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Since the successful experimental isolation of
graphene in 2004, ultra-thin two-dimensional struc-
tures are being widely studied as potential building
blocks for future electronic devices. Among various
two-dimensional materials, single-layer (SL) MoS2

has attracted much attention. For a SL of MoS2 a di-
rect bandgap of 1.8 to 1.9 eV has been reported [1],
which is suitable for various electronic applications.
Recently, FETs based on SL MoS2 with an Ion/Ioff
ratio as high as ∼ 108 and a sub-threshold swing of
∼ 70 mV/decade have been achieved [2]. However,
the reported mobility is below that of ultra thin body
or strained Si and III-V materials. It is believed
that extrinsic sources such as charged impurities
(CI) [3] and inevitable Schottky contacts [4] limit
the characteristics of devices based on SL MoS2.
High-κ gate insulators, such as HfO2, can reduce
CI scattering effects and boost the mobility [3,
5], however, they can degrade the mobility due to
remote phonon (RP) scattering [6] . The source of
this scattering is in the surrounding dielectrics via
long-range Coulomb interactions, provided that the
dielectrics support polar vibrational modes.

To study electronic transport in SL MoS2 we
solved the NEGF equations self-consistently with
the Poisson equation based on the box integra-
tion method. An effective mass of m∗ = 0.48m0

has been assumed for both longitudinal and trans-
verse directions [7]. We have considered intrinsic
electron-phonon interactions including the longitu-
dinal acoustic (LA), the transverse acoustic (TA),
the longitudinal optical (LO), and polar optical
phonons (POP) with the parameters adopted from
Ref. [7]. The mobility is calculated based on the
method explained in Refs. [8, 9]. For device sim-
ulation we assumed a channel length of 20 nm, a
10 nm thick HfO2 gate insulator, and a 50 nm thick

Lch=20nm

Fig. 1. Schematic view of the simulated device. An n-type top
gate SL MoS2 FET with ohmic contacts. The channel length
is 20 nm and the gate oxide is 10 nm thick HfO2 layer with
κ = 22. The substrate is assumed to be SiO2.

−1.2 −0.7 −0.2 0.3
0

2

4

6

Gate Voltage (V)

D
ra
in

C
ur

re
nt

(m
A
/µ
m
)

−1.2 −0.7 −0.2 0.3

10−7

10−4

10−1

(a)

0 0.4 0.8
0

3

6

9 (b)

Drain Voltage (V)

D
ra
in

C
ur

re
nt

(m
A
/µ
m
)

Fig. 2. (a) The transfer characteristics in the presence of
scattering at VDS=0.1 V. Transconductance is gm = 9.6 mS/µ
m. The inset shows transfer characteristics in logarithmic scale.
(b) The output characteristics for VGS= - 0.6 to +0.4 V with
0.2 V step (the arrow indicates the direction of VGS increase).
Current saturation is observed for VDS > 0.3 V.

SiO2 substrate, see Fig. 1. In this study the dynamic
screening of remote phonon modes stemmed from
HfO2 and static screening of charged impurities are
included. Figure 2 shows the transfer and output
characteristics in the presence of intrinsic phonon
scattering. The results indicate a relatively high Ion
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Fig. 3. The velocity as a function of the applied electric
field. The inset shows the mobility as a function of the applied
electric field. The low field mobility is about 580 cm2/Vs and
decreases to 130 cm2/(Vs) under high electric fields.

of 9 mA/µm and a high Ion/Ioff ratio of about
107, which are close to the ballistic limit. Low
field phonon-limited mobility is evaluated to be
580 cm2/(Vs) in good agreement with the result of
Ref. [7]. The effect of high fields on the mobility
and carrier velocity are depicted in Fig. 3. The
significant drop in the mobility is due to increased
polar and non-polar optical phonon scattering at
high electric fields.

Figure 4 shows the effect of CI scattering and
RP scattering for an average carrier density of
∼ 1013 cm−2. By using a high-κ insulator the
CI scattering is suppressed which enhances the
mobility. On the other hand, high-κ insulators
introduce RP scattering which in turn reduce the
mobility. Therefore, at low CI concentrations the
mobility for a device with SiO2 as the top gate
is higher than that with HfO2. Figure 4 shows
the evaluated mobility in the presence of intrinsic
phonons (IP), CI, and RP (CI+RP) is in good
agreement with experimental results from Refs. [3,
10]. Table I compares the mean free path and the
mobility for each scattering mechanism studied in
this work. The results show that acoustic phonons
play a more significant role in short channel devices
than other intrinsic phonon modes. However, RP
scattering due to a 30 nm high-κ HfO2 results in
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Fig. 4. Charged impurity (CI) and remote phonon (RP) limited
mobility as a function of charged impurity density for 30nm
thick HfO2 and also SiO2 top gate insulator. The mobility due
to IPs+CI+RP with HfO2 gate insulator is in good agreement
with experimental results in Refs. [3, 10].

the smallest mean free path. The presented results
can be used for appropriate selection of the gate
insulator material for optimal device performance.
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TABLE I
THE MEAN FREE PATH (λ) AND LOW-FIELD MOBILITY (µ)

FOR EACH SCATTERING SOURCE. RP SCATTERING IS

CALCULATED FOR FOR A 30 NM THICK HFO2 .

Phonon Modes λ (nm) µ (cm2/(Vs))
LA+TA 35 923
LO 157 4161
POP 87 2316
RP 5.7 151
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