
Expanding TCAD Simulations from Grid to Cloud
H. Demel, Z. Stanojević, and M. Karner

Global TCAD Solutions GmbH
Landhausgasse 4/1A, 1010 Wien, Austria

{h.demel|z.stanojevic|m.karner}@globaltcad.com

G. Rzepa and T. Grasser
Institute for Microelectronics, TU Wien

Gußhausstraße 27–29, 1040 Wien, Austria
{rzepa|grasser}@iue.tuwien.ac.at

Abstract—In this work, the distribution, execution and per-
formance of TCAD simulations on grid and cloud systems are
investigated. A module for distributed computing which can
uniformly interface both grid and cloud computing systems has
been implemented within GTS Framework. Automated allocation
of resources for user jobs on a combined platform has been
achieved. Traditional grid-computing systems are compared with
cloud-based systems. Strategies for cost-effective allocation of
cloud-resources are presented. The performance of a typical
TCAD application run on a grid, in the cloud, and a hybrid
system combining both are assessed.

I. INTRODUCTION

Cloud computing has been heavily used for high traffic web-
services for several years [1]. In that domain, resources need
to be expanded to meet web-service’s demands at any given
time - otherwise the service will break down.

In the domain of TCAD, where grid-computing is pervasive,
system stability is less of a concern. However, in case of
time-critical jobs, or when grid resources are scarce, it may
be desirable to add more resources to the system. Cloud
computing provides a way to do so, tapping into a virtually
unlimited resource-pool, but it has to be used with care to keep
the expenses within reasonable bounds.

In this work, we compare traditional grid-computing sys-
tems with cloud-based systems, present strategies for cost-
effective allocation of cloud-resources, and assess the perfor-
mance of a typical TCAD application run on a grid, in the
cloud, and a hybrid system combining both.

II. CLOUD VS. GRID

A module for distributed computing was implemented
within GTS Framework [2], which can uniformly interface
both grid and cloud computing systems, and automatically
allocates resources for user jobs. Figures 1 and 2 show
the architecture of a grid computing system and a cloud
computing system, respectively, as used by GTS Framework
for distributed simulation jobs. In the grid case, execution
hosts are submitted into the grid queue, which then perform
a single simulation task when scheduled. In the case of the
cloud, virtual machines (nodes) are created in the cloud and a
execution host is started on each of them.

III. ALLOCATION MODEL

Most cloud computing providers use block based billing,
typically by the hour [3], meaning that with the beginning of
every new hour of node uptime a fee is charged. Starting a

S

H H HH H
. . .

NodeNode Node Node

Shared FS

Grid Computing System

GUI

Figure 1. In a grid computing environment the Graphical User Interface
(GUI) runs on a login node and submits a server instance (S) managing the
simulation to the grid. GUI and server find each other by using a shared file
system. The server submits simulation hosts (H) to the grid as needed.

S

. . .

GUI

Workstn

Cloud Computing

 System

H H H H

Node

Node Node Node Node Node

H

Figure 2. In a cloud computing environment the user workstation running
the GUI is running outside of the cloud. The server instance (S) managing
the simulation can run inside or outside the cloud and starts nodes that act as
simulation hosts (H) via the cloud API as needed.

node for every simulation task would be wasteful if tasks are
significantly shorter than the billing block time.

An algorithm is needed which minimizes the time until job
completion while maintaining minimum cost-overhead. For an
ideal solution, a-priori knowledge about the runtime of each
task is required. In practice, however, task runtime cannot be
known beforehand. The algorithm thus iteratively estimates

SISPAD 2015, September 9-11, 2015, Washington, DC, USA

SISPAD 2015 - http://www.sispad.org

186978-1-4673-7860-4/15/$31.00 ©2015 IEEE

Figure 3. Resources used by naive algorithm, short tasks; Visualization of the
uptime of computational nodes using the naive approach for 55 short tasks
with 9 minutes of calculation time each and a simulated boot time of 90
seconds. Because of the delayed boot the number of started hosts is reduced
to 33, which amount in costs for 33 machine hours. The minimum required
amount would have been 10 machine hours only.

the number of required nodes, requests these in the cloud, and
waits until the requested nodes have booted. The procedure
is then repeated with an updated estimate for the number of
required nodes.

A naive approach at estimating the number of required
nodes would be to use a fixed percentage of pending tasks, e.g.
nreq = npend × 10%. This approach is effective when dealing
with short tasks, but produces significant cost overhead, as
can be seen in Fig. 3.

Reducing the set percentage will not reduce the overhead
significantly but increases the total runtime, especially for
many nodes and longer task time. The increase in runtime
is due to the exponential convergence behavior of the naive
algorithm and the resulting long delay in the start up of the
last computational node (cf. Fig. 4).

A refined, heuristic approach computes an expected runtime
texp for each task, based on data collected from completed and
running tasks. The number of requested nodes is

nreq =
�
∑
task

(texp − trun)− ∑
node

(tblock − tup)
�
/50min (1)

where trun is the already spent runtime of a task, and tblock−tup
is the time until a node enters the next billing block. This
approach reduces cost overhead for short tasks, but increases
overall runtime due to fragmentation.

To mitigate this, a fast and simple scheduling algorithm
is used in conjunction with the node-requesting heuristic to
reduce fragmentation. This reduces the overall runtime while
maintaining cost at a minimum. The start-up and scheduling
processes are visualized in Fig. 5.

IV. RESULTS AND DISCUSSION

The autonomous scaling capabilities can also be used in
a hybrid setup where an existing grid computing system is

Figure 4. Resources used by naive algorithm, long tasks; Visualization of the
uptime of computational nodes using the naive approach for 55 long tasks
with 53 minutes of calculation time each and a simulated boot time of 90
seconds. Since the computational time is close to the billing block time of an
hour, a machine should be started for each task. Using the naive approach the
last computational node is started after 39 minutes leading to an unnecessary
extension of the total runtime.

Figure 5. Visualization of the start-up of hosts based on the heuristic approach
with a scheduler; after the submission of nine tasks, one host is started
immediately. As soon as the first task exceeds a runtime of six minutes a
second host is added since it is not possible to execute all tasks on one host
within an hour. If the tasks were shorter than 12 minutes, ideal scheduling
would be to execute four tasks on one host and five tasks on the other. After
12 minutes this is not possible within an hour anymore and further nodes are
added.

extended by scaling out to the cloud when too little resources
are available on the grid. We tested the hybrid system using
a reliability/variability simulation of a 20 nm FinFET. Due to
the small dimensions of the device, the assumption that the
doping atoms are uniformly distributed and form a continuum
breaks down [4]. The position of each individual doping atom
has a decisive influence on the transistor’s properties. For that
reason, based on the transistor design, a multitude of virtual
devices is generated, each with a different random distribution
of discrete dopants. One of these generated devices is shown

187

Figure 6. Virtual device with random discrete dopants shown in the GTS
simulation framework

Figure 7. Script tool view showing the running simulation setup; the Structure
tool is initialized with a varying seed for the random dopant distribution; the
created device is passed on to a Minimos-NT simulation; the Vision tool is
used to postprocess the results and determine Vth,lin and Vth,sat; the current
progress of the tasks is color-coded

in Fig. 6. The simulation tasks consists of determining the
current/voltage characteristics for the linear and the saturated
operation regime of the transistor. The threshold voltages for
both regimes, Vth,lin and Vth,sat, are determined for each doping
configuration. An exemplary view of such a simulation is
shown in Fig. 7. The GTS job server allows for an easy task
setup and shows the job progress and postprocessing results
in a single view.

Another example is the full 3D device simulation of a
silicon nanowire (Figure 8). The subband-Boltzmann transport
equation is solved on slices along the channel region to
determine an effective mobility [5]. The GTS job server takes
care of multi-host parallelization of the subband and scattering
rate calculation (see Fig. 9).

The shift of the threshold voltage is an important key figure
for the transistor’s performance in an integrated circuit. Of spe-
cial interest is the BTI-induced Vth shift, where a small change
in oxide trap distribution can lead to considerable changes
in Vth under device-stress conditions [6]. Large samples of
trap/dopant configurations need to be investigated to achieve

Figure 8. Full 3D device simulation of a silicon nanowire; The subband-
Boltzmann transport equation is solved on slices along the channel region to
determine an effective mobility. The GTS job server takes care of multi-host
parallelization of the subband and scattering rate calculation (see Fig. 9).

Figure 9. Simulators can make use of the job server to demand hosts for sub-
processes: The GTS job server starts a Minimos-NT job. The device simulator
requests VSP jobs from the job server to calculate the mobility on device
cuts. The job server distributes the tasks and reports the VSP output back to
Minimos-NT.

good statistics on the device reliability.
A typical result of such a reliability/variability simulation

using a sample size of 480 can be seen in Fig. 10. Each of
the individual simulation tasks run on a grid took between
13.2 min and 19.3 min with an average of 17.6 min. The
distribution of the computation times of the simulation tasks
is shown in Fig. 11. The difference in simulation runtime is
due to the varying convergence of the equation system, that
depends strongly on the random dopant configuration. The
same set on tasks run on a cloud system took between 21.7 min
and 28.5 min with an average of 24.7 min. This is due to the
lower floating point performance of typical cloud machines
compared to a computing grid specifically built for TCAD
simulation tasks.

The measurements of the time until all computations are
finished and the associated costs (Figure 12) shows that using
the naive algorithm leads to multiples of the necessary cost
for short computations. The heuristic algorithm based on the
numeric formula drastically reduces the cost, but induces
longer run times. The iterative algorithm including a scheduler
always causes as much or even less costs than the algorithm

188

Figure 10. BTI-induced Vth-shift in an ensemble of n-FinFETs with randomly
positioned oxide traps (top); ΔVth-distribution after a stress time of 105 s
(bottom)

Figure 11. Histogram of the computation time of the simulation tasks for
different random dopant configurations run on a grid

based on the heuristic-only approach and provides much faster
run times, for task run times above half the billing block time
(i.e. half an hour) even faster than the naive algorithm.

In this setting we found that the hybrid system delivers
results faster than pure cloud or pure grid systems and costs
less than the pure cloud system as summarized in Table I.

V. CONCLUSION

A newly developed algorithm combining an heuristic for-
mula with a scheduling algorithm for determining the number
of nodes to start in the cloud proved to be able to keep the
expenses of cloud usage as low as possible and speed up the
time until results can be obtained considerably. In a hybrid
solution the costs can be reduced even further by only scaling

Figure 12. Comparison of three algorithms to determine the number of nodes
to start in the cloud for 55 computational tasks; the heuristic algorithm with
scheduler needs less resources than the naive approach for short simulations
and delivers results more quickly for long running simulations by starting up
more nodes earlier.

Table I
THE HYBRID SETUP DELIVERS THE RESULTS FASTEST AND COSTS LESS

THAN THE CLOUD-ONLY SETUP ASSUMING THAT GRID USAGE IS CHEAPER
THAN CLOUD USAGE.

runtime cost
grid 108.1 minutes 17.7 grid machine hours

(8 tasks per machine)
cloud 69.3 minutes 72 cloud instance hours

(4 tasks per instance)
hybrid 62.4 minutes 6.2 grid machine hours

43 cloud instance hours

out during load peaks. We conclude that the hybrid system
combining cloud and grid is a feasible and economic approach
to handle time-critical large-scale TCAD simulations.

REFERENCES

[1] Michael Armbrust, Armando Fox, R. Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, G. Lee, D. A. Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia, “Above the Clouds: A Berkeley View of Cloud
Computing,” Feb. 2009.

[2] “GTS Framework, http://www.globaltcad.com/framework.” [Online].
Available: http://www.globaltcad.com/framework

[3] P. Marshall, H. Tufo, K. Keahey, D. LaBissoniere, and M. Woitaszek, “A
Large-Scale Elastic Environment for Scientific Computing,” in Software
and Data Technologies, ser. Communications in Computer and Infor-
mation Science, J. Cordeiro, S. Hammoudi, and M. van Sinderen, Eds.
Springer Berlin Heidelberg, 2013, vol. 411, pp. 112–126.

[4] N. Sano and M. Tomizawa, “Random dopant model for three-
dimensional drift-diffusion simulations in metal-oxide-semiconductor
field-effect-transistors,” Applied Physics Letters, vol. 79, no. 14, pp.
2267–2269, 2001. [Online]. Available: http://scitation.aip.org/content/aip/
journal/apl/79/14/10.1063/1.1406980

[5] M. Karner, Z. Stanojević, F. Mitterbauer, C. Kernstock, and H. Demel,
“Bringing Physics to Device Design – a Fast and Predictive Device Sim-
ulation Framework,” in 2015 Silicon Nanoelectronics Workshop (SNW),
2015, pp. 75–76.

[6] Hui-Wen Cheng, Fu-Hai Li, Ming-Hung Han, Chun-Yen Yiu, Chia-
Hui Yu, Kuo-Fu Lee, and Yiming Li, “3D device simulation of work
function and interface trap fluctuations on high-K / metal gate devices,” in
Electron Devices Meeting (IEDM), 2010 IEEE International, Dec. 2010,
pp. 15.6.1–15.6.4.

189

