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I. INTRODUCTION

The thermoelectric (TE) performance of materials is
determined by the figure of merit ZT = σS2T/κ,
where σ denotes the electrical conductivity, S the See-
beck coefficient and κ the thermal conductivity. Large
improvements in ZT have recently been reported in
nanoscale materials due to drastic reduction in κ[1]. On
the other hand, much less success has been achieved in
improving the power factor (σS2), and ZT still remains
low. Energy filtering in nanocomposite materials with
embedded potential barriers is a promising way to im-
prove σS2 via improvements in the Seebeck coefficient
[2], [3]. Indeed, the improvement in the Seebeck coef-
ficient of nanometers-size layer superlattices has been
demonstrated in several experimental works. Significant
benefits to the overall power factor, however, were never
observed in these structures due to large reductions in
σ. In this work, we use the Non-Equilibrium Greens
Function (NEGF) method to illustrate the design details
under which improvements in σS2 can be achieved by
energy filtering. We further demonstrate that variation
of the design parameters, and most importantly in the
barrier heights is a strong detrimental mechanism which
can take away most of the energy filtering benefits.

II. THE NEGF METHOD

In this section the specific of the NEGF method will be
outlined. The central object in this theory is the Green’s
function:

G(E) = [E −H(E)− Σc(E)− Σsc(E
′)]−1 (1)

where H(E) is the system Hamiltonian and Σc/Σsc

represent perturbations to the Hamiltonian that account
for the effects of the contacts and scattering respectively
and are called “self-energies”. If these self-energies were
to be calculated explicitly the result would essentially be

a non-equilibrium perturbative theory, accurate only to
first order. However, as we will see, the self-energies are
determined self-consistently which amounts to an infinite
order expansion, though only in Feynman diagrams of
first-order. Effectively this means that NEGF represents
an infinite-order perturbation theory, but only in one-
scatter processes (i.e. multi-scatter processes are ne-
glected as are all non-perturbative phenomena). Related
to the Green’s functions, the“correlation functions” are
defined as:

Gn/p = GΣin/outG† (2)

where Σin/out are simply called the in or out scattering
functions. The in/out scattering functions are a sum
of the individual in/out scattering functions for each
contact and for scattering (one for each self-energy in
the Green’s function). The contact in/out functions have
a simple form:

Σin
c (E) = if(E)(Σc(E)− Σ†c(E)) (3)

Σout
c (E) = i(1− f(E))(Σc(E)− Σ†c(E)) (4)

where f(E) is the Fermi-Dirac distribution. However,
the expression for the scattering functions is far more
complex[4]:

Σin/out
sc (E) =

∫ ∞
0

(
Dem(h̄ω)Gn/p(E + h̄ω) (5)

+Dab(h̄ω)Gn/p(E − h̄ω)
) dE

2π

where Dem/ab are the emission and absorption constants.
The reason these constants are called such will be made
clear later.

Within the NEGF formalism the Green’s function
contains information about the available states of the
system, theirS number and energy. This is evidenced
by the fact that the diagonal elements of the Green’s



function can be shown to be proportional to the density
of states. While the Green’s function holds information
about the possible states of the system, the correlation
function holds comparable information about their oc-
cupancy which is suggested by its dependence on both
the Green’s function (which holds state information)
and the Fermi-Dirac function (which dictates fermionic
occupancy). To wit its diagonal elements are proportional
to the occupancy probabilities or charge density.

Without contacts or scattering (i.e. at zero self-energy)
the Green’s function must be solved for all energies.
In very simple cases this can be done analytically,
however, for all others it must be done computationally
by evaluating it at many points along a grid of energy
points extending from some minimal energy to some
maximum. As the occupancy of states far from the Fermi
level are either 0 or 1 these limits need not extend far
from the Fermi level. Thus, if there are N energy points
considered about the Fermi level then the inversion must
be done N times producing either N Green’s functions
(if the inversion could be done analytically) or N Green’s
matrices whose size is that of the Hamiltonian (if done
numerically). From these Green’s functions, quantities
like the density of states, the state occupancy, charge
density and current can be determined.

When contacts are considered the formalism is only
slightly modified, provided one has a clear expression
for the contact self-energies. The determination of these
expressions can be very complex but is an issue ignored
here. The main difficulty in NEGF simulation is the
treatment of scattering.

The correlation functions are dependent on the in
and out scattering functions (Σin/out). The in and out
scattering functions at an energy E are dependent on the
correlation functions at an energy E±h̄ω. Thus there is a
circular dependence and the numerical task amounts to
determining the scattering function for which the two
quantities (the correlation function and the scattering
functions) are self-consistent. However, in the most
general case Dem/ab must be assumed to be non-zero for
all values of h̄ω within an allowed phonon band. In this
case one has an enormously complex self-consistency
problem with all energies being completely dependent on
all other energies. Although in principal such a problem
is tractable, such calculations are almost never done.
Rather assumptions are made about the form of Dem/ab

that greatly simplify the calculation. Specifically, for
acoustic phonons one assumes that scattering is elastic
and only momentum and not energy is exchanged by
electron-phonon interactions. In such a case Dem/ab can
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Fig. 1. Sample data for a nanocomposite channel. The current
density versus position (colormap). Superimposed on the image are
the potential barriers and the carriers energy expectation value 〈E〉.

be considered to be Dirac delta functions centered at zero
and only h̄ω = 0 is considered and the integration is
dropped. In this case self-consistency can be determined
at each energy entirely independent of one another. The
case for optical phonons is even more complex.

It is common practice to assume that optical phonons
in NEGF have a completely flat band profile (i.e. their
dispersion is ω(k) = h̄ω0 or independent of momen-
tum). Under this approximation Dem/ab are Dirac delta
functions centered at ±h̄ω and although each energy is
no longer independent they depend only on two other
energies; one at E + h̄ω representing the case where
an electron is being added to energy E from E − h̄ω
by emitting a phonon of energy h̄ω and thus losing that
energy (which is why Dem is so named) and the converse
case of absorption allowing an electron initially at E−h̄ω
to scatter into a state at energy E.

The limited interdependency of optical phonon scat-
tering requires one to calculate and store the correlation
functions for all energies, where in the independent
energies case one could solve each energy one at a
time. For large Hamiltonians (i.e. large systems) this can
take a large amount of computer memory. In order to
avoid this it is common practice to only consider the
diagonal elements of the in and out scattering functions.
If the Hamiltonian is in a position space basis then this
means that scattering can only occur from r → r′ if
r = r′, which is to say that scattering is assumed to only
occur locally. The validity of this approximation has been
justified in many cases[4], [5] but its appropriateness
must be considered with each new system. In systems
where non-local scattering is an important effect (such as
with polar optical phonons, for example) one must keep
the entire set of matrices and thus confine themselves to



smaller systems.

The basic NEGF algorithm[4] for a system with
acoustic and optical phonons in the local scattering
approximation proceeds as follows:

1) Represent the system Hamiltonian in a convenient
basis (often real-space or a hybrid of real-space
in the transport direction, Fourier space in the
transverse).

2) Determine the contact self-energies (Σc) for all N
energies E and save them (contacts self-energies
in a real space basis couple only to the ends of the
device and thus are sparse matrices and the entire
matrix can be stored).

3) Initially assume the scattering self-energies to be
zero (Σsc = 0).

4) Calculate G from Σc and Σsc.
5) Calculate Σ

in/out
c (Σin/out

sc is calculated later but is
taken to simply be zero on the first step) from the
Fermi-Dirac functions and Σc and Σsc.

6) Calculate Gn/p from Σ
in/out
c and Σ

in/out
sc for all

energies. One only needs to keep the diagonal
elements but one must store it for all energies.

7) With Gn/p and h̄ω0 (the optical phonon energy)
calculate Σ

in/out
sc .

8) Calculate quantities of interest (i.e. current, charge
density, density of states, etc.).

9) Check for convergence of self-consistency of Gn/p

and Σ
in/out
sc . If not converged go to 4.

There are a number of ways to determine whether self-
consistency has been achieved. Commons choices are to
save either the charge density or the current every time
step 8 is reached and when a new value is calculated
compare to the old and if the change is only within some
set convergence criteria stop the loop.

Convergence, especially in the work done here where
potential features are very sharp and scattering is intense,
can often be an issue. There are a number of schemes to
either speed (should it be slow) or improve the chances
of (should it be unreliable) of convergence. The simplest
way to improve the chance of convergence is to take the
new Σ

in/out
sc in times some quantity α and add it to (1−

α)Σ
in/out
sc (old) which is the in scattering function from

the previous step. Thus, for example, if α = 0.5 then
the new in scattering function is half the new and half
the old. This weighting generally reduces divergence but
also slows convergence and thus, as with all convergence
tricks, should be considered on a case by case basis.
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Fig. 2. Power factor versus barrier width. The optimal barrier width is
∼3 nm, which is thick enough to prevent tunnelling, but thin enough
to keep the electrical resistance from barriers low.
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Fig. 3. Power factor versus barrier shape, defined as an exponentially
decaying profile, described by a decay length, ξ, from the top of the
barrier. The limit ξ = 0 corresponds to a square barrier (left side),
which is found to be the optimal one.

III. RESULTS AND DISCUSSION

We use the NEGF method in the effective mass ap-
proximation, including both acoustic and optical phonon
scattering. Figure 1 illustrates the simulated 1D channel
geometry. It shows the current spectrum and how it
fluctuates in energy during emission / absorption of
optical phonons. Also shown is the potential profile,
Fermi level and average carrier energy. Previous works
have indicated that under optimal conditions the transport
in the wells needs to be semi-ballistic, where carriers
only lose part of their energy before they reach the next
barrier[6], [7]. In addition, it was also indicated that
ideally the barrier height needs to extend ∼ kBT above
the Fermi level[6], [7]. Thus, in this work we calibrate
the geometry, electron-phonon scattering, Fermi level,
and barrier height for these optimal conditions.

Once this is done, we proceed by investigating the



performance of energy filtering processes under statis-
tical fluctuations in the design parameters. The first
parameter we examine is the width of the barrier W.
Figure 2 shows the power factor versus W. We can
observe that the barriers need to be thick enough to
prevent tunneling (which is detrimental to S and could
cause up to ∼40% degradation in performance), but
thin enough for reduced resistivity (so ∼2-3nm), since
the carrier energy and momentum can relax on top of
the barriers and acquire reduced velocities. The next
parameter we consider is the actual shape of the barrier.
In practice, an ideal rectangular barrier would not be
achievable, thus we examine the influence of deviations
from the rectangular shape on the performance. Figure 3
shows that the rectangular barriers are ideal (left side),
which shows that ∼30% improvement can be achieved
compared to the bulk TE material case. As we deviate
from that shape the power factor drops (approaching the
bulk case right side). Finally, the last parameter we
examine, is fluctuations in the height of the potential
barriers VB . The results are shown in Fig. 4 (black
line). In this case, we vary the barrier heights along
the transport path according to a Gaussian distribution.
As the variation increases, a large drop is observed in
the power factor (black line). We perform the same
studies for variations in the barrier position (blue line)
and the barrier width (red line), which introduce only
small power factor reduction.

IV. CONCLUSION

Using the NEGF method we computed the thermo-
electric power factor in nanocomposite channels in the
presence of energy barriers. We show that ideally, power
factor improvements up to 30% can be achieved using
energy filtering under optimal conditions. However, we
show that this is improvement is sensitive to structure
imperfections. Fluctuations in the barrier width and
well size do not affect performance significantly, but
fluctuations in the barrier shape and most importantly
the barrier height (even of the order of 5 meV) could
take away most of the power factor improvements, and
therefore, need to be avoided.
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Fig. 4. Power factor (σS2) versus statistical variation of the barrier
placement (blue line), width (red line), and height (black line) along
the transport path. It is clear that performance is most substantially
degraded by barrier height variation.
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