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Abstract We consider the existence and uniqueness of the
solution of the Wigner equation in the presence of bound-
ary conditions. The equation, describing electron transport in
nanostructures, is analyzed in terms of the Neumann series
expansion of the corresponding integral form, obtained with
the help of classical particle trajectories. It is shown that the
mathematical aspects of the solution can not be separated
from the physical attributes of the problem. In the presented
analysis these two sides of the problem mutually interplay,
which is of importance for understanding of the peculiarities
ofWigner-quantum transport. Theproblem isfirst formulated
as the long time limit of a general evolution process posed
by initial and boundary conditions. Then the Wigner equa-
tion is reformulated as a second kind of a Fredholm integral
equation which is of Volterra type with respect to the time
variable. The analysis of the convergence of the correspond-
ing Neumann series, sometimes called Liouville–Neumann
series, relies on the assumption for reasonable local condi-
tions obeyed by the kernel.
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1 Introduction

The Wigner equation describing electron transport in nano-
electronic structures is subject of an active research interest
since more than 25 years. The Wigner picture offers many
advantages related to the physical transparency of the phase
space formulation of quantum mechanics and the analogy
with the classical distribution function. However, the associ-
ated numerical aspects are rather difficult, comprised ofmany
computational problems, which are gradually solved during
these years. An important issue, subject to intensive spec-
ulations, is the existence and uniqueness of the solution of
theWigner equation. The stationary transport problem deter-
mined by boundary conditions is usually focused on, since it
formulates the technologically important regime of operation
of electronic nanostructures, corresponding to the question:
What is the output from the structure under the condition
of a given input. Thus, in general, the stationary equation
is considered and the analysis relies on certain integral rep-
resentations of the equation [1–3], with sometimes painful
conclusions about the failure of the conventional boundary
condition scheme to provide reasonable physical results [4].
The problem is actually related to the fact that the equa-
tion allows for unphysical solutions [5]. Conditions may be
formulated, which identify the physically admissible phase
space functions. For pure states such a condition reflects
the fact that the density matrix, used to obtain the Wigner
function, is a product of two functions, which are possible
Schrödinger equation solutions, while for a mixed state the
density matrix corresponds to a positive semi-definite opera-
tor [6]. This condition can be used to filter out the unphysical
solutions: it can be shown that, if the initial condition is
an admissible physical state, the Wigner equation maintains
this property during the evolution. This shows the impor-
tance of a proper choice of the initial condition: The latter
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must reflect the uncertainty relations, which means that the
constant h̄ must be involved in the problem since the very
beginning [5]. Thus, unphysical solutions can be traced back
to the time boundary as corresponding to unphysical ini-
tial conditions. Similarly, Wigner function values on spatial
boundaries are entangled via the conditions for admissibility
with certain function values defined on the rest of the domain
of the function.Actually only the inflowing contribution from
the boundaries [7] must be taken into account. As shown in
the sequel, this is indeed the fact, however, nothing guar-
antees a physical solution, provided that the contributions
from the boundaries are arbitrary changed. Thus the knowl-
edge of the proper boundary conditions is a physical issue,
needed to formulate the proper computational problem. As
a rule, equilibrium conditions are assumed at the boundaries
just because the equilibriumWigner function is well-known.
However, then the definition domain of the equation must
be extended to infinity to avoid correlations with the non-
equilibrium central region of the structure, where the electron
flow occurs. In this respect, moving the boundaries arbitrar-
ily close, or imposing arbitrary inflow boundary conditions
on them, may lead to non-unique and unphysical solutions
[4], which is a problem of a correct physical formulation of
the computational task. Indeed, it may be shown that, for
a class of periodic potentials with an interval of periodicity
Ω = [−l/2, l/2] the computational problem is well-posed
under arbitrary inflow boundary conditions specified at−l/2
(v > 0) and l/2 (v < 0) [3].

Here we present an analysis, where the the transport task
is first formulated from a physical point of view. The sta-
tionary solution is considered as the long time limit of the
general evolution problemposed by both initial and boundary
conditions. This implies the existence of a generic solution
comprised of two complementary parts determined by these
conditions. To have a solution determined by boundary con-
ditions only, the initial condition part must vanish with time.
If the contribution from the initial condition does not van-
ish with time and only boundary conditions are considered,
the problem remains ill-posed from a physical point of view.
It follows that the time-dependent component of the field-
less Liouville operator can not be neglected a priori, so that
a restriction to the stationary Wigner equation can be rele-
vant only under the existence of physical arguments for that.
In the next section we formulate the computational prob-
lem in terms of the characteristics of the Liouville operator.
As these are Newton trajectories, the presented analysis is
dimension independent, that is why for simplicity the one-
dimensional problem is considered. Section 3 is devoted
to the computational aspects of the task, where we prove
the existence and uniqueness of the solution posed by both
boundary and initial conditions. A discussion of certain phys-
ical aspects along with the conclusions are presented in
Sect. 4.

2 Wigner transport on trajectories

We consider a charged particle evolving into a single-
dimensional structure under the action of an applied electric
potential V . The phase space evolution is described by the
Wigner equation:

∂ f (x, k, t)

∂t
+ v(k)

∂ f (x, k, t)

∂x
(1)

=
∫

dk′Vw(x, k − k′) f (x, k′, t),

where x and k are the position and wave vector variables,
f is the Wigner function, often called also quasi-distribution
function, since being the quantum counterpart of the classical
distribution function, v(k) = h̄k/m and m are the electron
velocity and effective mass, and Vw is the Wigner potential:

Vw(x, k) = 1

i h̄2π

∫
dse−iks(V (x + s/2) − V (x − s/2)),

(2)

with V (x) the electric potential of the structure determining
the kernel of the equation. The differential component of (1)
is given by the Liouville operator, whose characteristics are
the field-less Newton trajectories.

x(t ′) = x − v(k)(t − t ′); k(t ′) = k. (3)

The trajectory (3) is initialized by x,m, t . Newton trajecto-
ries can not cross in the phase space, so that (3) is uniquely
determined by the initialization point. The time t ′ < t gives
rise to a backward parametrization, which links the initial
point x(0) of the trajectory to the end point x(t) = x . An
important property of this picture is that the wave vector
remains unchanged during the evolution. This means that,
if k �= 0, a trajectory always leaves (after certain time) any
bounded domain. We note that in more complicated physical
pictures accounting for other types of interaction (e.g. phonon
scattering) k can not remain constant. Furthermore, certain
trajectories may remain trapped in some regions surrounded
by hard walls, which is not a trivial situation especially in
multi-dimensional considerations. The consequences of this
fact will be discussed in the sequel. The Liouville operator
becomes a full time differential over given characteristics,
that is, with the help of (3), it is possible to rewrite (1) as a
set of equations parametrized by t ′.

d f (x(t ′), k(t ′), t ′)
dt ′

(4)

=
∫

dk′Vw(x(t ′), k(t ′) − k′) f (x(t ′), k′, t ′).
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We pursue the idea to integrate both sides in certain time
limits. Apparently for t ′ = t we obtain f (x, k, t), which
is the supremum of t ′. The time t ′ may be reduced to the
infinimum t ′ = 0, which, as already discussed follows the
trajectory backwards in time. This links f (x, k, t) with the
initial condition, unless at a certain time tb a boundary point
is encountered. Thus we can formulate a task, where we look
for the solution in an interval Ω , where the initial condition
fi (x, k) is known at time t = 0, with boundaries at points
±l/2, where the values of

fb(−l/2, k, t), for k > 0; fb(l/2, k, t) for k < 0 (5)

are known at any time t > 0 (and are equal zero at t = 0).We
note that, if going backwards over a trajectory from an inter-
nal point we encounter a boundary point, in the forward pic-
ture this trajectory is injected intoΩ , thus only positive (neg-
ative) k values on the left (right) boundary are involved. To
summarize: an integration of (1) on t ′ in the limits [0, t] gives

f (x, k, t)

=
t∫

0

dt ′
∫
dk′Vw(x(t ′), k(t ′) − k′) f (x(t ′), k′, t ′)

+ fi (x(0), k(0))θΩ(x(0)) + fb(x(tb), k(tb))θ(tb). (6)

Here the domain indicator θΩ is unity, if the argument
belongs to the closed interval Ω . Note that due to the two
θ functions fi and fb provide two complementary contribu-
tions to f . Besides, in the first iteration of the kernel with the
boundary term, the lower limit of the time integration is cast
to tb due to the function θ(tb). Furthermore, all higher order
iterations are characterized by a descend ordering of the con-
secutive times of integration, having a bottom limit tb. We
conclude the section by further assuming stationary phys-
ical conditions, in particular we assume that the boundary
conditions and the potential profile V are time independent.

3 Analysis of the convergence

The second kind Fredholm integral Eq. (1) has a free term f1
given by the sum of fi and fb. The solution can be presented
as a Neumann series of the consecutive iteration of the kernel
on the free term and is uniquely determined by the latter
provided the series converges. The proof of the convergence
relies on the fact that (1) is of Volterra type with respect to
the variable t . This allows to rewrite the equation as

f (x, k, t) =
t∫

t0

dt ′
∫
dk′Vw(x(t ′), k(t ′) − k′) f (x(t ′), k′, t)

+ f1(x, k, t0), (7)

where itself the free term

f1(x, k, t0) = f (x(t0), k(t0), t0) (8)

of (7) satisfies Eq. (6) at t0 = t − Δt1, which is a time of the
past with respect to the initialization time, t > t0. Under the
assumption that f1 is known, local conditions may be speci-
fied for the kernel, in order to guarantee the convergence of
the series [1,8]. A sufficient condition for convergence is the
boundedness of the Wigner potential, |Vw| < C , by a given
constantC . Under this assumption and ifΔt1 is small enough,
the iterative terms have an upper-bound limit given by the
corresponding terms of a geometric progression defined by

AΔt1 < 1. (9)

In this way the solution f of (7) is uniquely determined by
the free term f1.

The procedure can be repeated for f1, which introduces
the free term f2 and so on, giving a decomposition of the
backward evolution into the time intervalsΔti . Next we show
that these time intervals do not converge to certain point of
compression, but actually cover the whole evolution interval,
thus reaching the initial time after finite steps in the proce-
dure. The next estimation addresses this problem. From (2)
it follows that:

|Vw(x, k)| =
∣∣∣∣ 1

i h̄2π

∫
dx ′e−i x ′k

×
∫

ds
(
e−i(x+x ′/2)s − e−i(x−x ′/2)s

)
Ṽ (s)

∣∣∣∣
=

∣∣∣∣ 2i h̄
(
ei2xk Ṽ (−2k) − e−i2xk Ṽ (2k)

)∣∣∣∣ < A.

(10)

The last estimate comes from the assumption that the Fourier
transform Ṽ of the potential V is bounded by a constant
h̄ A/4.By recalling that theFourier transformof an absolutely
integrable function is is a bounded and continuous function,
we request that the potential V is an absolutely integrable
function. In this case (9), and (10) guarantee the existence of
an infinimum of the set Δti . This minimum can be used as a
global decomposition time Δt .

This procedure, based on the Markovian character of the
Wigner equation and a reasonable assumptions for the poten-
tial V , uniquely determines the solution of the equation by
linking the solution f at given time in a given phase space
point (with a spatial coordinate belonging to Ω) to the free
term f1 in (6). This means that, if the initial and the boundary
conditions are known, they uniquely determine the solution
of the equation.With this result we address the computational
aspects of the problem. Questions, whether it is possible
to formulate the boundary conditions and if they can alone
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determine the solution, must be addressed from a physical
point of view.

4 Physical aspects

The initial and boundary conditions give two complementary
contributions to the solution. To reach a stationary regime,
with boundary contributions only, the initial counterpartmust
vanish in the domain Ω with the increase of the evolution
time. In the ideal case the initial condition ‘leaks’ through
the boundaries and the electron system enters a stationary
regime. It is worth to mention the following peculiarities: In
general, for small evolution times t the main contribution to
the solution in an internal point of Ω is given by the ini-
tial conditions, since the ’backward’ end of the trajectory (3)
also belongs toΩ . For larger times (3) encounters the bound-
ary, so that the BCs determine the solution. Moreover, since
the trajectory evolves backward in time, the function f out-
side Ω contributes to the solution inside Ω by these values
of k only, which guarantee the injecting character of fb. In
this case it is legitimate to consider the stationary equation
as physically relevant. However, there could be trajectories
which never reach a physical boundary, that is a place where
injecting boundary conditions have to be specified. We con-
sider a potential which becomes zero at the boundaries (and
remains such at infinity), but is characterized by a poten-
tial well around the origin. From a physical point of view
the solutions inside the well may demonstrate periodic or
stationary behavior and form the subspace of bound states.
Actually these states are asymptotically bounded in a region
around thewell,whichmaybe adjusted according to a desired
precision due to the exponential damping of the wave func-
tions away from the well. Thus a physical density can not
leak trough the boundaries. A good example are the eigen-
states of an harmonic oscillator with a frequency ω, which in
Wigner representation are products of Laguerre polynomials
with an exponentially decaying function of the argument

ξ = x2 + k2, (11)

where, for convenience we assume mω = 1. From a mathe-
matical point of view, bound states determine the zero space
for evolution operators based on the commutator with the
Hamiltonian like the Wigner and density matrix represen-
tations [9]. These states remain invariant under the action
of these operators. The time evolution of the the harmonic
oscillator states is given by a simple rotation of any initial
condition fi .

f (x, k, t)

= fi (xcos(ωt) − ksin(ωt), xsin(ωt) + kcos(ωt)) (12)

This can be seen by applying the operations of (1) on (12) and
taking into account that the operator with the Wigner poten-
tial of a harmonic oscillator can be equivalently formulated
as a force term, which completes the left hand side of (1) to
a general Liouville operator. In this case there is no differ-
ence between classical and quantum evolution, and quantum
mechanics enters via the initial condition which must obey
the uncertainty relations. The argument ξ , (11), of an eigen-
state considered as an initial condition then does not change
with time as can be seen from (12). Such Wigner states can
be introduced as initial conditions only, and since they can-
not be modified by the kernel of the equation, they remain
as a part of the computational task forever. If we cast the
physical task to the stationary, boundary condition problem,
such states remain empty by default, unless the boundary is
intentionally moved in the well and begins to fill them. Thus
by moving the boundary we may obtain completely differ-
ent solutions, which, however is not due to the unphysical
nature of the Wigner equation, but rather to our approach
to it. This conclusion is consistent with the results reported
in [10] and [11], where the problem is investigated from an
alternative point of view and peculiar effects are displayed. A
manifestation of the bound state problem in our approach is
that there is no way to specify boundary conditions for states
in the potential well. These states are associated with zero or
negative kinetic energies and according to (5) and (3) we can
not inject trajectories with zero or imaginary wave vectors.

Here we consider as important the following remark. It
looks like the picture of a conservation of the physical den-
sity into a given domain heavily contradicts to our previous
considerations. Indeed, provided that k is not zero after some
time, any trajectory (3) can reach any distance from the ori-
gin point, and according to the classical case a trajectory
means a physical density moving away from Ω . However,
this is the essential difference with quantum mechanics in
the phase space. In the latter case trajectories are associated
with numerical particles, which may abandon Ω in such a
way that no physical density leaks outside Ω . Considering
the picture of signed particles, (a recent overview is given
in [12]) associated to the Wigner formulation of quantum
mechanics, one can easily imagine a couple of a positive and
a negative particles which in total gives zero physical density
leaving the domain.

Finally the requirement for V to be an absolute integrable
function is satisfied by a large class of potentials. The exis-
tence of the first derivative, the electric force, guarantees the
continuity of V almost everywhere, Furthermore one must
assume that V approaches zero far away from the structure,
which correctly accounts for the recovery of the equilib-
rium [13]. Almost everywhere continuous functions which
become zero at infinity are absolutely integrable, showing
that this condition does not restrict, but rather characterize
the physically relevant potentials.
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