
SIMU.11

EIGENVALUE COMPUTATIONS ON GRAPHICS PROCESSING

UNITS

Andreas Selinger, Denis Ojdanić, Karl Rupp, and Erasmus Langer

Institute for Microelectronics

Many algorithms have the potential to dramatically increase their performance by using

the processing power of Graphics Processing Units (GPUs). The bisection algorithm for

tridiagonal symmetric matrices is one example. We adapted and corrected an implemen-

tation by NVIDIA and showed its performance in comparison to other implementations

and algorithms.

THE EIGENVALUE PROBLEM

Finding the eigenvalues of a linear system is a very common problem in physics and

engineering. Important examples are the solution of the Schrödinger equation or the

simulation of mechanical oscillations. The problem can be written as

Av = λv,

where A is a regular n×n matrix, v 6= 0 is an eigenvector of A and λ is an eigenvalue

of A.

We consider a symmetric real matrix A, for which all eigenvalues are real. In general, it

is very expensive to compute the eigenvalues, so they are only computed numerically in

practice. Therefore it is important to choose a fast algorithm, especially when computing

the eigenvalues of large systems.

BISECTION ALGORITHM

The heart of the bisection algorithm is a function we call EigenvalueCount C(x), which

computes the number of eigenvalues smaller than a scalar x. This yields that in an

interval [x1, x2[, there are C(x2)−C(x1) eigenvalues. Now the key to find all eigenvalues

is to divide an interval, which is guaranteed to contain all eigenvalues (Gerschgorin

interval), into two intervals. All resulting intervals with eigenvalues are further divided.

This procedure is repeated until the bounds of each interval containing eigenvalues are

so tight, that we can tell the eigenvalues as accurately as desired [1].

PARALLELIZATION OF THE ALGORITHM

With the high number of processors residing on a GPU, it can run general-purpose

computations simultaneously at a very high performance. Since the computations of

all eigenvalues on a level of the interval tree do not depend on each other, they can

be processed very efficiently and in parallel on the GPU, instead of computing one

eigenvalue after another on the CPU.

40



SIMU.11

Unfortunately, the NVIDIA implementation failed when applied to matrices with multi-

ple eigenvalues. We fixed this error, which was caused by a false termination condition

and by a race condition. Furthermore, we ported the CUDA version of the imple-

mentation to OpenCL to make it not only suitable for NVIDIA-GPUs, but also for

AMD-GPUs.

PERFORMANCE ANALYSIS

Figure 1 shows the performance of the parallel bisection algorithm in comparison to

serial algorithms. By using the GPU, a performance gain on the order of one magnitude

over the reference TQL1 implementation was obtained.

0.1

1

10

100

1000

10000

100000

64 128 256 512 1024 2048 4096 8192 16384 32768

Time
in ms

Matrix dimension

GNU Octave
∗ ∗ ∗

∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗
Bisect serialOO

OOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOOOOOOO OOOO

O
TQL1

• • •
• •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• •
• • •

• • •
• • • •

•

•
Bisect parallel

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦

◦

Fig. 1. Performance of different algorithms: In our tests, the serial algorithms ran on an Intel Core i7 960 CPU and

the parallel bisection algorithm ran on an NVIDIA GeForce GTX 580 GPU.

CONCLUSION

Compared to CPU-based implementations for tridiagonal symmetric matrices, a magnif-

icent speedup was achieved with the parallel algorithm. Our implementation is available

in the free open source software library ViennaCL [2].

REFERENCES

[1] C. Lessig, “Eigenvalue Computation with CUDA,” NVIDIA CUDA Toolkit, 2007. [Online]. Available:

http://docs.nvidia.com/cuda/cuda-samples/index.html#eigenvalues

[2] ViennaCL. . [Online]. Available: http://viennacl.sourceforge.net

41


