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Abstract—We present a computationally inexpensive one-
dimensional method to model the neutral flux in high aspect
ratio holes for three-dimensional plasma etching simulations. The
benefit of our approach lies in the fact that the computational
costs of a three-dimensional plasma etching simulation are, for
the most part, determined by calculating the surface flux of the
relevant species. We propose a one-dimensional radiosity model
for the neutral flux by assuming an ideal cylindrical shape as well
as ideal diffuse sources and surfaces. Our model reproduces the
results obtained by a three-dimensional ray tracing simulation
and is therefore suited to be used as a drop-in replacement
for cylinder-like hole structures to speed up three-dimensional
plasma etching simulations.

I. INTRODUCTION

During a plasma etching simulation the local fluxes of
the etching species are used to model the surface reactions.
The local flux must be recalculated for each simulation time
step, because the interface positions are changing due to the
evolving surface. For high aspect ratio (HAR) features, the
local flux originating from re-emission is predominant and the
local flux rates can easily vary by orders of magnitude along
the feature depth.

Considering the computational costs of a three-dimensional
plasma etching simulation, the calculation of the local flux
is dominant. The efficient calculation of the neutral flux is
therefore essential, especially considering the fact that HARs
further increase this dominance, because with a high aspect
ratio the average number of re-emission events per particle is
also increased.

Common approaches for three-dimensional flux calculation
are Monte Carlo ray tracing [1] and radiosity based [2]
methods. Ray tracing supports bi-directional reflectance distri-
bution functions, whereas radiosity inherently favors diffusely
reflecting surfaces. The rotational symmetry allows to use a
one-dimensional radiosity method which is intended to be a
drop-in replacement for modeling the neutral flux in cylinder-
like hole structures in three-dimensional simulations, with the
benefit of decreased computational complexity.

In this work we consider an ideal cylindrical shape of the
feature, a neutral flux source with an isotropic distribution,
ideal diffuse reflections, and a flux-independent sticking prob-
ability s. Ballistic transport is assumed for the neutral particles.
The diffuse re-emission mechanism is a common assumption
for neutral particles [3] and cylinder-like shapes are a key

prerequisite for HAR holes in the context of, for instance,
three-dimensional NAND flash cell processing [4].

In the following sections, we first define our simulation
domain with all relevant parameters (II-A) and explain the
applied discretization (II-B); subsequently we describe how
to adopt the general radiosity method to our problem (II-C)
and how we compute the relevant view factors (II-D). We
apply the Jacobi method to solve the resulting linear system
of equations (II-E) and apply a normalization to the resulting
flux distributions (II-F). Finally, we discuss the results (III) of
our model and compare them with results obtained using a
three-dimensional ray tracing simulation [5].

II. ONE-DIMENSIONAL RADIOSITY
FOR CYLINDRICAL HOLES

A. Simulation Domain

The simulation domain (Fig. 1a) is a circular cylinder with
its aspect ratio (AR) defined by depth

diameter . We model the source
of neutral particles by an ideal diffusely-emitting disk closing
the cylinder at the top without re-emission (s = 1). The wall
of the cylinder is an ideal diffuse reflector with a constant
sticking probability (s = sw). The bottom of the cylinder does
not have any re-emission (s = 1). This setup is a reasonable
approximation for the neutral flux in a HAR plasma etching
environment.

B. Domain Discretization

Our approach is based on a subdivision of the cylinder
into rotationally symmetric surface elements (Fig. 1b): The
inner surface of the cylinder wall is sliced into nw cylinder
rings with height depth

nw
and the disk closing the cylinder at the

bottom is divided into nb annuli with ring width radius
nb

. The
disk closing the cylinder at the top is not subdivided, as it
is fully adsorbing and the distribution of the flux leaving the
cylinder at the top is not of interest.

C. Applying the Radiosity Method

Our assumptions, particularly that all sources/surfaces are
ideal diffuse and that the transport of the neutral particles is
ballistic, allows to employ the radiosity method. By assuming
a constant flux and a constant sticking probability over each
surface element, the problem can be formulated using the
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Fig. 1. (a) The simulation domain is decomposed into a fully adsorbing source
(black), a partly adsorbing wall (blue), and a fully adsorbing bottom (red).
(b) The wall and bottom are subdivided into ring elements. The top disk is
not subdivided as the flux distribution leaving the cylinder is irrelevant.

discrete radiosity equation: for a surface element i the equation
reads

Bi = Ei + (1− αi)


j

(Fj→iBj) , (1)

where B is the radiosity (sum of emitted and reflected energy),
E is the emitted energy, α is the absorptance and Fj→i is the
view factor (proportion of the radiated energy which leaves
element j and is received by element i). We adapt (1) to
our problem by substituting the absorptance α by the sticking
probability s and identifying the local flux as the adsorbed
energy A. The radiosity B is then related to the adsorbed
energy A by

Ai = (Bi − Ei)
si

1− si
. (2)

Since we are also interested in the adsorbed flux at the fully
adsorbing bottom, (1) and (2) are not applicable because
limsi→1 Ai = ∞. For this reason we use the following
formulation for the received energy R:

Ri =


j

(EjFj→i) +


j

((1− sj)RjFj→i) , (3)

where the relation to the adsorbed energy is

Ai = Risi. (4)

Rewritten in matrix notation and resolved for the vector of
received energies R we obtain

FT · E + diag (1− s)FT ·R = R,
I− diag (1− s)FT


·R = FT · E, (5)

with vectors of source energies E, a vector of sticking proba-
bilities s, and a matrix of view factors F (where entry Fij is
the view factor from i → j).
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Fig. 2. (a) Configuration of two cone-like segments opened towards each
other. The inner surfaces are mutually completely visible. (b) Configuration
of two coaxial cylinder rings with the same radius. (c) Configuration of a disk
and an annulus. (d) Configuration of a cylinder element and a annulus. The
outer radius of the annulus is not greater than the cylinder radius.

D. Computing the View Factors

To assemble the matrix F we need to evaluate the view
factors between all possible pairs of surface elements. The
view factor between two coaxial disks at a distance z of
unequal radii r1 and r2 is defined by

F1→2 =
1

2


X −


X2 − 4(R1/R2)2


, (6)

where Ri = ri/z and X = 1 + (1 + R2
2)/R

2
1 [6]. Using this

relation and the reciprocity theorem of view factors

S1 · F1→2 = S2 · F2→1 (with Si = Areai), (7)

we derive a general formula for a view factor between two
cone-like segments whose surfaces are mutually completely
visible.

Fbx→a = Fbx→anear
− Fbx→afar

(8)

Fa→bx =
Sbx

Sa
· Fbx→a (9)

Fa→b = Fa→bnear
− Fa→bfar

(10)

Fig. 2a shows the geometric configuration of two cone-like
segments opened towards each other with mutually completely
visible surfaces; the four limiting disks which enter Eqs. (8)-
(10) are designated. Fig. 2b, Fig. 2d and Fig. 2c show the
main types of configurations as they occur in our problem.

The view factors on the diagonal of F (i.e., the view factors
of the elements to themselves) are computed by

Fa→a = 1− Fa→anear
− Fa→afar

. (11)

If the element is a disk or annulus, the view factor to itself is
zero.
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To reduce the computational costs for assembling F we can
make use of the fact that the cylinder rings are regular and
the (nw)

2 view factors amongst them can be affiliated with
only nw different view factors, as only the relative distance
matters. Reciprocity (7) allows the computation of the view
factors in the upper triangle of F by using the view factors in
the lower triangle and the element areas.

To prove a closed domain and as indicator for correctly
computed view factors we compute the sum for each row of
F, which must always result in one.

E. Solving the Linear System of Equations

We approximate the solution of the resulting diagonally-
dominant linear system of equations (5) using the Jacobi
method. Each iteration of the Jacobi method can be imagined
as a concurrent diffuse re-emission of each element to all other
elements. The adsorbed flux A is obtained by multiplying the
entries in the solution for R with the corresponding sticking
probability s of the element (4). To reveal computational
mistakes and to have an indicator for an equilibrium state the
relation  A  −  E = 0 can be applied; it holds for closed
surfaces, e.g., our domain (the inner surface of a cylinder
closed with two disks at the top and bottom).

F. Normalization

To provide a good qualitative comparability we normalize
the results to only depend on the aspect ratio of the hole and
the sticking probability. The adsorbed flux A is divided by the
area of the element (An

i = Ai

Si
) and normalized to the flux

which a surface of the same sticking probability would absorb
if it is fully planar-exposed to the source (Ansrc

i =
An

i

En
isrc

·si ).

III. RESULTS

To evaluate the quality of our one-dimensional radiosity
model, we analyze different simulation setups where we vary
the sticking probability between sw = 0.02 and sw = 0.2; the
top disk (source) and bottom disk are fully adsorbing for all
of the following results.

Fig. 3 plots the normalized flux distribution along the wall
and the at bottom for holes with ARs 5 and 45. The results
show that the flux along the wall of a HAR hole decreases by
several orders of magnitude, e.g., about five orders for AR=45
and one order for AR=5. The non-continuity of the sticking
probability causes a jump at the wall-bottom interface. The
effect of the fully adsorbing bottom is also visible in the wall
flux distribution, which is most prominent for AR = 45 and
s = 0.02, where a strong decrease towards the bottom interface
is visible.

Fig. 4 compares the flux distributions for AR = 5 obtained
using the proposed one-dimensional radiosity approach with
results generated with a reference Monte Carlo ray tracing

tool [5]. Similarly, Fig. 5 compares the flux distributions
for AR = 45. The results show a good agreement, besides
the deviation at the wall-bottom interface, caused by the
discretization which is used in the ray tracing simulation.
In Fig. 5a two flux distributions are plotted for the ray
tracing results along the wall: they represent the minimum and
maximum along the cylinder radius. The separation of the flux
distributions, particularly visible for sw = 0.2 (Fig. 5a), and
the visible noise in Fig. 5b, reflect the stochastic nature of the
ray tracing approach.
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Fig. 3. Normalized flux distribution along the wall (left) and the bottom
(right) of holes with aspect ratios AR=5 (upper group) and AR=45 (lower
group). The sticking probability of the wall sw is varied from 0.02 to 0.2.

IV. SUMMARY AND OUTLOOK

We provide an approximation of the local neutral flux in
three-dimensional plasma etching simulations of HAR holes
using a one-dimensional radiosity approach. A radiosity for-
mulation from a receiving perspective (3) is derived, which
allows to model fully adsorbing surface elements. We compute
all relevant view factors by establishing a general formula (10)
between coaxial cone-like segments. Comparing the results
for cylinders with ARs 5 and 45 using a rigorous three-
dimensional Monte Carlo ray tracing simulation shows good
agreement (Fig. 4a and Fig. 5b). Our radiosity model thus
serves as a computationally inexpensive drop-in replacement
for three-dimensional simulations.

Our approach allows for an extension of the model to handle
any rotationally symmetric convex features.
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(a) Cylinder Wall
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(b) Cylinder Bottom

0.00.20.40.60.81.0

r/Radius

10−3

10−2

10−1

100

N
or

m
al

iz
ed

ad
so

rb
ed

flu
x
(A

n
s
r
c
)

3D ray tracing
1D radiosity

sw=0.02
sw=0.04
sw=0.1
sw=0.2

Fig. 4. Comparison of the results obtained by one-dimensional radiosity and three-dimensional raytracing for a hole with aspect ratio 5. The sticking probability
of the wall sw is varied between 0.02 and 0.2. The differences are visible near the wall-bottom interface. (a) Normalized flux distribution along the wall. (b)
Normalized flux distribution at the bottom.
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(b) Cylinder Bottom
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Fig. 5. Comparison of results obtained by one-dimensional radiosity and three-dimensional raytracing for a hole with aspect ratio 45. The sticking probability
of the wall sw is varied between 0.02 and 0.2. The differences are visible near the wall-bottom interface. The ray tracing results reveal noise over the entire
domain. (a) Normalized flux distribution along the wall. Along the depth, the minimum and maximum ray tracing results are plotted; the difference increases
towards the bottom interface. (b) Normalized flux along the bottom.
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