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Abstract— We present a detailed analysis of hot-carrier degra-
dation (HCD) in graphene field-effect transistors (GFETs)
and compare those findings with the bias-temperature insta-
bility (BTI). Our results show that the HCD in GFETs is
recoverable, similar to its BTI counterpart. Moreover, both the
degradation mechanisms strongly interact. Particular attention
is paid to the dynamics of HCD recovery, which can be well
fitted with the capture/emission time (CET) map model and the
universal relaxation function for some stress conditions, quite
similar to the BTI in both GFETs and Si technologies. The main
result of this paper is an extension of our systematic method for
benchmarking new graphene technologies for the case of HCD.

Index Terms— Bias-temperature instability (BTI), graphene
FETs (GFETs), hot-carrier degradation (HCD), reliability.

I. INTRODUCTION

GRAPHENE is a next-generation material for an appli-
cation in modern microelectronic and nanoelectronic

devices. That is due to its outstanding physical and electrical
properties, such as a high saturation velocity [1] and an
extremely high room-temperature carrier mobility [2], [3], and
good compatibility with the standard complimentary metal–
oxide–semiconductor (CMOS) technology. During the last
decade, several research groups have succeeded in fabricating
graphene-based FETs (GFETs) [4]–[9] and related electronic
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Fig. 1. Bias and HC stresses result in a shift of the voltage (�VD ) and
the current (�ID ) at the Dirac point. For a strong HC stress, �ID can
be significant. Therefore, the previously used definition of GFET threshold
voltage Vth as the gate bias at which Id = (Idmax − Idmin)/2 [13], [15], [17]
is unsuitable. For a correct estimate of the trapped charge density, we suggest
to use �VD .

devices [10], [11]. Therefore, the investigation of their dielec-
tric reliability is required. Although a few attempts to study
the bias-temperature instabilities (BTIs) in GFETs have been
undertaken [12]–[15], no analysis has been attempted with
respect to hot-carrier degradation (HCD), which is another
key reliability issue in the conventional Si metal–oxide–
semiconductor field-effect transistors (MOSFETs) [16].

In this paper, we perform a detailed study of HCD in
the high-k top gate of double-gated GFETs and compare
the dynamics of this phenomenon with the BTIs in both
GFETs and Si technologies. We demonstrate that, similar to
the BTI in GFETs, the degradation dynamics of HCD should
be expressed in terms of a voltage shift at the Dirac point. For
some stress conditions, this allows the benchmarking of HCD
in GFETs using the methods developed for a BTI analysis
in Si technologies.

II. DEVICES

We perform our studies on double-gated GFETs fabricated
using a standard lithography process [10]. In these devices,
25-nm-thick Al2O3 is used as a top-gate insulator, and
1800-nm-thick SiO2 is employed as a back-gate insulator; the
channel lengths and widths are 1–4 and 20–80 μm, respec-
tively. Initially, the devices have been baked at T = 300 °C

0018-9383 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ILLARIONOV et al.: HCD AND BTI IN SINGLE-LAYER GFETs 3877

Fig. 2. Time evolution of the top-gate transfer characteristics after (a) HCD and (b) Negative bias-temperature instability (NBTI) stresses (ts = 1, 10, 100,
and 1000 s) with approximately constant negative VTG − VD (i.e., NBTI–HCD). In both the cases, the measurements have been performed by sweeping
toward positive VTG (i.e., in V + mode), and thus, the fast trap contribution is present. NBTI–HCD leads to a stronger shift of the Dirac point, and the vertical
drift related to mobility degradation is more pronounced. (c) Comparison of the recovery traces extracted for �VD . Although in the case of pure NBTI the
bias component is substantially larger, the degradation is still stronger for NBTI–HCD, i.e. nonzero Vd during the stress significantly accelerates NBTI. This
means that the HC component introduces positively charged defects, just like NBTI.

in a H2/He mixture, which allowed us to reach a significant
decrease in variability [18]. As shown in [18] and [19], it has
also been verified that our GFETs show all typical properties
known from literature reports [12].

III. EXPERIMENT

Our studies are based on the analysis of the top-gate
transfer characteristics of GFETs, which can be sensitive to the
detrimental impact of the environment [15]. For this reason,
the measurements were performed in vacuum (10−5 torr). The
impact of HC and bias stresses on the device performance was
examined as follows. After measuring the reference transfer
characteristic, a stress with a constant VTG and a drain
voltage Vd was applied for a certain time. Then, the
recovery of the stressed device was monitored for several
hours/days. For a more detailed analysis of the degradation/
recovery dynamics, on each device, the measurements have
been repeated for increasing stress times (ts = 1, 10, 100,
and 1000 s) with readjusted VTG − VD(ts) ≈ const. The latter
was necessary to approximately maintain a constant oxide field
during all stress rounds [18].

IV. RESULTS AND DISCUSSION

Fig. 1 shows the typical impact of HC and bias stresses
with negative VTG − VD (i.e., NBTI–HCD) on the top-gate
transfer characteristics, which results in both vertical (�ID)
and horizontal (�VD) shifts of the Dirac point. Furthermore,
the shape of the transfer characteristics is modified, an effect
that becomes more pronounced after a stronger HCD stress.
The origin of this behavior is a change in the concentration of
charged border traps, which may have a significant impact
on both electrostatics and mobility. In [18] and [19], we
demonstrated for BTI that the presence of a vertical drift �ID

makes the previously used definition of the GFET threshold
voltage Vth at which Id = (Idmax − Idmin)/2 [13], [15], [17]
questionable. Thus, it was suggested to use �VD versus the
relaxation time tr traces to capture the essence of the recovery
dynamics. In the case of HCD, this is also extremely important,
because the typically observed magnitudes of the vertical drift

Fig. 3. (a) Time evolution of the top-gate transfer characteristics after
pure HCD stress (VTG − VD = 0). The Dirac point is shifted toward left,
which indicates that positively charged defects are created, similar to pure
NBTI stress. (b) Contrary to Si technologies, significant recovery takes place,
demonstrating the similarity of NBTI and HCD in GFETs.

are even stronger than those of BTI. However, it is worth to
remark that our manual measurements introduce a time delay
of ∼10–15 s between the end of the stress and the first tr point.
Based on our previous simulation results for GFETs [18] and
an experience obtained on Si technologies [20], we assume that
a significant recovery takes place during this time. Therefore,
for both BTI and HCD, we are mostly dealing with long-
term �VD(tr ) recovery traces. This is still enough for a proper
comparison of the two phenomena.

In [18], we illustrated that the measured transfer characteris-
tics depend on the sweep direction. When coming from a nega-
tive bias stress and sweeping toward positive VTG (V + mode),
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Fig. 4. Time evolution of the top-gate transfer characteristics after (a) NBTI–HCD and (b) pure NBTI stresses (ts = 1, 10, 100, and 1000 s) with approximately
constant VTG − VD . In both the cases, the measurements have been done in V − mode, in order to reduce the impact of the fast trap component. Both
�VD and �ID caused by the NBTI–HCD stress are significantly larger than those caused by the NBTI stress, despite the smaller VTG −VD in the former case.
(c) Recovery traces corresponding to pure NBTI and NBTI–HCD stresses (no fast trap component). Degradation caused by pure NBTI stress is the weakest and
recovers completely while the HCD component significantly accelarates NBTI. HCD stress with VTG − VD = −6 V initially leads to a stronger degradation
than with VTG − VD = −4 V, mainly due to a stronger NBTI component. However, the long-time tails are similar, indicating that the weakly recoverable
HC components are nearly the same.

Fig. 5. (a) Time evolution of the top-gate transfer characteristics after HCD stress (ts = 1, 10, 100, and 1000 s) with approximately constant positive
VTG − VD(ts) (i.e., positive bias-temperature instability (PBTI)–HCD). The Dirac point shift is significantly smaller than that in the case of NBTI–HCD with
similar stress conditions (Fig. 4). (b) Recovery traces corresponding to pure NBTI and pure PBTI stresses. The latter is significantly stronger, despite the
smaller VTG − VD . (c) Similarly for NBTI–HCD and PBTI–HCD with the same absolute VTG − VD . In this case, NBTI–HCD is signficantly stronger than
PBTI–HCD. We conclude that the HCD component, being of an NBTI-like nature (Fig. 3), not only accelerates NBTI degradation but also severely suppresses
PBTI. The origin of this behavior is the HC component, which introduces positively charged defects, similar to NBTI and contrary to PBTI. Interestingly, at
larger ts , PBTI–HCD stress may lead to a shift of the Dirac point in the opposite direction during recovery. This is associated with extra positively charged
defects, which are introduced by the HC component.

�VD contains some fast trap contribution, which also impacts
the recovery traces for NBTI-like degradation following
HC stress. This fast trap contribution is effectively suppressed
by sweeping toward negative VTG (V − mode). Initially, we
performed the measurements in V + sweep mode. Fig. 2 shows
the time evolution of the transfer characteristics corresponding
to NBTI–HCD and pure NBTI stresses. Even though a much
higher VTG − VD was used for pure NBTI, the degradation
caused by NBTI–HCD stress is significantly stronger. This
means that the HC component introduces positively charged
defects, which substantially accelerate NBTI degradation and
also have a stronger impact on mobility. Contrary to previous
reports [17], our results are well reproducible [18], as baking
of the devices at T = 300 °C in a H2/He mixture restores
the original transfer characteristic and also results in the same
degradation behavior upon restress. Fig. 3 illustrates that pure
HCD stress also shifts the Dirac point in an NBTI-like manner,
which confirms that positively charged defects are created.
However, contrary to Si technologies, considerable recovery is
observed, likely due to the absence of dangling bonds, which
are otherwise typically associated with HCD [22].

In order to solidify the results, we performed similar
measurements on devices with more positive values of VD .
In addition, the impact of the fast trap component has
been reduced using the V − sweep mode. The results given
in Fig. 4(a) and (b) illustrate that the overall level of
NBTI-like degradation in these devices is significantly lower,
which is not only due to the absence of the fast trap contri-
bution but also because of more positive initial values of VD .
However, the presence of the HC component during stress
still severely accelerates the impact of NBTI. Despite the
smaller VTG −VD, degradation for NBTI–HCD is significantly
stronger than that for pure NBTI. The corresponding recovery
traces are plotted in Fig. 4(c), where an additional data set for
NBTI–HCD with VTG − VD = −6 V is added. Clearly,
the pure NBTI stress leading to the weakest degradation is
completely recoverable. At the same time, the degradation
caused by NBTI–HCD stress with larger VTG−VD is stronger.
In Fig. 5, we provide similar results for HCD stress with
positive VTG − VD (i.e., PBTI–HCD) and compare them with
NBTI–HCD data. Although pure PBTI is much stronger than
pure NBTI [Fig. 5(b)], the presence of the HCD component
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Fig. 6. Similar to the case of pure BTI [18], [19], recovery traces measured after both (a) NBTI–HCD and (b) PBTI–HCD stresses can be fitted with the
CET map model [21] using a single bivariate Gaussian distribution. This, however, only works if the degradation is mainly contributed by the defects of
one sign, which is the case for either NBTI–HCD or PBTI–HCD with large VTG − VD . Under these conditions, the dynamics of HCD are similar to BTI,
possibly because the absence of dangling bonds in GFETs makes the defects responsible for BTI and HCD similar. (c) Underlying CET distributions obtained
using the optimized CET map model are similar to those obtained for BTI in GFETs [18].

makes NBTI–HCD stronger than PBTI–HCD [Fig. 5(c)]. This
means that HCD not only accelerates NBTI degradation by
introducing additional positive charge but also suppresses
PBTI, which creates negatively charged defects. In particular,
Fig. 5(c) illustrates that the impact of the HCD component
having an NBTI-like nature increases versus ts , which may
lead to a shift of the Dirac point in the opposite direction
during recovery (e.g., after ts = 1000-s stress). This suggests
that there is an interaction between the defects introduced
by the HC and bias components of the PBTI–HCD stress.
While the PBTI-like recovery is associated with a relaxation of
negatively charged defects introduced by the bias component,
an extra positive charge created by the HC component makes
the original VD more negative.

As shown in [18], the suppression of the fast trap com-
ponent by using the V − sweep mode and the decrease in
the device-to-device variability allowed us to fit the experi-
mental �VD recovery for pure BTI with the capture/emission
time (CET) map model [21] and the universal relaxation
function [23], [24]. Considering the similarities between
BTI and HCD described above, we, here, made an attempt
at applying these models to fit the HCD dynamics in GFETs.
The CET map model [21] assumes that BTI is the collec-
tive response of independent defects that exchange charges
with the channel. Charge exchange is thermally activated,
and the correlated activation energies can be described using
the bivariate Gaussian distributions. The main parameters
of the model are the mean values (μc and μe) and the
standard deviations (σc and σe) of the capture and emission
energies Ec and Ee, respectively. In addition, an uncorrelated
part of the emission energy �Ee and the corresponding
μ�e and σ�e are considered. However, it was found that
the use of the original model [21] does not always pro-
duce reasonable results, possibly because the VD shifts in
GFETs are significantly larger than threshold voltage shifts in
Si technologies. Therefore, we suggest to modify the
model [21] by changing the implicit correlation between the
standard deviations σ 2

e = rσ 2
c +σ 2

�e with r being a new model
parameter, which can be varied between 0 and 1, while in [21],

Fig. 7. HCD in GFETs can be fitted using the universal relaxation
relation [23], [24] f (ξ) = 1/(1 + Bξβ), while the parameters B and β
remain similar to their counterparts for the BTI in both GFETs and Si tech-
nologies [18], [19]. However, the limitations are the same as in the case of
the CET map model.

r was equivalent to 1. Thus, the distribution is given by

g(Ec, Ee) = 1

2rπσcσ�e
exp

×
(
− (r Ec − μc)

2

2r2σ 2
c

− (Ee − (r Ec + μ�e))
2

2σ 2
�e

)
.

(1)

The results of both NBTI–HCD and PBTI–HCD obtained
with a single Gaussian distribution corresponding to a more
recoverable component are provided in Fig. 6. One can see
that the fits [Fig. 6(a) and (b)] are rather reasonable that
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underlines the similarity between the HCD and BTI dynamics
in GFETs. The underlying CET map distributions [Fig. 6(c)]
are also similar to those published previously for the BTI in
GFETs [18]. Moreover, the dynamics of HCD in GFETs can
also be described by the universal relaxation relation [23], [24],
f (ξ) = 1/(1 + Bξβ), where ξ = tr/ts is the normal-
ized relaxation time, and B and β are the empirical fitting
parameters (Fig. 7). Remarkably, the parameters B and β
given in Fig. 7 are similar to their counterparts obtained from
BTI data for both GFETs and Si technologies [18], [19], which
further confirms the similarity in the physical mechanisms
underlying degradation/recovery dynamics.

However, the described analysis is typically only possi-
ble if both the HC and bias contributions introduce the
defects of the same sign (e.g., NBTI–HCD). Otherwise, if
the two contributions have opposite signs (e.g., PBTI–HCD),
fitting is only possible for stress conditions, under which the
bias component dominates. At the same time, the dynamics
of PBTI–HCD with comparable HC and bias components
[Fig. 5(c)] is more complicated, and, therefore, cannot be
described using such simple models [21], [23], [24].

Finally, as a remark, we should state that there was no clear
channel width impact neither on HCD nor on BTI recovery
within our experiments.

V. CONCLUSION

In summary, we have performed a detailed analysis of
HCD dynamics in GFETs and compared those findings with
the BTIs in both GFETs and Si technologies. It has been
demonstrated that the presence of the HC component severely
accelerates the impact of NBTI and suppresses PBTI. If the
impact of the fast trap component on the measurement
results is suppressed, for some stress conditions, the long-
term HCD data can be well fitted with the CET map model
and also with the universal relaxation relation. This is similar
to the case of BTI in both GFETs and Si technologies.
As such, a systematic method for benchmarking new graphene
technologies proposed in [18] has been extended to the case
of HCD.
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