. 75 (1999) p.2776.
[25] M.J. Reed and N.A. El-Masry, Appl. Phys. Lett. 77 (2000) p.4121.
[26] D.C. Houghton, C.J. Gibbings, C.G. Tuppen, M.H. Lyons and M.A.G. Halliwell, Appl. Phys.

Lett. 56 (1990) p.460.
[27] R.R. Reeber and K. Wang, MRS Internet J. Nitride Semicond. Res. 6 (2001) p.1.
[28] M.A. Hopcroft, W. Nix and T. Kenny, J. Microelectromech. S. 19 (2010) p.229.
[29] H. Morkoc, Handbook of Nitride – Semiconductors and Devices, Vol. 1, WILEY-VCH Verlag,

Darmstadt, 2008.

Appendix 1. A straight dislocation at the interface of anisotropic materials
The evaluation of the integrals along the surfaces S2 and S4 (see Figure 2) deals with a straight
dislocation at the interface between a finite anisotropic film and a semi-infinite anisotropic substrate
with different elastic properties:

Ed = 1
2

∑

i j

(∫

S2

ui σ
d
i j n j dS2 +

∫

S4

ui σ
d
i j n j dS4

)
(A1)
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Considering Figure A1, the previous equation becomes

1
2

∑

i

(∫ h

rc

ui
(
x → 0+) σ d

ix dz +
∫ rc

h
ui (x → 0−)σ d

ix dz

)

. (A2)

If the extremes of the second integral are inverted, one obtains

Ed = 1
2

∑

i

∫ h

rc

bi σ
d
ix dz (A3)

where ui (x → 0+) − ui (x → 0−) = bi .
The evaluation of the stress components in (A3) is performed through the treatment of the

Willis, Jain and Bullough model [4] for the hexagonal and cubic symmetries following the Steeds
procedure [5].

The dislocation of interest is a misfit dislocation along the c-plane of the wurtzite structure or
the closed-packed plane of the diamond structure. The z-axis is perpendicular to the c-plane or to the
closed-packed plane, respectively (see FigureA2). The dislocation is considered straight and extended
to infinite along the y-axis. This assumption simplifies the problem to a plane strain problem where
no quantity depends on the y-coordinate, so

∂

∂y
= 0, (A4)

The Burgers vector of the dislocation is b. Displacements are given by the functions ux , uy and
uz . The displacements ux and uz correspond to the edge component of the considered dislocation,
whereas uy corresponds to the screw component. Strain components are

Figure A1. The z-axis is perpendicular to the c-plane for the hexagonal symmetry and to the closed-
packed plane for the cubic one. The dislocation line lies along the y-axis in both cases.
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Philosophical Magazine 203

Figure A2. The z-axis is perpendicular to the c-plane for the hexagonal symmetry and to the closed-
packed plane for the cubic one. The dislocation line lies along the y-axis in both cases.

εxx = ∂ux

∂x
, εxy = 1

2
∂uy

∂x
,

εyy = 0, εxz = 1
2

(
∂ux

∂z
+ ∂uz

∂x

)
,

εzz = ∂uz

∂z
, εyz = 1

2
∂uy

∂z
. (A5)

The compatibility Equations [5] provides two relations:

∂2εxx

∂z2 + ∂2εzz

∂x2 = 2
∂εxz

∂x∂z
, (A6a)

∂εyz

∂x
− ∂εxy

∂z
= 0. (A6b)

The fact that εyy = 0 yields a relation between particular stress components:

0 = εyy = S12σxx + S11σyy + S13σzz ⇒ σyy = − S12
S11

σxx − S13
S11

σzz . (A7)

The compliances reflecting the proper hexagonal symmetry have been used:
⎛

⎜⎜⎜⎜⎜⎝

εxx
εyy
εzz

2εyz
2εxz
2εxy

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

S11 S12 S13 0 0 0
S12 S11 S13 0 0 0
S13 S13 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S66

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

σxx
σyy
σzz
σyz
σxz
σxy

⎞

⎟⎟⎟⎟⎟⎠
, (A8)

where
S66 = 2 (S11 − S12). (A9)

The shape of the tensor for the cubic symmetry (in both Si(100) and Si(110)) is the same as for
the hexagonal one. The subsequent treatment is valid for the cubic symmetry with S66 = S44 and
S13 = S12.

According to WJB, it is useful now to have the jumps in displacements occur over a surface which
is perpendicular to the free surface instead of across the slip plane. All quantities in the substrate have
a ∗ superscript to distinguish them from quantities related to the thin film. The Fourier transform (FT)
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of a function f is denoted by f FT . It is possible to split the problem into two independent parts,
resolving the edge and the screw components separately.

A.1. Edge component
The displacement field in the thin film can be decomposed into

u = 1
2

besgn(x) + v, (A10)

where be = (bx , 0, bz) and the function v is continuous for all x . The strain field (and thus also
the stress field) inside the thin layer is determined only by the v part as (except at the cut surface
x = 0) the derivatives of the sgn(x) function are equal to zero everywhere. To solve this problem, the
Fourier-transformed variables are employed:

f FT (ξ, z) = 1√
2π

∫ ∞

−∞
eiξ x f (x, z)dx . (A11)

The Fourier transform of the ∂/∂x operator is −iξ . Using (A10) and (A5), the Fourier components
of the strain tensor are:

ϵFT
xx (ξ, z) = −iξvFT

x (ξ, z), (A12a)

ϵFT
zz (ξ, z) = ∂vFT

z
∂z

(ξ, z), (A12b)

ϵFT
xz (ξ, z) = 1

2

(
∂vFT

x
∂z

(ξ, z) − iξvFT
z (ξ, z)

)

. (A12c)

The equilibrium conditions [5] take the form

∂σxx

∂x
+ ∂σxz

∂z
= 0, (A13a)

∂σxz

∂x
+ ∂σzz

∂z
= 0. (A13b)

Transforming these equations into their Fourier equivalents and using Hooke’s law with the
stiffness tensor gives the system of partial differential equations for the FT components of the dis-
placements vFT

x and vFT
z :

⎛

⎜⎜⎝
−C11ξ2 + C44

∂2

∂z2 −iξ (C13 + C44)
∂

∂z

−iξ (C13 + C44)
∂

∂z
−C44ξ2 + C33

∂2

∂z2

⎞

⎟⎟⎠

(
vFT

x
vFT

z

)
=
(

0
0

)
. (A14)

In order to simplify the notation, the quantities A = −C11 , B = C44, C = −i(C13 + C44),
D = −C44 and E = C33 are introduced. From the second equation of the system, one obtains

ξC
∂vFT

x
∂z

= −Dξ2vFT
z − E

∂2vFT
z

∂z2 . (A15)

Using this equation and its twice-differentiated form with respect to z and substituting them into
the first equation of the system (A14), which is once differentiated with respect to z, yields

E B
∂4vFT

z

∂z4 +
(

E A + DB − C2
)

ξ2 ∂2vFT
z

∂z2 + ADξ4vFT
z = 0. (A16)
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We are looking for a solution of the exponential form eλ|ξ |z . The proper λs are solutions of the
characteristic equation

E Bλ4+
(

E A + DB − C2
)

λ2 + AD = 0. (A17)

Solutions are λ1 = κ1, λ2 = −κ1, λ3 = κ2 and λ4 = κ2, where

κ1,2 =

√√√√−
(
E A + DB − C2

)
±
√(

E A + DB − C2
)2 − 4AB DE

2E B
. (A18)

Therefore, the general solution to (A16) has the form [5]

vFT
z =

4∑

i=1

Ai λi |ξ | eλi |ξ |z, (A19)

where Ai are functions of ξ to be determined. The component vFT
x can then be obtained from (A15).

Its general solution is

vFT
x = −

4∑

i=1

Ai ξ
D + Eλ2

i
C

eλi |ξ |z . (A20)

Evidently,
D + Eλ2

i
C

= −i
C44 − C33λ2

i
C13 + C44

. (A21)

The FT components of the strain tensor are now easy to obtain from combining Equations (A19),
(A20) and (A12):

εFT
xx =

4∑

i=1

Ai ξ
2 C44 − C33λ2

i
C13 + C44

eλi |ξ |z, (A22a)

εFT
xz = −1

2

4∑

i=1

i Ai |ξ | ξλi
C13 + C33λ2

i
C13 + C44

eλi |ξ |z, (A22b)

εFT
zz =

4∑

i=1

Ai ξ
2λ2

i eλi |ξ |z . (A22c)

Using Hooke’s law, which has the same form when Fourier transformed, one obtains:

σ FT
xx = C11εFT

xx + C13εFT
zz = −

4∑

i=1

Ai ξ
2λ2

i C44
C13 + C33λ2

i
C13 + C44

eλi |ξ |z (A23a)

σ FT
xz = 2C44εFT

xz = −
4∑

i=1

i Ai |ξ | ξλi C44
C13 + C33λ2

i
C13 + C44

eλi |ξ |z (A23b)

σ FT
zz = C13εFT

xx + C33εFT
zz =

4∑

i=1

Ai ξ
2C44

C13 + C33λ2
i

C13 + C44
eλi |ξ |z, (A23c)

where the identity C11C44 +
(

C2
13 + 2C13C44 − C11C33

)
λ2

i + C44C33λ4
i = 0 was used in the

expression for σ FT
xx .

The general solution for the substrate region takes the same form (except that all variables have
a star superscript). We assume that the substrate is not influenced by the thin layer as z → −∞. To
fulfil this condition, the constants A∗

2 and A∗
4 must be identically zero. Boundary conditions must be

employed now in order to determine the constants A1, A2, A3, A4, A∗
1 and A∗

3.
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206 R.A. Coppeta et al.

The Fourier transform of 1/2 sgn(x) is i/
(√

2πξ
)

. The continuity of displacements across the
interface z = 0 is expressed by the following equations:

vFT
x (ξ, 0) + ibx√

2πξ
= v∗FT

x (ξ, 0), (A24a)

vFT
z (ξ, 0) + ibz√

2πξ
= v∗FT

z (ξ, 0), (A24b)

which result in the equations

(A1 + A2) #1 + (A3 + A4) #2 + bx√
2πξ2

= A∗
1#∗

1 + A∗
3#∗

2 , (A25a)

(A1 − A2) κ1 + (A3 − A4) κ2 + i bz√
2π |ξ | ξ

= A∗
1κ∗

1 + A∗
3κ∗

2 , (A25b)

where the notation

#i =
C44 − C33κ2

i
C13 + C44

, #∗
i =

C∗
44 − C∗

33κ∗2
i

C∗
13 + C∗

44
, i = 1, 2. (A26)

has been introduced.
The second set of equations is obtained from the requirement that tractions must be continuous

across the interface z = 0:

σ FT
xz (ξ, 0) = σ∗FT

xz (ξ, 0), (A27a)

σ FT
zz (ξ, 0) = σ∗FT

zz (ξ, 0). (A27b)

Combining Equations (A23) and (A27) gives

(A1 − A2) κ1/1 + (A3 − A4) κ2/2 = A∗
1κ∗

1 /∗
1 + A∗

3κ∗
2 /∗

2 (A28a)

(A1 + A2) /1 + (A3 + A4) /2 = A∗
1/∗

1 + A∗
3/∗

2, (A28b)

where the simplifying notation

/i =
C44

(
C13 + C33κ2

i

)

C13 + C44
, /∗

i =
C∗

44

(
C∗

13 + C∗
33κ2

i

)

C∗
13 + C∗

44
, i = 1, 2, (A29)

has been introduced.
The last set of equations arises from the requirement that the free surface is at z = h.
The condition σ FT

xz (ξ, h) = 0 is expressed as
(

A1eκ1|ξ |h − A2e−κ1|ξ |h
)

κ1/1 +
(

A3eκ2|ξ |h − A4e−κ2|ξ |h
)

κ2/2 = 0 (A30)

and the requirements σ FT
zz (ξ, h) = 0 yield

(
A1eκ1|ξ |h + A2e−κ1|ξ |h

)
/1 +

(
A3eκ2|ξ |h − A4e−κ2|ξ |h

)
/2 = 0. (A31)

Equations (A25), (A28), (A30) and (A31) constitute a linear system of equations for the unknown
variables A1, . . . , A∗

3. Obviously, the solution of this system provides A1, . . . , A∗
3 as the functions

of ξ . To obtain the stress components σxx , σxz and σzz , it is necessary to perform the inverse Fourier
transforms of σ FT

xx , σ FT
xz and σ FT

zz , respectively, with the substituted resolved constants A1, . . . , A4.
An attempt to obtain an analytical formula for the stress components and energy for the edge type

dislocation would be unreasonably complicated and would not give any direct insight. Therefore, the
calculations were performed numerically.
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A.2. Screw component
The procedure for the screw component is similar, but simpler. The Burgers vector of a screw
dislocation has only one non-zero component, by , and thus the only non-zero component of the
displacement is uy . Moreover, it is again a plane strain problem, i.e. ∂/∂y = 0. As a consequence,
the only non-zero strain components are εxy and εyz . Similar to the case of the edge dislocation, it is
more convenient to deal with the FT component uFT

y , rather than with uy itself. The FT components
of the strain are

εFT
xy = −1

2
iξvFT

y , (A32a)

εFT
yz = 1

2

∂vFT
y

∂z
, (A32b)

and the FT stress components obtained from Hooke’s law are

σ FT
xy = 2C66εFT

xy = −iξC66vFT
y , (A33a)

σ FT
yz = 2C44εFT

yz = C44
∂vFT

y

∂z
. (A33b)

The equilibrium condition [5]

∂σxy

∂x
+ ∂σyz

∂z
= 0 (A34)

provides the second-order differential equation for vFT
y :

−ξ2C66vFT
y (ξ, z) + C44

∂2vFT
y

∂z2 (ξ, z) = 0, (A35)

the general solution of which is

vFT
y = A1e

√
C66
C44

|ξ |z
+ A2e

−
√

C66
C44

|ξ |z
. (A36)

The general solution in the substrate has exactly the same form except for the fact that all variables
have a superscript. A∗

2 = 0 because one requires all quantities to vanish as z → −∞. Applying the
same boundary conditions as in the case of the edge dislocation (continuity of displacements and
tractions over the interface z = 0 and the free surface at z = h) yields

A1 + A2 + iby√
2πξ

= A∗
1, (A37a)

(A1 − A2)
√

C66C44 = A∗
1

√
C∗

66C∗
44, (A37b)

A1e

√
C66
C44

|ξ |h
− A2e

−
√

C66
C44

|ξ |h
= 0. (A37c)

Values of A1 and A2 fulfilling these equations are

A1 = iby√
2πξ

√
C∗

66C∗
44e

−2
√

C66
C44

|ξ |h

e
−2
√

C66
C44

|ξ |h (√
C66C44 −

√
C∗

66C∗
44

)
−
(√

C66C44 +
√

C∗
66C∗

44

)
, (A38a)

D
ow

nl
oa

de
d 

by
 [T

U
 T

ec
hn

isc
he

 U
ni

ve
rs

ita
et

 W
ie

n]
, [

Ra
ffa

el
e 

Co
pp

et
a]

 a
t 0

5:
47

 2
7 

Ja
nu

ar
y 

20
15

 



208 R.A. Coppeta et al.

A2 = iby√
2πξ

√
C∗

66C∗
44

e
−2
√

C66
C44

|ξ |h (√
C66C44 −

√
C∗

66C∗
44

)
−
(√

C66C44 +
√

C∗
66C∗

44

)
. (A38b)

The stress components can be obtained by the inverse Fourier transform of σ FT
xy and σ FT

xz with
the substituted A1 and A2 from the last two equations.

After that, the components of the stress and the Burgers vector can be substituted in (A3) to
calculate the dislocation energy.

Appendix 2. Constants of GaN, AlN, InN, Si and Ge

Table B1. The stiffness constants (in GPa) are taken from [27] for GaN,AlN and InN, from [28] for Si
and from [3] for Ge. The stiffness constants of Alx Ga1−x N/GaN, Inx Ga1−x N/GaN and Si1−x Gex /Si
are calculated using Vegard’s law with the data in the table.

C11 C12 C13 C33 C44 C66

GaN 374.2 141.4 98.1 388.6 98.3 (C11−C12)/2
AlN 410.5 148.5 98.9 388.5 124.6 (C11−C12)/2
InN 223 115 92 224 48 (C11−C12)/2
Si(111) 194.25 35.25 63.9 165.6 79.5 50.85
Ge(111) 155 21.6 48.2 128.4 66.7 40.1

Table B2. The lattice constants (in Å) are taken from [29] for GaN, AlN and InN, from [3] for Si
and Ge. The lattice constants of Alx Ga1−x N/GaN, Inx Ga1−x N/GaN and Si1−x Gex /Si are calculated
using Vegard’s law with the data in the table.

GaN AlN InN Si(111) Ge(111)

a 3.22 3.11 3.54 5.43 5.65
c 5.19 4.98 5.96

Table B3. Characteristics of the two slip systems for the wurtzite crystal structures showing the
Burgers vector b, the angle φ between the slip plane and the normal to the substrate–film interface
and the angle θ between the dislocation line and the Burgers vector. x is the Al or In content.

b φ θ

1
3 ⟨1 1 2̄ 3⟩{1 1 2̄ 2}

√
a2(x) + c2(x) arctan a(x)

c(x) 90◦

1
3 ⟨1 1 2̄ 3⟩{1 1̄ 0 1}

√
a2(x) + c2(x) arctan

√
3a(x)

2c(x) arccos a(x)
2b(x)
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Table B4. Characteristics of the slip system for the diamond crystal structure Si1−x Gex /Si showing
the Burgers vector b, the angle φ between the slip plane and the normal to the substrate–film interface
and the angle θ between the dislocation line and the Burgers vector. x is the Ge content.

b φ θ

⟨1 1 0⟩{1 1 1}
√

2a(x) arctan 1√
2

60◦

(a) (b)

Figure B1. The two most favourable slip systems in the wurtzite systems Alx Ga1−x N/GaN,
Inx Ga1−x N/GaN: a) ⟨1 1 2̄ 3⟩{1 1 2̄ 2}observed by Srinivasan [21], and b) ⟨1 1 2̄ 3⟩{1 1̄ 0 1}determined
by Jahnen [23].

Figure B2. The slip system ⟨1 1 0⟩{1 1 1} of the 60◦ dislocation shown in the FCC structure.
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