
Shared-Memory Parallelization of the
Semi-Ordered Fast Iterative Method

Josef Weinbub 1

weinbub@iue.tuwien.ac.at
Florian Dang 2,3

fdang@aneo.fr
Tor Gillberg 4,5

torgi@simula.no

Siegfried Selberherr 1

selberherr@iue.tuwien.ac.at

ABSTRACT
The semi-ordered fast iterative method is used to com-
pute a monotone front propagation of anisotropic na-
ture by solving the eikonal equation. Compared to es-
tablished iterative methods, such as the fast iterative
method, the semi-ordered fast iterative method (SOFI)
offers increased stability for variations in the front veloc-
ity. So far, the method has only been investigated in a
serial, two-dimensional context; in this paper we investi-
gate a parallel implementation of SOFI (using OpenMP)
and evaluate the method for three-dimensional real-
world type problems. We discuss the parallel algorithm
and compare its performance and its computed solutions
with an OpenMP-powered fast iterative method. Differ-
ent speed functions together with varying problem sizes
are used to investigate the impact of the computational
load. Although the semi-ordered fast iterative method is
inferior to the fast iterative method with respect to par-
allel efficiency, we show that its execution performance
is significantly faster.

Author Keywords
Semi-ordered fast iterative method; fast iterative
method; eikonal equation; front propagation, OpenMP

ACM Classification Keywords
G.1.0 NUMERICAL ANALYSIS: General—Parallel al-
gorithms

INTRODUCTION
Simulating an expanding front is a fundamental step
in many computational science and engineering applica-
tions, such as image segmentation [5], brain connectiv-
ity mapping [12], medical tomography [11], seismic wave
propagation [13], geological folds [8], semiconductor pro-
cess simulation [18], or computational geometry [15].

1Institute for Microelectronics, TU Wien, Gußhausstraße 27-
29/E360, 1040 Wien, Austria
2ANEO, 122 Ave du General Leclerc, 92100 Boulogne Bil-
lancourt, France
3Laboratoire PRiSM, Université de Versailles, 45 Ave des
Etats-Unis, 78035 Batiment Descartes, France
4Bank of America Merrill Lynch, 2 King Edward St, EC1A
1HQ London, England
5Simula Research Laboratory, P.O. Box 134, 1325 Lysaker,
Norway

HPC 2015 April 12-15, 2015, Alexandria, VA
Copyright (c) 2015 Society for Modeling & Simulation International (SCS)

In general, an expanding front originating from a start
position Γ is described by its first time of arrival T to
the points of a domain Ω. This problem can be described
by solving the eikonal equation [14], which for n spatial
dimensions reads:

‖∇T (x)‖2 = f(x) x ∈ Ω ⊂ Rn

T (x) = g(x) x ∈ Γ ⊂ Ω

T is the unknown solution (i.e. first time of arrival), f
is an inverse velocity field (i.e. f(x) = 1/F (x)), and
g are boundary conditions for Γ. Generally speaking,
isosurfaces to the solution represent the position of the
front at a given time, and can thus be regarded as the
geodesic distance relative to Γ. If the velocity F = 1, the
solution T (x) represents the minimal Euclidian distance
from Γ to x.

The most widely used method for solving the eikonal
equation is the fast marching method [14]. This method
is inherently sequential and attempts to parallelize it
have been unsatisfactory [11]. Other approaches for
solving the eikonal equation include the fast sweeping
method (FSM) [19][20] and the fast iterative method
(FIM) [10]. Both methods support parallel execution;
FIM supports fine-grained parallelism, thus inherently
offering greater potential for parallelism over the entire
spectrum than the coarse-grained parallelism of FSM.
FIM was originally implemented for parallel execution
on Cartesian meshes and later extended to triangular
surface meshes [6]. FIM relies on a modification of a
label correction scheme coupled with an iterative pro-
cedure for the mesh point update. The inherent high
degree of parallelism is due to the ability of processing
all nodes of an active list (i.e. narrow band) in parallel,
thus efficiently supporting a single instruction, multiple
data parallel execution model. Therefore, FIM is suit-
able for implementations on highly parallel accelerators,
such as graphics adapters [10][11]. Although FIM has
been primarily investigated regarding fine-grained paral-
lelism on accelerators, investigations on shared-memory
approaches have also been conducted [3][4][18].

Although FIM provides superior parallel performance to
other available methods (in most cases), its performance
is problem dependent. Complex speed functions tend to
increase significantly the solution time.

217

To overcome this shortcoming, the semi-ordered fast it-
erative (SOFI) method has been developed [7]; SOFI is
based on both the FIM as well as on the Two-Queue
method [1]. SOFI enforces an ordering to get the it-
erative behavior closer to front tracking methods, i.e.,
fast marching and wavefront tracking methods, in turn
offering an increased stability, when faced with intri-
cate speed functions. Front tracking methods inher-
ently favor sequential execution, therefore parallel scal-
ability is expected to be inferior to that of the FIM.
Rather than computing all active nodes in parallel (as
in FIM), the SOFI method pauses some of the awaiting
updates according to a cutoff criterion based on statis-
tical in-situ analysis of the solution values. Therefore,
the computational resources are not fully used, limit-
ing the potential for parallel speedup relative to the
FIM. However, SOFI offers excellent performance for
two-dimensional, sequential problems. In turn, the Two-
Queue method also pauses nodes to get a partially or-
dered technique, but it is only applicable to isotropic
problem formulations, whereas the SOFI method sup-
ports also anisotropic problems.

This work investigates the SOFI method for three dimen-
sional problems of varying sizes and complexity based on
an OpenMP parallelization. A short overview of the orig-
inal SOFI method is provided, followed by a discussion
of our parallel SOFI algorithm and a set of benchmarks
which are used to assess the parallel execution perfor-
mance of SOFI relative to a reference FIM implementa-
tion.

THE SEMI-ORDERED FAST ITERATIVE METHOD
Let X denote the set of nodes on which we want to com-
pute the time of arrival in a solution list T , and assume
that the initial distance is known at the nodes Γ ⊂ X.
Initially, we assume that the front does not reach any
nodes which are not initialised, i.e., T (x) = ∞, ∀x ∈
X \ Γ. The current front is described by the active list,
aL, containing source points. In the initialisation step,
all initialised nodes are added to aL. The list of nodes,
containing nodes which are ahead of the source points,
the paused list, pL, is initially empty but will eventually
contain paused nodes, i.e., nodes that at some point will
be used as source points. All nodes in aL are used as
source points to evolve the front.

The solution is constructed in a semi-ordered fashion us-
ing a cutoff parameter av, which depends on the av-
erage solution mk (k refers to the iteration counter)
of the nodes in pL. Assume that node xn receives a
new solution value that is smaller than the old value,
tnew < T (xn) and that in addition tnew ≤ av then xn
is added to the end of aL, and thus used as a source
point. If instead tnew > av, we postpone its function as
a source by adding xn to pL. When there are no source
points left, no nodes in X can get a lower arrival time.
Figure 1 schematically depicts the evolution of the aL
and pL container.

Figure 1: The evolution of the active list (black, solid
boxes) and paused list (red, dashed boxes) for different
iteration steps (from left to right) is shown schemati-
cally. Arrows point from nodes in aL to nodes being
re-evaluated. Nodes in the active list are gradually up-
dated until the active list is empty. The nodes in the
paused list have a higher solution value than the applied
cutoff value.

PARALLEL ALGORITHM
The parallel algorithm follows the original SOFI algo-
rithm [7] to a large extent, albeit offering additional
handling of shared-memory parallel programming as-
pects and an advanced cutoff method suitable for three-
dimensional problems. We first introduce the required
general data objects, discuss the initialization step and
the actual parallel algorithm, and finally conclude with
an analysis of the developed semi-automatic cutoff cri-
terion.

Additionally to the originally used algorithm entities, for
our parallel approach we propose a temporary aLtemp

container to avoid expensive deletion processes of aL
during the compute-intensive iterations. Also, we use
a counter (aL-swaps) to track the number of swaps be-
tween aL and aLtemp. An essential aspect of the algo-
rithm is the determination whether a node has been al-
ready added to aL or pL. To avoid an expensive lookup
step, which would require finding the node in question
within aL or pL, we use a tag-based system. To that
end, we employ the aLtags and pLtags data structures,
which provide us with element-based tag lookup for the
expense of additional memory overhead. The coefficients
c, relax, mk, and mk−1 are required for our improved
automatic cutoff computation, which will be explained
later on.

The initialization of the parallel SOFI algorithm sets all
coefficients to zero (e.g. av, aL-swaps, tsum), and the
solution field is preloaded with an arbitrarily high num-
ber (e.g. 1012). However, the solution of each source
point is initialized with zero, whereas the source nodes
themselves (representing the input of the algorithm) are
added to the active list aL. This is different from FIM,
where neighbours of source nodes (rather than source
nodes) are added to the active list.

218

Upon convergence of the algorithm, the result of the al-
gorithm (i.e. the signed distance field) is stored in the
solution list T .

Algorithm 1 introduces the actual parallel SOFI algo-
rithm. The main parallel loop is - as with the FIM -
processing the active list aL. We use a guided schedul-
ing method, as it has shown to be the best perform-
ing scheduling procedure, due to the irregular work-
load inside the parallel loop demanding a dynamic load
balancing. The tag system ensures that the same
nodes are not added to aL/pL again during an itera-
tion (Lines 3,9,10,19,20,42). However, nodes might be
reprocessed later on during a subsequent iteration, such
is the general procedure of iterative methods. The use
of write guards in form of atomic locks has been min-
imized to three spots (Line 10,20,25). The neighbor
(nb) iteration is required to generate the required 7-
point stencil (Line 4), which is used to discretize the
eikonal equation’s differential operator in three dimen-
sions (Line 6). Parallel write access to the pL and aLtemp

data structures has been realized via thread-exclusive
containers (Lines 13,21), which - although requiring a
serial merging step at the end of the parallel for loop
(Line 29,41) - scales better for increasing thread numbers
than guarding central data structures with additional
critical sections. A similar technique is used for the
cutoff procedure’s essential coefficients tsum and tsqsum
(Lines 11,12,15,16). The thread-exclusive aLtemp and
pL containers are merged into their global counterparts
in serial merge steps (Lines 29,41), and are reset (i.e. the
arrays are cleared) to prepare for subsequent iterations.

For the SOFI method to perform well, the algorithm for
computing the cutoff coefficient av is vital, as av controls
the assignment of a node to either aL or pL (Line 8,18).
The cutoff level enforces an ordering of the nodes to be
updated, in order to reduce the number of iterations
needed. When too many nodes are activated (i.e. added
to aL), the number of computations is high and the nu-
merical solvers are slow. Similarly, if too many nodes are
paused (i.e. added to pL), too few nodes are computed,
as the ordering is too strict. Empirical investigations
have shown best performance when approximately 80%
of the nodes are activated [1][7].

The original method used for computing av is based on
the average solution value of the paused nodes [7]. How-
ever, this approach does not perform well for general
problems in three dimensions. The ordering enforced
from this simple method tends to be too weak, since too
many nodes are activated by being put into aL. When
that happens, the additional cost of ordering computa-
tions outgrows its benefits. Therefore, we use a different
method to compute the cutoff av, being based not only
on the average solution value mk but also on the stan-
dard deviation σ of the nodes in pL.

Algorithm 1 SOFI Parallel Algorithm

1: while aL 6= ∅ do
2: for all x ∈ aL #parallel, guided do
3: aLtags(x) = 0 #guard
4: for all xnb of x #edge-connected do
5: if T (x) < T (xnb) #downwind condition

then
6: tnew = SolveEikonal(xnb)
7: if tnew < T (xnb) then
8: if tnew > av then
9: if pLtags(xnb) == 0 then

10: pLtags(xnb) = 1 #guard
11: tsum+ = tnew
12: tsqsum+ = tnew · tnew
13: Add xnb to pL
14: else
15: tsum+ = tnew − T (xnb)
16: tsqsum+ = tnew·tnew−T (xnb)·T (xnb)
17: end if
18: else
19: if aLtags(xnb) == 0 then
20: aLtags(xnb) = 1 #guard
21: Add xnb to aLtemp

22: end if
23: end if
24: end if
25: T (xnb) = Min(T (xnb), tnew) #guard
26: end if
27: end for
28: end for
29: Merge (aLtemp); Swap (aL, aLtemp); Reset

(aLtemp)

30: if aL-swaps > n
√
Size(X)/10 then

31: av = 0.0
32: end if
33: if av > mk then
34: if pL-ratio < 0.5% and aL-swaps > 5 then
35: c = 0.8c; av = mk − relax
36: else if pL-ratio > 99% and aL-swaps < 5 then
37: c = 2.0c; av = mk − relax
38: end if
39: end if
40: if aL == ∅ then
41: Merge (pL); Swap (aL, pL);
42: Swap (aLtags, pLtags); Reset (pL)
43: mk =

∑
tsum/Size(aL)

44: σ =
√∑

tsqsum/Size(aL)
45: relax = c(2(mk −mk-1) + σ)2/6σ2

46: av = mk + relax; mk-1 = mk

47: tsum = tsqsum = 0.0
48: end if
49: end while

219

Assuming a normal distribution of the solution values of
nodes in pL, we would activate approximately 84% by
assigning a cutoff av of the average plus a standard de-
viation. However, a large spread (i.e. large σ) within pL
indicates that a stricter ordering is needed. We estimate
the average shift in cutoff level, by the difference between
the current mk and the previous: ∆mk = mk − mk−1.
The original SOFI relaxation method is to have a cutoff
level as a relaxed average by using av = mk + 1.5∆mk.
Trying to factor in the indications from σ we have found
that the following cutoff performs well (Lines 43-46):

av = mk + c
(2∆mk + σ)2

6σ2

The additional coefficient c and relax are used as ad-
ditional parameters to adjust the cutoff computation,
by investigating the pL-ratio, i.e., the number of nodes
added to pL relative to the total number of nodes added
to pL and aL (Lines 33-39). The used thresholds and
coefficients have been shown to work best for the pre-
sented examples, but may be adjusted for more realistic
devices, hence the designation semi-automatic.

Another mechanism to ensure that the computed cutoff
level is reasonable is proposed, which is based on mon-
itoring the number of iterations (Lines 30-32). If too
many iterations are detected, it is assumed that the cut-
off level is not optimal. Therefore, the cutoff procedure
is restarted by triggering a recomputation of the cutoff
level, increasing the chance of upholding a high conver-
gence rate.

BENCHMARKS
We investigate the performance of our parallel SOFI
implementation relative to a reference FIM imple-
mentation. Our benchmarks cover different three-
dimensional problems with varying problem sizes (1003

and 2003 Cartesian cube grids), speed functions, and
single/multiple-source configurations (a single center
source node versus 100 source nodes spread over the en-
tire simulation domain).

Regarding speed functions, we investigate three differ-
ent configurations: (1) constant speed (Fconst), where
for the entire domain F = 1 is used; (2) checker-
board speed (Fcheck), where the computational domain
is divided into eleven equally sized cubes in each di-
rection and the velocity is alternated between F = 1
to F = 2 from cube to cube [2][8]; (3) oscillatory
speed (Fosc), where the speed function is modeled by
a highly oscillatory continuous speed function, being
F = 1 + 1

2sin(20πx)sin(20πy)sin(20πz) [2]. The bench-
mark platform is a dual-socket node with two Intel Xeon
E5-2620 (SandyBridge EP) 6-core (2 threads per core)
processors with 128 GB of main memory, powered by a
64-bit GNU/Linux and the GNU/GCC compiler 4.9.2.
The parallel algorithm introduced in the previous sec-
tion has been implemented in C++. The presented ex-
ecution performances are based on the median of five
execution timings. The threads have been pinned to the

Figure 2: Isosurfaces of the Fconst (top), Fcheck (middle),
and Fosc (bottom) solution on a 1003 domain for a single
center source

individual physical cores via the likwid [17][16] library to
avoid thread-core reassignments, which would otherwise
potentially introduce a performance penalty.

Figure 2 depicts the isosurfaces of the solutions of the
center test configurations for the 1003 simulation grids,
to provide a frame of reference for the benchmark setup
and the solutions. The results for the 2003 are sim-
ilar, albeit offering an increased resolution. To verify
the correctness of the solutions, the FIM and the SOFI
method results of the single source problem with con-
stant speed for a 1003 grid have been compared to an
analytic solution given by the Euclidian distance func-
tion. The error norms of both methods are the same,
being L1 = 29 · 10−3, L2 = 10−3, and L∞ = 36 · 10−3,
indicating that the SOFI method computes the same re-
sult as the FIM. If indeed the results would be different,
the ε used in the FIM’s algorithm can prevent full con-
vergence of the algorithm.

220

Figures 3-5 compare the execution times and the parallel
efficiency between our SOFI method and FIM implemen-
tation for a 1003 grid. A logarithmic scaling is used to
highlight the variances in the execution time, especially
relevant for high thread numbers. The SOFI method
outperforms the FIM both for the single and multiple
source configurations; for the more important multiple
source setups (as these cases resemble real-world applica-
tions more closely) and 12 threads, a speed-up factor of
1.5 for Fconst, 2 for Fcheck, and 1.7 for Fosc is achieved.
The parallel efficiency of the single source test setups
is by far inferior to the FIM, although both methods
suffer in general from efficiency limiting factors typical
for stencil computations, being cache misses and mem-
ory latency [9]. This stems from the fact that the SOFI
method inherently does not favor single source problems,
as in this case no ordering is needed, thus introducing
unnecessary overhead. However, for the more important
multiple source cases, the scalability is reasonable: for 12
threads efficiencies of around 60% can be achieved for the
highly challenging Fcheck and Fosc problems. The results
show load balancing problems, which can be identified by
the somewhat erratic parallel efficiency behavior. This
fact is to be attributed to an unbalanced utilization of
the aL and pL containers, triggered by insufficiencies in
our automatic cutoff calculation.

Figures 6-8 continue the investigation for an increased
computational domain size, being 2003, which allows to
judge the performance under increased load. Again, ex-
ecution timings show that the SOFI method is faster
than FIM. For the multiple-source cases and 12 threads,
a speed-up factor of 1.9 for Fconst, 2 for Fcheck, and 2.6
for Fosc is achieved. The parallel efficiency is comparable

to the 1003 grid results, being around 60% for the Fcheck

and Fosc problems.

Overall, the previously mentioned inferior parallel poten-
tial of the SOFI method relative to the FIM is reflected
in the results, albeit being still reasonable, especially for
more relevant multiple source scenarios. However, the
execution time is what matters in real world applica-
tions. In this light, the parallel SOFI method is sig-
nificantly superior to the parallel FIM, underlining the
potential of the parallel SOFI method as a compelling
alternative for solving the eikonal equation in applied
numerical simulations arising from the diverse field of
computational science and engineering.

CONCLUSION
An approach for parallelizing the SOFI method via
a shared-memory OpenMP technique has been intro-
duced. An alternative cutoff method supporting three-
dimensional problems has been discussed, for semi-
automatically driving the applied iterative Two-Queue
technique. Our parallel SOFI algorithm offers superior
execution performance relative to a reference FIM im-
plementation for different speed functions and problem
sizes, while offering reasonable parallel efficiency. This
work shows the excellent capabilities of the SOFI method
for tracking front propagation paving the way for further
investigations regarding real-world applications.

ACKNOWLEDGMENTS
This work has been supported by the Austrian Science
Fund (FWF) through the grant P23296. The authors
thank Joachim Schöberl for providing access to a dual-
socket Intel Xeon system for benchmarking purposes.

221

 0.01

 0.1

 1

 10

 100

 2 6 12 24

E
x
e

c
u
ti
o
n
 T

im
e
 [

s
]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 6 12 24

P
a

ra
lle

l
E

ff
ic

ie
n

c
y
 [
%

]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

Figure 3: Execution times (left) and parallel efficiencies (right) of the Fconst problem on a 1003 domain

 0.01

 0.1

 1

 10

 100

 2 6 12 24

E
x
e
c
u

ti
o
n

 T
im

e
 [
s
]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 6 12 24

P
a
ra

lle
l
E

ff
ic

ie
n

c
y
 [

%
]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

Figure 4: Execution times (left) and parallel efficiencies (right) of the Fcheck problem on a 1003 domain

 0.01

 0.1

 1

 10

 100

 2 6 12 24

E
x
e

c
u

ti
o

n
 T

im
e

 [
s
]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 6 12 24

P
a

ra
lle

l
E

ff
ic

ie
n

c
y
 [
%

]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

Figure 5: Execution times (left) and parallel efficiencies (right) of the Fosc problem on a 1003 domain

222

 0.1

 1

 10

 100

 1000

 2 6 12 24

E
x
e

c
u
ti
o
n
 T

im
e
 [

s
]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 6 12 24

P
a

ra
lle

l
E

ff
ic

ie
n

c
y
 [
%

]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

Figure 6: Execution times (left) and parallel efficiencies (right) of the Fconst problem on a 2003 domain

 0.1

 1

 10

 100

 1000

 2 6 12 24

E
x
e
c
u

ti
o
n

 T
im

e
 [
s
]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 6 12 24

P
a
ra

lle
l
E

ff
ic

ie
n

c
y
 [

%
]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

Figure 7: Execution times (left) and parallel efficiencies (right) of the Fcheck problem on a 2003 domain

 0.1

 1

 10

 100

 1000

 2 6 12 24

E
x
e

c
u

ti
o

n
 T

im
e

 [
s
]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 6 12 24

P
a

ra
lle

l
E

ff
ic

ie
n

c
y
 [
%

]

Threads

Single FIM
Single SOFI
Multiple FIM

Multiple SOFI

Figure 8: Execution times (left) and parallel efficiencies (right) of the Fosc problem on a 2003 domain

223

REFERENCES
1. Bak, S., McLaughlin, J., and Renzi, D. Some

Improvements for the Fast Sweeping Method.
SIAM Journal on Scientific Computing 32, 5
(2010), 2853–2874. DOI: 10.1137/090749645.

2. Chacon, A., and Vladimirsky, A. Fast Two-Scale
Methods for Eikonal Equations. SIAM Journal on
Scientific Computing 34, 2 (2012), A547–A578.
DOI: 10.1137/10080909X.

3. Dang, F., and Emad, N. Fast Iterative Method in
Solving Eikonal Equations: A Multi-level Parallel
Approach. Procedia Computer Science 29 (2014),
1859–1869. DOI: 10.1016/j.procs.2014.05.170.

4. Dang, F., Emad, N., and Fender, A. A
Fine-Grained Parallel Model for the Fast Iterative
Method in Solving Eikonal Equations. In
Proceedings of the International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC) (2013), 152–157. DOI: 10.1109/
3PGCIC.2013.29.

5. Forcadel, N., Le Guyader, C., and Gout, C.
Generalized Fast Marching Method: Applications
to Image Segmentation. Numerical Algorithms 48,
1-3 (2008), 189–211. DOI: 10.1007/
s11075-008-9183-x.

6. Fu, Z., Jeong, W. K., Pan, Y., Kirby, R., and
Whitaker, R. T. A Fast Iterative Method for
Solving the Eikonal Equation on Triangulated
Surfaces. SIAM Journal on Scientific Computing
33, 5 (2011), 2468–2488. DOI: 10.1137/100788951.

7. Gillberg, T. A Semi-Ordered Fast Iterative Method
(SOFI) for Monotone Front Propagation in
Simulations of Geological Folding. In Proceedings of
the International Congress on Modelling and
Simulation (MODSIM) (2011), 631–647.

8. Gillberg, T., Bruaset, A. M., Hjelle, Ø., and
Sourouri, M. Parallel Solutions of Static
Hamilton-Jacobi Equations for Simulations of
Geological Folds. Journal of Mathematics in
Industry 4, 10 (2014), 1–31. DOI:
10.1186/2190-5983-4-10.

9. Hager, G., and Wellein, G. Introduction to High
Performance Computing for Scientists and
Engineers. CRC Press, 2010. ISBN:
978-1439811924.

10. Jeong, W. K., and Whitaker, R. T. A Fast Iterative
Method for Eikonal Equations. SIAM Journal on
Scientific Computing 30, 5 (2008), 2512–2534. DOI:
10.1137/060670298.

11. Li, S., Mueller, K., Jackowski, M., Dione, D., and
Staib, L. Physical-Space Refraction-Corrected
Transmission Ultrasound Computed Tomography
Made Computationally Practical. In Lecture Notes
in Computer Science, vol. 5242. 2008, 280–288.
DOI: 10.1007/978-3-540-85990-1 34.

12. Prados, E., Soatto, S., Lenglet, C., Pons, J.-P.,
Wotawa, N., Deriche, R., and Faugeras, O. Control
Theory and Fast Marching Techniques for Brain
Connectivity Mapping. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 1 (2006), 1076–1083.
DOI: 10.1109/CVPR.2006.89.

13. Rawlinson, N., and Sambridge, M. Multiple
Reflection and Transmission Phases in Complex
Layered Media Using a Multistage Fast Marching
Method. Geophysics 69, 5 (2004), 1338–1350. DOI:
10.1190/1.1801950.

14. Sethian, J. A. A Fast Marching Level Set Method
for Monotonically Advancing Fronts. Proceedings of
the National Academy of Sciences 93, 4 (1996),
1591–1595.

15. Sethian, J. A. Level Set Methods and Fast Marching
Methods. Cambridge University Press, 1999. ISBN:
978-0521645577.

16. Treibig, J., et al. LIKWID - Webpage, 2014.
https://code.google.com/p/likwid/.

17. Treibig, J., Hager, G., and Wellein, G. LIKWID: A
Lightweight Performance-Oriented Tool Suite for
x86 Multicore Environments. In Proceedings of the
International Conference on Parallel Processing
Workshops (ICPPW) (2010), 207–216. DOI:
10.1109/ICPPW.2010.38.

18. Weinbub, J., and Hössinger, A. Accelerated
Redistancing for Level Set-Based Process
Simulations with the Fast Iterative Method.
Journal of Computational Electronics 13, 4 (2014),
877–884. DOI: 10.1007/s10825-014- 0604-x.

19. Zhao, H. A Fast Sweeping Method for Eikonal
Equations. Mathematics of Computation 74, 250
(2005), 603–627. DOI: 10.1090/S0025-5718-
04-01678-3.

20. Zhao, H. Parallel Implementations of the Fast
Sweeping Method. Journal of Computational
Mathematics 25, 4 (2007), 421–429.

224

https://code.google.com/p/likwid/

