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Abstract. Thermoelectric materials can convert waste heat into usable
power and thus have great potential as an energy technology. However,
the thermoelectric efficiency of a material is quantified by its figure
of merit, which has historically remained stubbornly low. One possi-
ble avenue towards increasing the figure of merit is through the use
of low-dimensional nanograined materials. In such a system scattering,
tunnelling through barriers and other low-dimensional effects all play
a crucial role and thus a quantum mechanical treatment of transport is
essential. This work presents a one-dimensional exploration of the physics
of this system using the Non-Equilibrium Green’s Function (NEGF)
numerical method and include carrier scattering from both acoustic and
optical phonons. This entirely quantum mechanical treatment of scatter-
ing greatly increases the computational burden but provides important
insights into the physics of the system. Thus, we explore the relative
importance of nanograin size, shape and asymmetry in maximizing ther-
moelectric efficiency.

1 Introduction

Waste heat is created everywhere; in manufacturing, in the engine of an automo-
bile, in the production of power, in the operation of computer chips, and so forth.
A thermoelectric material is able to drive a current when an external tempera-
ture gradient is applied. Thus, such materials have great potential in turning our
abundant heat losses into energy gains. However, the field of thermoelectrics lies
on a sort of precipice; although many theoretical schemes for engineering effi-
cient thermoelectrics exist, commercially available thermoelectrics are still too
inefficient for most applications.

The efficiency of a thermoelectric material can be effectively encapsulated
within a simple quantity, the figure of merit:

ZT =
S2G

κ
T
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where T is the temperature, G is the conductance, S is the Seebeck coefficient,
to be described later, and κ is the total heat conductivity, having both electron,
κe, and lattice, κL, components. A material with a high figure of merit is a good
thermoelectric. The state of the art in terms of commercial thermoelectrics lies
at around ∼ 1 with research devices lying in the range 1.5–1.8 [1]. However,
it’s generally accepted that for thermoelectric technology to find application
in places beyond niche industries like arctic and space exploration, values of
ZT > 2 are required [1]. Thus, current methods for increasing the figure of
merit are insufficient should thermoelectric technology ever hope to reach its
potential.

The figure of merit, ZT , can be decomposed into two crucial aspects, the
denominator, which is the thermal conductivity, and the numerator S2G which
is collectively called the power factor. Thus far, the bulk of improvements to ZT
have resulted from schemes which minimize the conductivity of phonons, κL,
without overly harming the electrical conductivity. This approach then seeks to
minimize the denominator of the ZT function. It is much rarer to find schemes
which seek to maximize the power factor. The reason for this is that the Seebeck
coefficient S and the conductance G are highly interdependent and inversely
related, and generally when one improves one they tend to erode the other.
However, this need not always be the case.

The Seebeck coefficient is defined as S = −ΔV/ΔT and thus intuitively
encapsulates the ability of a material to separate charge given a certain temper-
ature gradient. Within linearized transport theory it can be written as

S =
∫ (

−∂fFD(E, T )
∂E

)
T (E)

(
E − εF
kBT

)
dE

where fFD is the Fermi-Dirac distribution, T is a conductance or transmission
function which is also related to the density of states and εF is the Fermi level.
Similarly, the conductance is defined as

G =
∫ (

−∂fFD(E, T )
∂E

)
T (E)dE.

Thus, the key difference between the two components of the power factor
is only the factor of (E − εF )/kBT . This factor means that symmetric trans-
mission above and below the Fermi level acts to cancel each other out and
produce a Seebeck coefficient of zero. Thus, to enhance the power factor one
seeks to maximize conductance at energies above the Fermi level but minimize
conductance at energies below it. In light of this it was generally considered
that insulators/semiconductors with asymmetric valence and conduction bands
and a Fermi level lying between them were good materials for thermoelectric
applications. Similarly, a typical band in three dimensions has a density of state
whose shape is approximately ∝ √

E − E0 where E0 is the band edge, thus met-
als whose Fermi level lies deep in a band where the density of states, and thus
the transmission, is effectively constant/flat, were deemed to be poor thermo-
electrics.
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Contrary to this initial assessment, it has been argued [4,5] that a metal can
be made a good thermoelectric if a sequence of potential barriers can be added.
If the system has a series of potential barriers whose height is near the height of
the Fermi level above the conduction band (or below the valence band) then the
material will have a high conductivity, as it is a metal, for energies above the
Fermi level, and for energies below the Fermi level transport is effectively blocked
by the barriers. Further work along this line [7] would argue that scattering
with optical and acoustic phonons, which allowed carriers to mix energy and
momentum in the regions between barriers, would further heighten this filtering
effect.

This system of barrier filtering is not just an abstract contrivance but does
indeed occur in real systems. Two prime examples of this are superlattices,
where layer-by-layer varying material properties can create a series of transport
barriers, and nanograined systems (i.e. polycrystalline systems where the grain
size is on the order of nanometers) where grain boundaries can act as poten-
tial barriers [6]. However in terms of modelling and theory, such systems offer
considerable challenges. As potential barriers and scattering play a large role in
the physics, both quantum tunnelling and phonon scattering must be included
if any physical model is to be accurate. The standard method for numerically
describing quantum transport is the non-equilibrium Green’s function method
(NEGF). However, the inclusion of electron-phonon scattering within this model
results in a substantial computational burden. Thus, the implementation of such
a method is necessarily an exercise in high-performance algorithm design.

The issue of ideal barrier shape has been addressed before by authors of
this paper, though at the semi-classical level in a system where ionized impu-
rity scattering was the primary source of scattering [6]. An NEGF calculation
taking into account scattering to the issue of energy filtering has also been done
before [3] with an eye for optimal barrier spacing and height. In this work we
consider a fully quantum mechanical study of the effect of barrier shape on the
thermoelectric power factor.

The purpose of this work is to use an NEGF algorithm with electron-phonon
scattering incorporated to study the effect of barrier height, width and shape on
the power factor. A plausible potential barrier shape will be posited and their
forms generalized. The ideal barrier shape will be determined as well as the
potential loss for non-ideal shapes quantified.

2 Methods

The NEGF method is a robust and accurate method for simulating quantum
transport [2]. The numerical crux of the method involves an inversion of a matrix
of the form

G(E) = [E ± iε − H − Σ(E,E′)]−1

where H is the systems Hamiltonian and Σ is a matrix which accounts for
both the effect of the contacts and for electron-phonon scattering. The
Green’s function must be evaluated for every value of the energy considered
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(typical ∼ 1000 values). If scattering is not considered then the Green’s func-
tions at each energy are independent. In such a case the computation can be
parallelized in energy provided each processing node has sufficient memory to
hold both the Hamiltonian (which is sparse) and two versions of the Green’s
function; the retarded Green’s function GR which holds static information and
the greater-than Green’s function G> which holds dynamic information (see [2]).

When scattering is included into the NEGF method then the Σ matrix
acquires a dependence on other energies. This is because the process of inelastic
scattering causes a carrier and a phonon with an energy E and E′ to scatter and
end with energies of E′′ and E′′′ where E + E′ = E′′ + E′′′. It is important to
note that only the energy of the carrier, and not the phonon, is tracked. Thus
carriers can scatter between energies and the Green’s functions are no longer
independent. This means that all Green’s functions must then be determined
self-consistently. The parallelization of the NEGF method then becomes less
straightforward. However, optical phonon energies are often approximated to be
constant (E = �ω) and thus the mixing of energy only occurs between ener-
gies that are ±�ω. This allows one to still parallelize in energy space with only
minimal communication between nodes.

The simulations performed in this paper were done using the effective mass
model with meff = m0, a lattice constant of 0.5 nm and a channel length of
120 nm. The channel contained six barriers with a 20 nm separation between
each. The optical and acoustic phonon coupling strengths are taken to be the
same with a value of 1.6 × 10−3eV2. The Fermi level was chosen to maximize
ballistic conductance and was fixed at 0.14eV above the conduction band. These
parameters, though plausible for a silicon-like structure, are effectively arbitrary
and though quantitative behaviour will be dependent on them it is believed that
qualitative insights will be general.

3 Results

The type of barrier explored in this work is an exponentially decaying square
barrier. Such a barrier profile may realistically appear in structures where a
square barrier is intended but some level of diffusion, possibly due to annealing,
has occurred and thus are a good prototypical shape. In a reality a perfectly
square barrier cannot be obtained and such tails are thus a more natural shape.
The first part of the considered barrier shape is a square barrier of height hb

and width wb. At the edges of the square portion the potential then decays
exponentially according to the function

f(x) = exp (−Cbx)

where Cb is the curvature of the exponential decay. A sample set of barriers
can be seen in Fig. 1. In addition to the properties of the barrier one must also
specify the separation between barriers. A cursory exploration of both barrier
separation and barrier height found that the optimal values for an entirely square
barrier were determined to be 20 nm and 0.17 eV respectively. The fact that the
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Fig. 1. A schematic diagram of an exponentially decaying square well. The parameter
which describes the overall shape is the curvature, Cb. A small Cb corresponds to a
very broad, bowl-like, structure (see black line) where a very large CB corresponds to a
square well (see blue line). For reference the curve in red has a curvature of 25.0 (color
figure online).

optimal barrier separation corresponds to the specified mean free path suggests
the approach taken here is valid.

With the barrier separation and height fixed the power factor dependence
on barrier width and curvature were explored. Figure 2 shows the dependence
of barrier width on power factor for various curvatures. It is clear that there
is a pronounced peak in the power factor at a value of 3 nm. However, the
value of the peak is merely an artifact of the chosen system parameters, of
greater interest is the loss in power factor associated with deviation from the
ideal. For barriers thinner than 3 nm the power factor can be reduced by up to
∼ 31%. The reason for this is fairly intuitive, as the barriers become thinner
the amount of tunnelling through the barriers increases. If the purpose of the
barriers is to maximize the power factor by blocking conductance through the
barrier than tunnelling erodes the power factor gains resulting from this blockage.
It is also interesting to note that barriers thicker than the ideal can cause losses
of approximately ∼ 15% if one ignores the red and black data (curvatures of 5
and 10), a point to be discussed later. Though this loss is less than the previous
case it is still significant. This loss likely results from the poor conductivity of the
barrier regions themselves. Since a barrier height of 0.17eV is above the Fermi
level of 0.14eV the barrier region is approximately an insulating region. Thus,
the thicker the barriers the greater the fraction of the total system volume is
comprised of “insulating” material. Thus, conductance drops.
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Fig. 2. Power Factors (S2G) vs. Barrier Width wb: The above reflects a barrier height
of 0.17 eV and separation of 20 nm. There is a clear and pronounced peak at a width
of 3 nm with deviations from the ideal causing a loss of ∼ 30 % in the power factor.
Additionally, for curvatures greater than ∼ 15.0 the affect on power factor is minimal.

Fig. 3. Power Factor (S2G) vs. Curvature: The above reflects a barrier height of 0.17
eV and separation of 20 nm. Power factor can be seen to plateau at high curvatures.
Lower curvatures have power factors of approximately ∼ 18 % lower. The inset shows
the power factor of a barrier of ideal width, 3 nm, for curvatures tending towards
infinity.
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Looking at Fig. 2 it is clear that the low curvature data (the red and black
lines) has much worse thermoelectric behaviour than the higher curvature data.
A plot of power factor versus curvature can be found in Fig. 3. Looking at this
figure it is important to stress that higher values of the curvature reflect increas-
ingly square like wells with an infinite curvature being a square well. Thus, the
black line in Fig. 3 represent a barrier of width 1 nm and confirms the earlier
statement about tunnelling eroding transport with larger curvatures resulting in
thinner barriers. However, for all other widths it is clear that overly curved well
shapes have worse power factors than square wells, the difference being ∼ 18%.
At curvatures (Cb) of approximately 15.0 it appears that the power factor effec-
tively saturates. From this it can be concluded that the square barrier is the
ideal barrier shape.

4 Conclusions

In this work an NEGF study including electron-phonon scattering of the effect
of barrier shape and width on the thermoelectric power factor was explored. It
was determined that a square barrier of optimized width is ideal for maximizing
energy filtering. Furthermore, it was determined that deviations from ideal width
can erode the power factor by ∼ 31% and deviations from ideal shape can erode
by ∼ 18%.
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