Free Open Source Mesh Healing for TCAD
Device Simulations

Florian Rudolf'®), Josef Weinbub!, Karl Rupp!?, Peter Resutik!,
Andreas Morhammer?, and Siegfried Selberherr!

! Institute for Microelectronics, TU Wien, Vienna, Austria
{rudolf,weinbub,resutik,selberherr}@iue.tuwien.ac.at
2 Institute for Analysis and Scientific Computing, TU Wien, Vienna, Austria
ruppQiue.tuwien.ac.at
3 Christian Doppler Laboratory for Reliability Issues in Microelectronics, Institute
for Microelectronics, TU Wien, Vienna, Austria
morhammer@iue.tuwien.ac.at

Abstract. Device geometries in technology computer-aided design
processes are often generated using parametric solid modeling computer-
aided design tools. However, geometries generated with these tools often
lack geometric properties, like being intersection-free, which are required
for volumetric mesh generation as well as discretization methods. Con-
tributing to this problem is the fact, that device geometries often have
multiple regions, used for, e.g., assigning different material parameters.
Therefore, a healing process of the geometry is required, which detects
the errors and repairs them. In this paper, we identify errors in multi-
region device geometries created using computer-aided design tools. A
robust algorithm pipeline for healing these errors is presented, which has
been implemented in ViennaMesh. This algorithm pipeline is applied on
complex device geometries. We show, that our approach robustly heals
device geometries created with computer-aided design tools and is even
able to handle certain modeling inaccuracies.

1 Introduction

Many commercial parametric solid modeling computer-aided design (CAD)
tools, like AutoCAD [1], are available and also various free open source tools, like
FreeCAD [2], are used in many applications. Some technology computer-aided
design (TCAD) simulation suites have modules for CAD processing, but these
modules are usually not as powerful as their standalone counterparts. For exam-
ple, Synopsys Sentaurus TCAD provides a structure editor for modeling device
geometries [3]. In contrast, many free open source TCAD tools, like DEVSIM [4],
lack the CAD processing module and, therefore, they require a ready-to-simulate
input mesh representing the device geometry.

Regardless of the utilized CAD tools, the task of generating a ready-to-
simulate mesh based on a CAD-based geometry is challenging. The finite differ-
ence method is particularly attractive whenever the domain can be represented
© Springer International Publishing Switzerland 2015

I. Lirkov et al. (Eds.): LSSC 2015, LNCS 9374, pp. 293-300, 2015.
DOI: 10.1007/978-3-319-26520-9_32



294 F. Rudolf et al.

well with a structured grid, possibly taking additional smooth geometric trans-
formations into account to allow for more complicated domains [5]. In other
cases, the finite element method or the finite volume method are popular choices.
However, these methods require the mesh to be conforming and valid [6]. Addi-
tionally, simulations often require the mesh to be partitioned into several regions,
which can, for example, be used to locally assign material properties.

To generate a volumetric mesh which can be used in a simulation, the device
geometry created with the CAD tool has to be exported. Usually, a widely
supported geometry representation is chosen for this export in order to have
a high degree of freedom when selecting the volumetric mesh generation tool.
Popular geometry representation formats, like the standard for the exchange of
product model data (STEP, ISO 10303) [7], provide a rich feature set, but they
are not supported by a variety of popular open source mesh generation tools,
like Tetgen [8]. On the other hand, triangular hull geometry representations, like
StereoLithography (STL) [9], do not provide a high level of flexibility, but are
supported by a large number of mesh generation tools. Triangular hull geometry
representations, however, might have topological issues like duplicate elements,
or geometrical errors like self-intersections, gaps, or holes. These errors have to
be healed before a mesh generation can be performed. Additionally, STL and
similar geometry representations lack support for multiple mesh regions.

In this work we present an algorithm pipeline which robustly heals errors in
multi-region triangular hull geometries of complex device structures exported by
CAD tools. Section 2 discusses possible errors in triangular hull geometry repre-
sentations and provides an overview of research in mesh healing. The algorithm
pipeline for healing the triangular hull geometry and generating a mesh is pre-
sented in Sect. 3. This algorithm pipeline is implemented in the free open source
meshing tool ViennaMesh [10]. The pipeline is applied to example devices cre-
ated with FreeCAD in Sects. 4 and 5 summarizes the work and gives an outlook
for future work.

2 Background and Related Work

When CAD tools export geometries as triangular hulls, a discretization of the
geometry has to be performed for the non-planar surfaces. Due to inaccuracies
during the modeling process or different discretizations of interfaces, the resulting
triangular hull might have topological or geometrical errors. Relevant triangular
hull errors are listed below and visualized in Fig. 1 [11,12].

— Duplicate vertices and elements are vertices or elements which occur
more than once in the mesh.

— Isolated and dangling elements are vertices and lines which are not edges
or vertices of any hull triangle.

— Singular edges occur, when an edge is shared by more than two triangles.

— Singular vertices occur, when a vertex is shared by two unrelated sets of
triangles.



Free Open Source Mesh Healing for TCAD Device Simulations 295

\ (Nearly) Degenerated
Istolated and Dangeling Elements

Elements Singular Vertices

s

>

Inconsistent Orientation

Singular Edges

Fig. 1. Visualization of all triangular hull mesh errors except duplicate vertices and
elements.

— Inconsistent orientation occurs, when two neighboring triangles have dif-
ferent vertex orientations.

— Nearly degenerated elements are triangles which are degenerated or
nearly degenerated, meaning their surface area is very small compared to
their edge lengths.

— Holes occur, when a hull is not fully closed.

— Gaps occur, when two different hulls are not topologically connected to each
other.

— Intersections occur, when a triangle intersects another triangle.

Duplicate vertices can be healed by merging them and duplicate elements
can safely be removed. Isolated and dangling elements can be identified and
removed using topological operations. In many file formats, like STL, isolated
and dangling vertices and lines cannot occur because vertices and lines are not
stored explicitly. Due to the fact that many mesh healing algorithms originate in
the field of computer graphics, the definition of a valid healed mesh is different to
the definition of a healed mesh for volumetric ready-to-simulate mesh generation.
In particular, a singular edge might be valid for multi-region geometries, because
it can be an interface edge between two different mesh regions. Similarly, a
singular vertex might also be valid, but can lead to numerical issues during
the simulation. Therefore, singular vertices must be detected using topological
operations and split up into multiple new vertices, one for each triangle set. If
the volumetric mesh generation algorithm requires consistent orientations, like
most advancing front mesh generation algorithms [13] do, they can be fixed by
vertex index swapping of triangles with wrong orientation. Degenerated or nearly
degenerated triangles can be fixed by either performing an edge collapse [14], if
two vertices are close to each other, or re-meshing the area of the degenerated
triangle and its three neighbors.

The other three types of errors, being holes, gaps, and intersections, are much
more challenging to heal. Many different algorithms have been developed, which
address these types of errors [11,12,15]. Several open and closed source mesh



296 F. Rudolf et al.

Smoothed
Multi-Region
Hull

CAD Modeling L IPo;t—Pgocesqug Volumetric Mesh
(Laplacian Smoothing, ...) CanemEiism
I I ‘\
Tri Region H i i
. (ggzgz\er:g]Ogrrol:s)s Mu\t;iﬁglon Volumetric
Mesh
YYY ﬁ ”

. Triangular Multi-Material

Hull Healing Marching Cubes

Healed Triangular
Region Hulls

Fig. 2. Each region of a device (represented by one arrow) is exported individually by
the CAD tools to a triangular hull and healed (cf. Sect. 3.1). A multi-material marching
cubes algorithm re-samples these healed triangular hulls (cf. Sect.3.2) and creates a
valid multi-region hull. After a post-processing step, a volumetric mesh is generated
based on the re-sampled geometry (cf. Sect. 3.3).

YYY

healing tools, implementing some of these algorithms, are freely availably [16].
However, most of the algorithms originate in the field of computer graphics
and are therefore not able to handle multiple regions properly, which is highly
relevant for the field of TCAD.

3 Mesh Healing and Generation Pipeline

In this section, a mesh healing and generation pipeline is presented, an overview
of which is given in Fig.2. The pipeline consists of three parts as described in
the following subsections.

3.1 CAD Interface and Triangular Hull Healing

After modeling the device in a CAD tool, each region is exported on its own
using a triangular hull representation. These triangular region hulls will only be
used in the re-sampling step to test if a point is inside the region hull. Therefore,
region interfaces do not need to be compatible and each region hull can be
treated individually. To ensure stable point inclusion tests, triangular hull errors
are healed using the mesh healing tool Polymender [17].

3.2 Re-Sampling

After healing the region hulls, a volumetric re-sampling is performed by cre-
ating a regular three-dimensional grid covering the entire device geometry.



Free Open Source Mesh Healing for TCAD Device Simulations 297

Fig. 3. A re-sampled triangular hull geometry before and after the smoothing process.

For each grid point the corresponding region is determined by using a point-
in-hull test on each healed region hull. Due to possibly different geometry dis-
cretizations at interfaces, regions might intersect or form holes. If a grid point is
in more than one mesh region, a user-created priority list resolves the ambiguity.
Afterwards, a three-dimensional version of a dilatation and an erosion operation
avoids holes in the re-sampled geometry [18]. This regular grid is then used by
the multi-material marching cubes algorithm [19] in order to create a triangular
hull with multiple regions and valid region interfaces. The entire re-sampling
step has been implemented in ViennaMesh.

3.3 Post Processing and Volumetric Mesh Generation

Due to the nature of the marching cubes algorithm, the re-sampled triangu-
lar hull has a stair-stepped characteristic. A modified version of the Laplacian
smoothing algorithm is applied to mitigate these characteristics [19]. Figure 3
visualizes the re-sampled triangular hull before and after Laplacian smoothing.
Like the re-sampling step, the Laplacian smoothing algorithm has also been
implemented in ViennaMesh. Depending on the application, chosen grid reso-
lution during the re-sampling step, and required volumetric mesh resolution, a
refinement or coarsening algorithm suitable for multi-region triangular hulls is
applied on the smoothed mesh. Finally, a mesh generation software, like Tetgen,
is used to create a volumetric ready-to-simulate mesh based on the resulting
triangular hull.

4 Examples

In this section we apply our algorithm to a bulk silicon trigate transistor [20]
and a FlexFET [21], which have been modeled with the free open source CAD
tool FreeCAD.

The exported geometry of the bulk silicon trigate transistor has 22 volumet-
ric holes and 24 intersections, visualized in Fig.4. By applying our algorithm
pipeline, we obtain a valid multi-region triangular hull geometry, where all errors
of the exported input geometry have been successfully eliminated.



298 F. Rudolf et al.

Fig. 4. Hole (marked green) and intersection errors (marked blue) in the bulk silicon
trigate transistor due to different discretizations of neighboring regions. The green area
on the left indicates the areas, where these errors occur (color figure online).

Fig. 5. The bulk silicon trigate transistor: The original geometry modeled in FreeCAD
(left) and a clipped visualization of the generated volumetric mesh (right).

Fig. 6. A hole in the exported FlexFET geometry (visualized in green) which stems
from modeling inaccuracies (color figure online).



Free Open Source Mesh Healing for TCAD Device Simulations 299

Fig. 7. The FlexFET: The original geometry modeled in FreeCAD (left) and a clipped
visualization of the generated volumetric mesh (right).

This healed triangular hull geometry is used by ViennaMesh’s Tetgen module
to create a volumetric ready-to-simulate mesh. The modeled device geometry and
the volumetric mesh are visualized in Fig. 5.

The exported FlexFET geometry has a total of 39 errors, being 21 volumet-
ric holes and 18 intersections. In contrast to holes caused by different surface
discretizations, the FlexFET geometry has a hole which stems from modeling
inaccuracies (cf. Fig. 6). Again, applying our algorithm pipeline successfully heals
all errors and generates a valid multi-region triangular hull geometry. If, in case
of a high re-sampling resolution, holes are not closed, the kernel size of the three-
dimensional dilatation and erosion operation during the re-sampling step has to
be increased. ViennaMesh’s Tetgen module is used to create a volumetric ready-
to-simulate mesh based on the healed triangular hull. The modeled FlexFET
geometry and the volumetric mesh is shown in Fig. 7.

5 Summary and Future Work

We presented an algorithm pipeline for automatic and robust healing of CAD
geometries for further processing by volumetric mesh generation tools. In con-
trast to mesh and geometry healing algorithms used in the field of computer
graphics, our approach supports meshes with multiple regions. We show, that
our algorithm pipeline reliably generates volumetric ready-to-simulate meshes
based on geometries of complex semiconductor devices modeled in CAD tools.

To further improve the stability for handling big holes which are not closed
by dilatation and erosion operations, other filling algorithms, like the flood fill
algorithm [18], should be investigated in the future.



300 F. Rudolf et al.

Acknowledgements. This work has been supported by the European Research
Council (ERC), grant #247056 MOSILSPIN and by the Austrian Science Fund FWF,
grant P23598.

References

1. AutoCAD: http://www.autodesk.de/products/autocad/overview/
2. FreeCAD: http://www.freecadweb.org/
3. Synopsys Sentaurus Structure Editor: http://www.synopsys.com/Tools/TCAD/
Pages/StructureEditor.aspx
4. DEVSIM: https://github.com/devsim/devsim/
5. Strikwerda, J.C.: Finite difference schemes and partial differential equations, 2nd
edn. STAM, Philadelphia (2004) ISBN: 978-0-89871-567-5
6. Cheng, S.W., Dey, T.K., Shewchuk, J.R.: Delaunay Mesh Generation. CRC Press,
Boca Raton (2013) ISBN: 978-1584887300
7. Pratt, M.J.: Introduction to ISO 10303 - the STEP standard for product data
exchange. J. Comput. Inf. Sci. Eng. 1(1), 102-103 (2001). doi:10.1115/1.1354995
8. Si, H.: TetGen a quality tetrahedral mesh generator and three-dimensional delau-
nay triangulator, Version 1.4, User Manual (2006). http://wias-berlin.de/software/
tetgen/files/tetgen-manual.pdf
9. Szilvasi-Nagy, M., Matyési, G.: Analysis of STL files. J. Math. Comput. Model.
38(7-9), 945-960 (2003). doi:10.1016,/S0895-7177(03)90079-3
10. ViennaMesh: http://viennamesh.sourceforge.net/
11. Attene, M., Campen, M., Kobbelt, L.: Polygon mesh repairing: an application
perspective. ACM Comput. Surv. 45(2), 1-33 (2013). doi:10.1145/2431211.2431214
12. Chong, C., Kumar, A.S., Lee, H.: Automatic mesh-healing technique for model
repair and finite element model generation. J. Finite Elem. Anal. Des. 43(15),
1109-1119 (2007). doi:10.1016/j.finel.2007.06.009
13. Frederick, C., Wong, Y., Edge, F.: Two-dimensional automatic mesh generation
for structural analysis. Int. J. Numer. Meth. Eng. 2, 133-144 (1970). do0i:10.1002/
nme.1620020112
14. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques, pp. 99-108. New York (1996).
doi:10.1145/237170.237216
15. Ju, T.: Robust repair of polygonal models. ACM Trans. Graph. 23(3), 8388-895
(2004). doi:10.1145/1015706.1015815
16. Mesh Repairing Software on the Web: http://meshrepair.org/
17. Polymender: http://wwwl.cse.wustl.edu/taoju/code/polymender.htm
18. Burger, W., Burge, M.J.: Digital Image Processing - An Algorithmic Introduction
Using Java. Texts in Computer Science, 1st edn. Springer-Verlag, London (2008)
19. Wu, Z., Sullivan, J.M.: Multiple material marching cubes algorithm. Int. J. Numer.
Meth. Eng. 58(2), 189-207 (2003). doi:10.1002/nme.775
20. Agrawal, N., Kimura, Y., Arghavani, R., Datta, S.: Impact of transistor architec-
ture (bulk planar, trigate on bulk, ultrathin-body planar SOI) and material (silicon
or ITI-V semiconductor) on variation for logic and SRAM applications. IEEE Trans.
electron devices 60(10), 3298-3304 (2013). doi:10.1109/TED.2013.2277872
21. Modzelewski, K., Chintala, R., Moolamalla, H., Parke, S., Hackler, D.: Design
of a 32nm independently-double-gated FlexFET SOI transistor. In: Proceedings
of the 17th Biennial University/Government/Industry Micro/Nano Symposium,
region hulls, a volumetric pp. 64-67 (2008) doi:10.1109/UGIM.2008.24


http://www.autodesk.de/products/autocad/overview/
http://www.freecadweb.org/
http://www.synopsys.com/Tools/TCAD/Pages/StructureEditor.aspx
http://www.synopsys.com/Tools/TCAD/Pages/StructureEditor.aspx
https://github.com/devsim/devsim/
http://dx.doi.org/10.1115/1.1354995
http://wias-berlin.de/software/tetgen/files/tetgen-manual.pdf
http://wias-berlin.de/software/tetgen/files/tetgen-manual.pdf
http://dx.doi.org/10.1016/S0895-7177(03)90079-3
http://viennamesh.sourceforge.net/
http://dx.doi.org/10.1145/2431211.2431214
http://dx.doi.org/10.1016/j.finel.2007.06.009
http://dx.doi.org/10.1002/nme.1620020112
http://dx.doi.org/10.1002/nme.1620020112
http://dx.doi.org/10.1145/237170.237216
http://dx.doi.org/10.1145/1015706.1015815
http://meshrepair.org/
http://www1.cse.wustl.edu/taoju/code/polymender.htm
http://dx.doi.org/10.1002/nme.775
http://dx.doi.org/10.1109/TED.2013.2277872
http://dx.doi.org/10.1109/UGIM.2008.24

	Free Open Source Mesh Healing for TCAD Device Simulations
	1 Introduction
	2 Background and Related Work
	3 Mesh Healing and Generation Pipeline
	3.1 CAD Interface and Triangular Hull Healing
	3.2 Re-Sampling
	3.3 Post Processing and Volumetric Mesh Generation

	4 Examples
	5 Summary and Future Work
	References


